
Towards finer-grained interaction

with a Poetry Generator

Hugo Gonçalo Oliveira
hroliv@dei.uc.pt

Tiago Mendes
tjmendes@student.dei.uc.pt

Ana Boavida
aboavida@dei.uc.pt

CISUC, Department of Informatics Engineering
University of Coimbra, Portugal

Abstract

PoeTryMe is a poetry generation system that produces poems au-
tonomously, from a set of initial parameters. After using a simpli-
fied version of this system, creative writers and other interested people
identified some issues and expressed their wish to make changes in the
resulting poems or to interact with the system and take part in the
creative process. This paper illustrates some of the issues on generated
poems and reports on a recent e↵ort towards providing alternative ways
of using PoeTryMe and to meet the previous suggestions. Some func-
tionalities were made available via a web API, which can now be ex-
ploited by other systems. Those include the generation of single lines,
or the retrieval of related words, where additional constrains can be
made on the number of syllables, sentiment or rhyme. On the top of
this API, a co-creative interface has been developed. It enables users to
start from scratch, from an existing poem, or to generate a new draft.

1 Introduction

PoeTryMe [6] is a platform for automated poetry generation. So far, it has been adapted to produce poetry in
di↵erent forms, languages and from di↵erent stimuli. PoeTryMe generates a poem from a set of initial parameters,
such as the poetry form, the language, a set of seeds or a surprise factor. An implemented generation strategy
is then followed to select the most suitable lines to fill the form, generated with the help of a semantic network
and a generation grammar. The result is a sequence of semantically-coherent lines, using the seeds or words
related to them, grouped according to the given poetry form, with the corresponding number of syllables, and
often with rhymes. This is done in an autonomous fashion, with no additional user interaction nor input besides
the initial parameters.

Yet, after using a simplified version of PoeTryMe, several users, including musicians and poets, expressed their
interest to be more involved in PoeTryMe’s creation process. Some even confessed to having generated several
poems, keeping only some of the best lines, and created a new improved poem from this manual procedure.
Although the obtained results are generally ok, especially if generation goes through more iterations in the
search for the most suitable lines, there are always aspects that may be improved, not to mention that assessing
the quality of poetry is a subjective task and may diverge from user to user.

In order to meet the users feedback, we decided to provide direct access to some of the main functionali-
ties required for poetry generation, through a web API. This was possible due to the modular architecture of
PoeTryMe, which already decouples the process of poetry generation in several tasks, performed independently.

Copyright

c� by the paper’s authors. Copying permitted for private and academic purposes.

In: A.M. Olteteanu, Z. Falomir (eds.): Proceedings of ProSocrates 2017: Symposium on Problem-solving, Creativity and Spatial
Reasoning in Cognitive Systems, at Delmenhorst, Germany, July 2017, published at http://ceur-ws.org

1



Functionalities now available through the API include the generation of single lines from a seed, with a target
number of syllables, or the retrieval of words related to another, where additional constraints can be made on the
number of syllables, sentiment or rhyme. To some extent, this is in line with the vision of a Creative Web, where
creative tools are deployed as web services [20], and enables third-party applications to interact with PoeTryMe,
not only for the generation of a single poem, but also to customise when each of the available functionalities is
performed, possibly combining them in alternative ways.

One of such applications is Co-PoeTryMe, a web-based tool that enables to use PoeTryMe co-creatively. Users
may start from scratch, with their own words and lines, they can import an existing poem, or they can generate
a newl draft poem, which should help them to overcome the ‘blank page syndrome’1 [14]. In any case, lines
and words may then be switched or replaced with new ones, following certain user-defined constraints, hopefully
towards a better poem, more aligned with their intentions.

The remaining of this paper starts with a brief introduction to related topics, including poetry generation, co-
creativity, poetry and co-creativity, and finally creativity-support interfaces. After this, PoeTryMe is overviewed,
followed by an enumeration of some identified limitations, with illustrative examples. Together with the user
feedback, the previous limitations motivate most functionalities that were made available, described next. Before
concluding, Co-PoeTryMe is revealed and its main features are briefly described.

