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Abstract. In this paper we present the music information plane and the
different levels of information extraction that exist in the musical domain.
Based on this approach we propose a way to overcome the existing se-
mantic gap in the music field. Our approximation is twofold: we propose
a set of music descriptors that can automatically be extracted from the
audio signals, and a top-down approach that adds explicit and formal
semantics to these annotations. These music descriptors are generated
in two ways: as derivations and combinations of lower-level descriptors
and as generalizations induced from manually annotated databases by
the intensive application of machine learning. We belive that merging
both approaches (bottom-up and top-down) can overcome the existing
semantic gap in the musical domain.

1 Introduction

In recent years the typical music consumption behaviour has changed dramati-
cally. Personal music collections have grown favoured by technological improve-
ments in networks, storage, portability of devices and Internet services. The
amount and availability of songs has de-emphasized its value: it is usually the
case that users own many music files that they have only listened to once or
even never. It seems reasonable to think that by providing listeners with effi-
cient ways to create a personalized order on their collections, and by providing
ways to explore hidden “treasures” inside them, the value of their collection will
drastically increase.

Beside, on the digital music distribution front, there is a need to find ways of
improving music retrieval effectiveness. Artist, title, and genre keywords might
not be the only criteria to help music consumers in finding music they like. This
is currently mainly achieved using cultural or editorial metadata (“this artist
is somehow related with that one”) or exploiting existing purchasing behaviour
data (“since you bought this artist, you might also want to buy this one, as other
customers with a similar profile did”). A largely unexplored (and potentially
interesting) alternative is using semantic descriptors automatically extracted
from the music audio files. These descriptors can be applied, for example, to
organize a listener’s collection, recommend new music, or generate playlists. In
the past twenty years, the signal processing and computer music communities
have developed a wealth of techniques and technologies to describe audio and
music contents at the lowest (or close-to-signal) level of representation. However,



Fig. 1. The music information plane and its semantic gap

the gap between these low-level descriptors and the concepts that music listeners
use to relate with music collections (the so-called “semantic gap”) is still to a
large extent waiting to be bridged.

This paper is structured as follows: section 2 will present the music infor-
mation plane. This section will give a general overview of the different levels of
information extraction that exist in the musical domain. Then, section 3 will
present the work and developments made in a EU-project, named SIMAC1 (Se-
mantic Interaction with Music Audio Contents), to bridge the semantic gap and
to enhance the music enjoyment experience. We will introduce several semantic
descriptors of music contents, developed for different musical facets (rhythm,
harmony, timbre, etc.). Before concluding, section 4 presents a multimodal ap-
proach to overcome the existing semantic gap in the musical domain. Finally,
a discussion on future trends and open issues that deserve further research will
conclude the paper.

2 The Music Information Plane

We describe the music information plane in two dimensions. One dimension
takes into account the different media types that serve as input data. The other

1 http://www.semanticaudio.org



dimension is the level of abstraction in the information extraction process of this
data.

The input media types include data coming from: audio (music recordings),
text (lyrics, editorial text, press releases, etc.) and image (video clips, CD covers,
printed scores, etc.). On the other side, for each media type there are different
levels of information extraction. The lowest level is located at the signal features.
This level lay far away from what an end-user might find meaningful. Anyway,
it is the basis that allow to describe the content and to produce more elaborated
descriptions of the media objects. This level includes basic audio features, such
as: pitch, frequency, timbre, etc., or basic natural language processing for the text
media. At the mid-level (the content objects level), the information extraction
process and the elements described are closer to the end-user. This level includes
description of musical concepts (e.g. rhythm, harmony, melody), or named entity
recognition for text information. Finally, the higher-level, the Human Knowledge,
includes information tightly related with the human beings. Figure 1 depicts the
music information plane.

Next section (section 3) describes some features that can be automatically
extracted from the audio signal and that constitutes the content objects —
located at the mid-level of abstraction. Then, section 4 gives a vision of the
multimodal approach and presents a music ontology that describes some of the
features automatically extracted from the audio. We belive that merging both
approaches (bottom-up and top-down) can overcome the existing semantic gap
in the musical domain.

3 Semantic Description of Music Content Objects

Music content processing systems operating on complex audio signals are mainly
based on computing low-level signal features. These features are good at char-
acterising the acoustic properties of the signal, returning a description that can
be associated to texture, or at best, to the rhythmical attributes of the signal
[1].