2 Related Work

Poetry generation is a popular task in the scope of Computational Creativity [3]. During the last 15 years,
several systems for this purpose were developed, using a wide range of artificial intelligence techniques (e.g. [4,
17, 2, 19, 6, 18, 16], see [10] for a short survey). The majority of those systems generates poetry autonomously,
from initial stimuli, either provided by the user or triggered by some event, and outputs the results without any
human intervention during the generative process.

A di↵erent kind of systems enable the collaboration of humans and computational agents in the production
of creative artefacts. This can be done through alternating co-creativity, when the computer performs exactly
the same tasks as the human, though in di↵erent turns; or through task-divided co-creativity, when the tasks
performed by the computer are di↵erent than those by the human [15]. For instance, in the poetry domain,
some tasks should be easier for a computer program – e.g., finding words that rhyme or with a certain number
of syllables, which, to some extent, can be made with the help of a set of rules and / or a pronunciation lexicon
– , while other tasks would suit the human better – e.g., evaluating the aesthetics, which can be very subjective;
or conveying a non-trivial meaning, which might require access to much knowledge organised for this purpose.

We identified existing computational systems that enable the collaboration between man and machine in
the production of poems [14, 16, 21], though with di↵erent interfaces and available functionalities. The Poetry
Machine [14] is presented as an interactive tool developed on the top of a poetry generation system [19]. From
a set of user-given keywords, the system generates initial draft lines, which may be further changed by the user
or by the system, in equal turns. During the creation process, the user may ask for additional lines or words,
while the new fragments produced by the system will automatically adapt to the user’s modifications. jGnoetry
is a web application2 that enables the generation of poems from a collection of texts provided by the user, who
may also select the poetry form from a list of predefined forms or set its own through sequences of syllables
organised in lines. The resulting poem is presented in such a way that the user may select words to keep in
further iterations and generate new text for the unselected words. Deep Beat [16] is a rap lyrics generation
system with a web interface3 where the users can write some lines, provide a set of words to appear, and ask
the system for the suggestion of new lines, possibly rhyming. Each suggested line appears after a picture of its
original author, because they were collected from human-created rap lyrics. Another lyrics-writing supporting
system is LyriSys [21], where the user sets a musical structure, chooses a topic for each block or writes part of
the lyrics, and the system generates lyrics for the remaining blocks, following the given structure and within the
selected topic. After this, users can still revise the lines they are not happy with, possibly replacing them with
alternative candidates.

From a similar perspective, Misztal and Indurkhya’s [18] poetry generation system could also be seen as co-
creative, but the collaboration does not involve humans, only computational agents with di↵erent expertises.

1The ‘blank page syndrome’ refers to when a writer opens a blank page and cannot or takes too long to start writing because
there are no words on the page

2
http://www.eddeaddad.net/jgnoetry/

3
http://deepbeat.org/

2



More precisely, agents with di↵erent responsibilities, such as dealing with emotion, word generation, poetic
aspects, or selecting the best solutions, interact in a common workspace (blackboard), towards the production
of a poem.

A di↵erent kind of creativity platform is not co-creative nor creative on its own, but allows users to combine
di↵erent more or less creative services through a web interface, in the development of novel creative workflows,
which can be tested right away. Such platforms include ConCreTeFlows [22] and FloWr [1] and have been used
for poetry generation, among other tasks.

In order to be integrated in such platforms, creative systems must somehow be in line with the vision of a
Creative Web, where creative tools are deployed as web services [20] that may be used by third-party applications.
Concerning poetry generation, the previous vision is further discussed by Gervás [5], who argues that abstractions
of the various functionalities involved in a poetry generation system should be available as services that may
be later invoked by other systems. This enables the development of di↵erent systems that would, nevertheless,
share some modules, thus requiring less e↵ort to develop. As for the co-creative systems, they must communicate
with their user interfaces and allow to run di↵erent steps involved in poetry generation at will, instead of always
going through the full process. So, even if these steps are not always available as services, modularity should be
present and, in most cases, each module could potentially become available as an independent service.

3 PoeTryMe and its Modular Architecture

PoeTryMe [6] is a computational platform, originally designed to test di↵erent settings in the process of poetry
generation, with a focus on the exploited knowledge resources, which could be indirectly assessed this way. For
this reason, PoeTryMe has a modular architecture that enables not only the independent development of each
module, but also to test di↵erent settings of input parameters and to study their impact in the resulting poems,
with reduced e↵ort. PoeTryMe’s architecture has two core modules: the Line Generator produces semantically-
coherent lines with the help of a semantic network and a generation grammar, with textual patterns for rendering
semantic relations, given their type; and the Generation Strategy retrieves lines on a semantic domain, from the
Line Generator, and selects which will be used in the poem. Additional modules can be seen as complementary.
A more extensive description of this architecture is found elsewhere [11].

Among other parameters, users may define the rules of a generation grammar, the underlying semantic
network, the poetry form, the set of seed words, the polarity lexicon and the transmitted sentiment. Developers
may additionally reimplement some of the modules and reuse the others. Each di↵erent setting consists of
a new instantiation of PoeTryMe. So far, PoeTryMe has been instantiated to produce poetry in di↵erent
forms, including song lyrics [7], and in di↵erent languages, originally Portuguese [6], and later also Spanish and
English [11], given di↵erent stimuli, such as Twitter trends [9] or concept maps extracted from text [13].

A limited version of PoeTryMe can currently be used through the TryMe web interface4 [8], which generates
poems given a language, one of the predefined forms, a list of seeds and a surprise factor. Poems are generated
following a generate-and-test strategy, also used in most instantiations of PoeTryMe: lines are generated, one
after another, until the metre and rhyme constraints are met or a certain number of generations is reached. The
generation strategy cannot be changed through TryMe, nor can additional parameters, such as the semantic
network, the generation grammar, turning the seed expansion on, or the desired polarity. Yet, this interface
enabled the identification of most limitations discussed in the following paragraphs, together with the Poeta
Artificial5 Twitter bot [9], which continuously generates Portuguese poems inspired by current trends. We
should nevertheless note that some limitations can be minimised if PoeTryMe is used with its full capabilities.
For instance, increasing the number of generations, not possible through the interface, increases the chance of
rhymes in a trade-o↵ of longer generation time.

4 Identified Limitations of PoeTryMe

The main limitation of PoeTryMe is that the meaning and intention of the poems is not clearly-defined. Given
seed words constrain the semantic network, so that each line uses them or semantically-related words. Each
relation can be rendered as text following a set of patterns in the generation grammar, which apply for every
relation of the same kind. Poems will thus be richer for larger semantic networks, not only in terms of words and
relation instances, but with a varied range of relation types. The generation grammar also plays an important

4TryMe section in http://poetryme.dei.uc.pt

5Check https://twitter.com/poetartificial

3



role, because it should contain several di↵erent renderings for each relation type, and for lines with di↵erent
number of syllables.

Although the aforementioned approach enables the generation of semantically-coherent lines, in the strategies
implemented so far, they are generated independently. Therefore, although the connection to the seeds provides
some consistence and the poem is indeed on a certain topic (check a previous evaluation [11]), the sequence of
ideas is not always the best. Also, the same word might have di↵erent meanings, which, in some cases, might be
interesting, but may also shift the poem semantics. One the other hand, although this feature is not available
with the TryMe interface, the system can explain the semantic connection between the selected words and their
connection to the seeds, which might be helpful to understand the underlying meaning. This limitation can be
further minimised if the semantic network is replaced by one specifically-tailored for the target domain, as in
previous work [13], where it was extracted from a given Wikipedia article, but the generation grammar would
also have to be tuned, regarding the extracted relations and, especially, the user intention.

The following poem, generated with the seeds poetry and interaction, illustrates the possible results
of PoeTryMe.

and interaction aggressions

no more poetry expressions

tag that poetry too loud

action says it, stage says it

Each line has seven syllables and two of them rhyme, but their sequence is not the most logical. Semantic
consistence is aided by the relations rendered in each line, which involve the seeds or related words, namely:
coHyponymOf(interaction, aggression), coHyponymOf(expression, poetry), domainOf(tag, poetry), hypony-
mOf(action, stage). The last instance is indirectly connected to interaction, through hypernymOf(interaction,
action), which is possible because the poem was generated with a surprise factor greater than 0.