Alternatively, our approach proposes that music content can be success-
fully characterized according to several “musical facets” (i.e. rhythm, harmony,
melody, timbre) by incorporating higher-level semantic descriptors to a given
feature set. Semantic descriptors are measures that can be computed directly
from the audio signal, by means of the combination of signal processing, ma-
chine learning techniques, and musical knowledge. Their goal is to emphasise the
musical attributes of audio signals (e.g. chords, rhythm, instrumentation), at-
taining higher levels of semantic complexity than low-level features (e.g. spectral
coefficients, Mel frequency cepstral coefficients, and so on), but without being
bounded by the constraints imposed by the rules of music notation. Describing
musical content according to this view does not necessarily call for perfect tran-
scriptions of music, which are outside the scope of existing technologies, even
though recent outstanding progress has been reported .



Our view is that several of the shortcomings of the purely data driven tech-
niques can be overcome by applying musical knowledge. The richness of the de-
scription that can be achieved is well beyond that from existing music download-
ing and retrieval prototypes. Our results also suggest that the use of meaningful
descriptors pushes the “glass ceiling” for music classification to levels higher than
originally anticipated for previous data-driven approaches.

Our proposed description scheme can be seen as a function of musical di-
mensions: rhythm, harmony, timbre and instrumentation, long-term structure,
intensity, and complexity. The following sections are devoted to outlining our
contributions to all these aspects.

3.1 Rhythm

In its most generic sense, rhythm refers to all of the temporal aspects of a
musical work, whether represented in a score, measured from a performance,
or existing only in the perception of the listener . In the literature the concept
of “automatic rhythm description” groups a number of applications as diverse
as tempo induction, beat tracking, rhythm quantisation, meter induction and
characterisation of timing deviations, to name but a few. We have investigated
a number of these different aspects, from the low-level of onset detection, to the
characterization of music according to rhythmic patterns.

At the core of automatic rhythmic analysis lies the issue of identifying the
start, or onset time, of events in the musical data. As an alternative to standard
energy-based approaches we have proposed methodologies that work solely with
phase information , or that are based on predicting the phase and energy of
signal components in the complex domain , greatly improving results for both
percussive and tonal onsets. However, there is more to rhythm than the absolute
timings of successive musical events. For instance, we have proposed a general
model to beat tracking , based on the use of comb filtering techniques on a
continuous representation of “onset emphasis”, i.e. an onset detection function.
Subsequently, the method was expanded to combine this general model with
a context-dependent model , by including a state space switching model. This
improvement has been shown to significantly improve upon previous results, in
particular with respect to maintaining a consistent metrical level and preventing
phase switching between off-beats and on-beats.

Furthermore, in our work we demonstrate the use of high-level rhythmic de-
scriptors for genre classification of recorded audio. An example is our research
in tempo-based classification (see [3]) showing the high relevance of this feature
while trying to characterize dance music. However, this approach is limited by
the assumption that, given a musical genre, the tempo of any instance is among
a very limited set of possible tempi. To address this, in , an approach is proposed
that uses bar-length rhythmic patterns for the classification of dance music. The
method dynamically estimates the characteristic rhythmic pattern on a given
musical piece, by a combination of beat tracking, meter annotation and a k-
means classifier. Genre classification results are greatly improved by using these



high-level descriptors, showing the relevance of musically-meaningful representa-
tions for Music Information Retrieval (MIR) tasks. For a more complete overview
of the state of the art on rhythmic description and our own contributions towards
a unified framework see [4].

3.2 Harmony

The harmony of a piece of music can be defined by the combination of simultane-
ous notes, or chords; the arrangement of these chords along time, in progressions;
and their distribution, which is closely related to the key or tonality of the piece.
Chords, their progressions, and the key are relevant aspects of music perception
that can be used to accurately describe and classify music content [6].

Harmonic based retrieval has not been extensively explored before. A suc-
cessful approach at identifying harmonic similarities between audio and symbolic
data was presented in . It relied on automatic transcription, a process that is
partially effective within a highly constrained subset of musical recordings (e.g.
mono-timbral, no drums or vocals, small polyphonies). To avoid such constraints
we adopt the approach where we describe the harmony of the piece, without at-
tempting to estimate the pitch of notes in the mixture. Avoiding the transcription
step allows us to operate on a wide variety of music.