This leads us to another limitation of PoeTryMe: it might be tricky to select the surprise factor. This
parameter sets the probability of selecting words that, in the semantic network, are more than one level further
to the seeds. More precisely, a high surprise factor increases variation in vocabulary by considering more words
that are not directly connected with the seeds. On the one hand, a low surprise might result in a poem where
every line uses one seed, thus not so interesting. See, for instance, the following example, generated with the
seeds problem and solving, with surprise set to 0.

fall like a dead riddle problem

we got solving and locations

solving write determinations

with problem and pitfall on?

On the other hand, a higher surprise might result in a poem where the connection to the domain is harder to
find, such as the following, generated with the seeds spatial and cognition and a surprise of 0.1 – meaning that
every relation instance connected to a word that is connected to a seed has a 10% probability of being used by
the Line Generator.

if you locate what you place

the mind doubters of her embrace

ears were nasty, heads were hot

chair, moon, and places forgot

Despite an indirect connection with the seed words, none of them ends up being used. As a probability, the
impact of this factor is highly influenced by the number of relation instances involving the seeds and the words
directly related to them – e.g. 10% of all the words related to person or place can be a much higher number
than 10% of all the words related to solving or computational, because the former are nodes with a higher degree
in the network. In fact, when the number of relations involving each seed is not balanced, the resulting poem
might use only words related to the seed that is involved in more relation instances. This happens, for instance,
in the following poem, generated with computational and creativity, where every line uses the latter or related
words (namely, coHyponymOf(hands, creativity)) and the former is just forgotten:

design leads to creativity

creativity plane aptitudes

while the stormy hands do right

creativity spin, flight

4



Besides making the poems potentially more interesting, this issue can be minimised if the initial seeds are
automatically expanded with a small set of relevant words, obtained with the PageRank algorithm (as in previous
work [7, 11]). Yet, again, this feature is not available in the TryMe interface.

A final limitation is related to the grammar renderings. One assumption behind PoeTryMe is that all relation
instances of the same type can be expressed by the same textual pattern, changing only the involved words.
For instance, “the <x> of the <y>” should hold for every pair of words, such that partOf(x, y). However, in
order to avoid time-consuming work for handcrafting this kind of grammars, they ended up being automatically
extracted from human-created poems and song lyrics, which enabled the creation of larger and richer grammars,
but also harder to control. Therefore, poems occasionally present grammatical inconsistencies, odd syntactic
constructions, or words from a di↵erent semantic domain, that are a fixed part of the pattern. See, for instance,
the following poem, generated with the seeds human, creative, and cognition:

a imaginative creative sea

a insertion where contents are free

license plate with mankind human on it

filled with joy... human becomes mitt

In the first two lines, the determiner a should instead be an, because it precedes words starting with a vowel.
Furthermore, words such as sea or license plate are respectively part of the pattern used and, although might
accidentally result in something interesting, do not have a strong connection with the seeds. Another issue is
the odd construction mankind human.

5 Extending PoeTryMe’s API

Since TryMe became available, it has been tested by di↵erent people and, together with the outputs of the Poeta
Artificial Twitter bot [9], the previously discussed limitations were either identified or confirmed. In this process,
some users pointed out items that would improve the system, often expressing their will to change the resulting
poem. For instance, in some cases: they preferred a di↵erent line order; some lines did not end in rhyme, or
did not match the target metre exactly; punctuation was missing or there was a grammatical inconsistence; the
syntax or the semantics was bizarre; they were looking for lines with a deeper meaning; they just wanted to change
a word or a line for no specific reason. Some users even confessed to have generated several poems, possibly with
di↵erent parameters, in order to obtain more suitable lines or words, which they would then manually organise
as a new poem. This was our main motivation for providing an alternative way of using PoeTryMe.

Before this work, PoeTryMe’s API already had a REST API with a single endpoint:

• http://poetryme.dei.uc.pt:8080/PoetrymeWeb/rest/poetry

Used by TryMe and by ConCreTeFlows [22], this endpoint enabled the generation of a full poem from a small
set of parameters, namely:

• Language: lang=[en|pt|es]

• Form: form=[id of the form] (either from a pre-defined list, also including song lyrics; or a string n⇥m, where n is

the number of lines and m is the number of syllables)

• Seeds: words=[comma-separated list of words]

• Surprise: surp=[0-1]

For instance, the following URL returns a sonnet in Portuguese, using the seeds criatividade and computador,
with a surprise of 0.01:

http://poetryme.dei.uc.pt:8080/PoetrymeWeb/rest/poetry?lang=pt&form=sonnet&seeds=computador+

criatividade&surp=0.01

Towards finer-grained interaction with PoeTryMe, the API was extended with additional endpoints for per-
forming lower-level functionalities, namely:

5



• Generation of a single line, given a list of seeds and a surprise factor, se-
lected from the best n lines generated, according to a target number of syllables:
http://poetryme.dei.uc.pt:8080/PoetrymeWeb/rest/poetry/line

– Language: lang=[en|pt|es]

– Seeds: seeds=[comma-separated list of words]

– Surprise: surp=[0-1]

– Target number of syllables: nsyl=[1-n]

– Maximum generations: bestof=[1-n]

• Retrieve a set of words related to a target word. Relation can be semantic, same number of syllables, same
rhyme, or a combination of the previous. Resulting words might be further constrained with a target polarity:
http://poetryme.dei.uc.pt:8080/PoetrymeWeb/rest/poetry/words

– Language: lang=[en|pt|es]

– Word: word=[word]

– Relation: rel=[id for relation type] (supported types are: synon for synonymy, anton for antonymy, hyper

for hypernym, hypon for hyponymy, cohyp for co-hyponymy, other for any other type, or any for any type)

– Target rhyme: rhyme=[word with the target rhyme]

– Target number of syllables: syl=[word with the target number of syllables]

– Polarity: pol=[-1,0,1]

• Score a piece of text for a target poetry form. This will use the same metric as PoeTryMe, which means that
poems that perfectly match the metre will be score with 0, with (negative) bonus for each pair of rhyming
lines, and a (positive) penalty for each syllable out-of-metre:

http://poetryme.dei.uc.pt:8080/PoetrymeWeb/rest/poetry/score

– Language: lang=[en|pt|es]

– Form: form=[id of the form] (same possibilities as for the poem generation URL)

– Text: text=[full text] (lines split with a \n)

The new functionalities can be exploited by di↵erent systems, which may use them for di↵erent approaches to
poetry generation or alternative purposes. In the next section, a use case of this API is presented: a co-creative
web interface for PoeTryMe that uses these functionalities on demand.

6 Co-PoeTryMe: a Co-Creative Interface for PoeTryMe

Co-PoeTryMe [12] is a web-based tool, mostly developed in JavaScript, that enables the human user to interact
with PoeTryMe, hopefully towards better poems, or more in line with their intentions. Interaction starts with a
draft poem, which may be fully generated by the system, written by the user from scratch, or imported from an
existing text file. After this, the user may manually edit parts of the poem, select words or full lines.

Co-PoeTryMe has several visual modules, but they are not all visible at the same time. Figure 1 depicts the
modules for poem Edition (centre), Draft generation (left) and Instructions (right) in the current prototype.
Once the draft has content, the Edition module becomes visible. The user can double-click to edit the full poem,
a line, or a word manually, and can also drag-and-drop words or lines to switch them. The Drafts module has
buttons for enabling the generation of a new draft that will replace the current one (play-like button), and to score
the current draft based on the metrics and the presence of rhyme, according to the selected poetry form (star-like
button). The top module, always visible, has utility buttons for selecting the application language (English or
Portuguese), showing or hiding tooltips, importing or exporting a draft, sharing in social networks, undo, redo,
as well as a tool for visualising the changes made from the initial draft to its current state.

6



Figure 1: Co-PoeTryMe’s prototype: poem edition and word generation.

When a word is clicked, word-related tools are shown instead of the Drafts and Instructions modules, as
depicted in figure 2. On the left, the Words module enables the retrieval of words with certain features, such as
a semantic relation, rhyme or the same number of syllables as a selected word, possibly with a given polarity.
Retrieved words appear in a cloud, located in the Generated Words module, on the right-hand side. They can
be drag-and-dropped to be added to the poem, they can replace words in the poem, or they can be moved to
the Word Bank module, for future utilisation. Replaced words are moved to the Trash module. At each word
generation action, triggered by the play-like button, the words in the Generated module are lost, while words
in the Bank and in the Trash remain available for future inclusion in the poem. In figure 2, words related to
language and rhyming with salvation were retrieved.