This approach requires the use of a feature set that is able to emphasise the
harmonic content of the piece, such that this representation can be exploited for
further, higher-level, analysis. The feature set of choice is known as a Chroma
or Pitch Class Profile, and they represent the relative intensity of each of the
twelve semitones of the equal-tempered scale. This feature is related to one of
the two dimensions of the pitch helix that is related to the circularity of pitch
as you move from one octave to another, and that can be accurately estimated
from raw audio signals.

We have proposed a state-of-the-art approach to tonality estimation by corre-
lating chroma distributions with key profiles derived from music cognition stud-
ies [7]. Results show high recognition rates for a database of recorded classical
music. In our studies, we have also concentrated on the issue of chord estima-
tion based on the principled processing of chroma features, by means of tuning,
and a simple template-based model of chords . Recognition rates of over 66%
were found for a database of recorded classical music, though the algorithm is
being used also with other musical genres. A recent development includes the
generation of a harmonic representation by means of a Hidden Markov Model,
initialized and trained using musical theoretical and cognitive considerations [8].
This methodology has already shown great promise for both chord recognition
and structural segmentation.

3.3 Timbre and instrumentation

Another dimension of musical description is that defined by the timbre or in-
strumentation of a song. Extracting truly instrumental information from music,



as pertaining to separate instruments or types of instrumentation implies clas-
sifying, characterizing and describing information which is buried behind many
layers of highly correlated data. Given that the current technologies do not allow
a sufficiently reliable separation, work has concentrated on the characterization
of the “overall” timbre or “texture” of a piece of music as a function of low-level
signal features. This approach implied describing mostly the acoustical features
of a given recording and gaining little abstraction about its instrumental contents
[2].

Even though it is not possible to separate the different contributions and
“lines” of the instruments, there are some interesting simplifications that can
provide useful descriptors. Examples are: lead instrument recognition, solo detec-
tion, or instrument profiling based on detection without performing any isolation
or separation . The recognition of idiosyncratic instruments, such as percussive
ones, is another valuable simplification. Given that the presence, amount and
type of percussion instruments are very distinctive features of some music gen-
res and, hence, can be exploited to provide other natural partitions to large
music collections, we have defined semantic descriptors such as the percussion
index or the percussion profile . Although they can be computed after some
source separation , reasonable approximations can be achieved using simpler
sound classification approaches that do not attempt separation , .

Additionally, our research in the area of instrumentation has contributed to
the current state of the art in instrument identification of mono-instrumental
music , using line spectral frequencies (LSF) and a k-means classifier. An exten-
sion to this work is currently exploring the possibility of enhancing this approach
with a source separation algorithm, aiming at selective source recognition tasks,
such as lead instrument recognition.

3.4 Intensity

Subjective intensity, or the sensation of energeticness we get from music, is a
concept commonly and easily used to describe music content. Although inten-
sity has a clear subjective facet, we hypothesized that it could be grounded on
automatically extracted audio descriptors. Inspired by the findings of Zils and
Pachet [9], our work in this area has resulted in a model of subjective intensity
built from energy and timbre low-level descriptors extracted from the audio data.
We have proposed a model that decides among 5 labels (ethereal, soft, moderate,
energetic, and wild), with an estimated effectiveness of nearly 80%. The model
has been developed and tested using several thousands subjective judgements.

3.5 Structure

Music structure refers to the ways music materials are presented, repeated, var-
ied or confronted along a piece of music. Strategies for doing that are artist,
genre and style-specific (i.e. the A-B themes exposition, development and reca-
pitulation of a sonata form, or the intro-verse-chorus-verse-chorus-outro of “pop
music”). Detecting the different structural sections, the most repetitive segments,



or even the least repeated segments, provide powerful ways of interacting with
audio content by means of summaries, fast-listening and musical gist-conveying
devices, and on-the-fly identification of songs.