When a complete line is clicked, the Lines module is shown instead of the Words or the Drafts module. The
Lines module enables the generation of new lines and, similarly to the words, it also enables a Generated, a
Bank and a Trash module, specific for lines, on the right-hand side. Figure 3 shows the line-related modules
while, in the center, the changes made by the user in the original draft are illustrated. Currently, the represented
changes cover words and lines switched and words added, removed or replaced. Symbols inspired by document
revision tasks are applied, and the text produced by the human has a distinct typography than text produced
automatically. Besides a static visual representation of the changes, changes can be animated from the beginning
to the current state of the draft, through a play-like button that appears in the bottom of the Edition module.
The static representation may also be exported as an image and drafts may be directly shared in social networks.

7 Conclusion and Further Work

This paper described how the suggestions of several users of PoeTryMe, a poetry generation system, were
followed to enable a finer-grained and more user-driven interaction with this system, while also minimising some
of its identified limitations. The modular architecture of PoeTryMe eased the extension of its public API with
additional endpoints for performing sub-tasks of poetry generation, such as the generation of single lines or the
retrieval of related words. This enables the exploitation of specific modules of PoeTryMe by external systems
such as Co-PoeTryMe, a co-creative tool that enables the user to collaborate with PoeTryMe in the composition
of new poems.

In the future, we are planning to make more functionalities available through the API, such as the contex-
tualization of lines according to the underlying semantic network. We are still working on the development of

7



Figure 2: Co-PoeTryMe’s prototype: poem edition and word generation.

Figure 3: Co-PoeTryMe’s prototype: visualising changes.

8



Co-PoeTryMe, especially on the usability and design aspects. Usability tests are currently being conducted and
will hopefully provide us useful feedback on aspects to improve and directions to take. New functionalities may
also be added in a near future (e.g., score the metre of poems, according to a given form). Co-PoeTryMe is
accessible online, from a link in PoeTryMe’s website, at: http://poetryme.dei.uc.pt/.

References

[1] John Charnley, Simon Colton, Maria Teresa Llano, and Joseph Corneli. The FloWr online plat-form:
Automated programming and computational creativity as a service. In Proceedings of 7th International
Conference on Computational Creativity (ICCC 2016), Paris, France, 2016. Sony CSL.

[2] Simon Colton, Jacob Goodwin, and Tony Veale. Full FACE poetry generation. In Proceedings of 3rd
International Conference on Computational Creativity, ICCC 2012, pages 95–102, Dublin, Ireland, 2012.

[3] Simon Colton and Geraint A. Wiggins. Computational creativity: The final frontier? In Proceedings
of 20th European Conference on Artificial Intelligence (ECAI 2012), volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 21–26, Montpellier, France, 2012. IOS Press.

[4] Pablo Gervás. WASP: Evaluation of di↵erent strategies for the automatic generation of spanish verse. In
Proceedings of AISB’00 Symposium on Creative & Cultural Aspects and Applications of AI & Cognitive
Science, pages 93–100, Birmingham, UK, 2000.

[5] Pablo Gervás. Deconstructing computer poets: Making selected processes available as services. Computa-
tional Intelligence, 33(1):3–31, 2017.

[6] Hugo Gonçalo Oliveira. PoeTryMe: a versatile platform for poetry generation. In Proceedings of the ECAI
2012 Workshop on Computational Creativity, Concept Invention, and General Intelligence, C3GI 2012,
Montpellier, France, August 2012.

[7] Hugo Gonçalo Oliveira. Tra-la-lyrics 2.0: Automatic generation of song lyrics on a semantic domain. Journal
of Artificial General Intelligence, 6(1):87–110, December 2015. Special Issue: Computational Creativity,
Concept Invention, and General Intelligence.

[8] Hugo Gonçalo Oliveira. Poe, now you can TryMe: Interacting with a poetry generation system. In Pro-
ceedings of the Demonstration Session of PROPOR’2016, 12th International Conference on Computational
Processing of the Portuguese Language, 2016.

[9] Hugo Gonçalo Oliveira. O Poeta Artificial 2.0: Increasing meaningfulness in a poetry generation twitter
bot. In Proceedings of the 2nd Workshop on Computational Creativity in Natural Language Generation,
CC-NLG, page (in press), Santiago de Compostela, Spain, 2017. ACL Press.

[10] Hugo Gonçalo Oliveira. A survey on intelligent poetry generation: Languages, features, techniques, reutili-
sation and evaluation. In Proceedings of the 10th International Conference on Natural Language Generation,
INLG 2017, page (in press), Santiago de Compostela, Spain, 2017. ACL Press.

[11] Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Dı́az, and Pablo Gervás. Multilanguage extension and
evaluation of a poetry generator. Natural Language Engineering, page (in press), 2017.

[12] Hugo Gonçalo Oliveira, Tiago Mendes, and Ana Boavida. Co-PoeTryMe: a co-creative interface for the
composition of poetry. In Proceedings of the 10th International Conference on Natural Language Generation
(Demo Session), INLG 2017, page (in press), Santiago de Compostela, Spain, 2017. ACL Press.

[13] Hugo Gonçalo Oliveira and Ana Oliveira Alves. Poetry from concept maps – yet another adaptation of
PoeTryMe’s flexible architecture. In Proceedings of 7th International Conference on Computational Creativ-
ity, ICCC 2016, Paris, France, 2016.

[14] Anna Kantosalo, Jukka M. Toivanen, Ping Xiao, and Hannu Toivonen. From isolation to involvement:
Adapting machine creativity software to support human-computer co-creation. In Proceedings of 5th Inter-
national Conference on Computational Creativity, Ljubljana, Slovenia, June 10-13, 2014, 2014.

9



[15] Anna Kantosalo and Hannu Toivonen. Modes for creative human-computer collaboration: Alternating
and task-divided co-creativity. In Proceedings of 7th International Conference on Computational Creativity
(ICCC 2016), Paris, France, 2016. Sony CSL.

[16] Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani Raiko, and Aristides Gionis. Dopelearning: A computa-
tional approach to rap lyrics generation. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 195–204,
2016.

[17] H. M. Manurung. An evolutionary algorithm approach to poetry generation. PhD thesis, University of
Edimburgh, Edimburgh, UK, 2003.

[18] Joanna Misztal and Bipin Indurkhya. Poetry generation system with an emotional personality. In 5th
International Conference on Computational Creativity, ICCC 2014, Ljubljana, Slovenia, 06/2014 2014.

[19] Jukka M. Toivanen, Hannu Toivonen, Alessandro Valitutti, and Oskar Gross. Corpus-based generation of
content and form in poetry. In Proceedings of the 3rd International Conference on Computational Creativity,
pages 211–215, Dublin, Ireland, May 2012.

[20] Tony Veale. Creativity as a web service: A vision of human and computer creativity in the web era. In
Creativity and (Early) Cognitive Development: A Perspective from Artificial Creativity, Developmental AI,
and Robotics, Papers from the 2013 AAAI Spring Symposium, Palo Alto, California, USA, March 25-27,
2013, volume SS-13-02. AAAI Press, 2013.

[21] Kento Watanabe, Yuichiroh Matsubayashi, Kentaro Inui, Tomoyasu Nakano, Satoru Fukayama, and Masa-
taka Goto. LyriSys: An interactive support system for writing lyrics based on topic transition. In Proceedings
of the 22nd International Conference on Intelligent User Interfaces, IUI ’17, pages 559–563, New York, NY,
USA, 2017. ACM.

[22] Martin Żnidaršič, Amı́lcar Cardoso, Pablo Gervás, Pedro Martins, Raquel Hervás, Ana Oliveira Alves,
Hugo Oliveira, Ping Xiao, Simo Linkola, Hannu Toivonen, Janez Kranjc, and Nada Lavrac. Computational
creativity infrastructure for online software composition: A conceptual blending use case. In Proceedings of
7th International Conference on Computational Creativity (ICCC 2016), Paris, France, 2016. Sony CSL.

10