The section segmenter we have developed extracts segments that roughly
correspond to the usual sections of a pop song or, in general, to sections that are
different (in terms of timbre and tonal structure) from the adjacent ones. The
algorithm first performs a rough segmentation with the help of change detectors,
morphological filters adapted from image analysis, and similarity measurements
using low-level descriptors. It then refines the segment boundaries using a differ-
ent set of low-level descriptors. Complementing this type of segmentation, the
most repetitive musical pattern in a music file can also be determined by looking
at self-similarity matrices in combination with a rich set of descriptors includ-
ing timbre and tonality (i.e. harmony) information . Ground-truth databases for
evaluating this task are still under construction, but our first evaluations yielded
an effectiveness of section boundary detection higher than 70%.

Next example shows the description of an automatically annotated audio file,
based on some of the descriptors presented in this section. There are descriptors
that have an enumerated value as output —usually a label—, whereas other
descriptors’ values are numeric (e.g. floats or integers).

<?xml ve r s i on = ’1.0 ’ encoding=’UTF−8’?>

<Descr iptorsPoo l>
<ScopePool name=’Song ’ s i z e =’1’>

<!−− Rhythm de s c r i p t o r s −−>

<Attr ibutePoo l name=’Tempo’>62</Attr ibutePool>
<Attr ibutePoo l name=’Measure ’>

<Enumerated>Binary</Enumerated>

</Attr ibutePool>
<!−− Tonal i ty d e s c r i p t o r s −−>

<Attr ibutePoo l name=’Key’>
<Enumerated>B</Enumerated>

</Attr ibutePool>
<Attr ibutePoo l name=’Mode’>

<Enumerated>Minor</Enumerated>

</Attr ibutePool>
<Attr ibutePoo l name=’Key−Strength ’>0.8412</ Attr ibutePool>
<!−− I n t e n s i t y d e s c r i p t o r −−>

<Attr ibutePoo l name=’ In t en s i t y ’>
<Enumerated>Soft </Enumerated>

</Attr ibutePool>
<Attr ibutePoo l name=’Danceab i l i ty ’>

<Enumerated>Few</Enumerated>

</Attr ibutePool>
. . .

</ScopePool>



</Descr iptorsPoo l>

Listing 1.1. Example of an automatically annotated audio file.

4 Pushing the current limits

In section 3 we have introduced some mid-level music descriptors, but we still
lack of formal semantics to describe the audio context (note that the annotation
description file presented in the previous section is just a plain XML file).

The main problem, then, is how to push automatic media-based descriptions
up to the human understanding. We belive that this process can not be achieved
if we focus in only one direction (say, a bottom-up approach). For many years
Signal Processing has been the main discipline used to automatically generate
music descriptors. More recently Statistical Modeling, Machine Learning, Music
Theory and Web Mining technologies (to name a few) have also been used to push
up the semantic level of music descriptors. Anyway, we belive that the current
approaches to automatic music description, which are mainly bottom-up, will
not allow us to bridge the semantic gap. Thus, we need an important shift in
our approach. The music description problem will not be solved by just focusing
on the audio signals; a Multimodal Processing approach is needed. We also need
top-down approaches based on Ontologies, Reasoning Rules, Music Cognition,
etc. Figure 2 shows how the multimodal approach can help to overcome the
current semantic gap in the music field.

Regarding ontologies and basic reasoning rules; in [5] we propose a general
multimedia ontology based on MPEG-7, described in OWL2, that allows to for-
mally describe the automatic annotations from the audio (and, obviously, more
general descriptions of multimedia assets). Table 1 shows some mappings from
SIMAC ontology to the macro MPEG-7 OWL ontology. Once all the multime-
dia metadata —not only automatic annotations from audio files, but editorial
and cultural data— has been integrated in a common framework (that is, in
our case, in the MPEG-7 OWL ontology) we can benefit from the, now, explicit
semantics. Based on this framework, we foresee some usages of the ontology to
help the process of automatic annotation of music. The following two sections
present some ideas.

4.1 Entity integration and Duplicate detection

A typical scenario that shows the usefulness of the duplicate detection could be
the following: an Internet crawler is looking for audio data and it downloads all
the files. Getting editorial and related information for these audio files can be
achieved reading the information stored in the ID3 tag. Unfortunately, sometimes
there is no basic editorial information like the title of the track, or the performer.
However, content-based low-level descriptors can be computed for these files,

2 http://www.w3.org/2004/OWL/



Fig. 2. Multimodal approach the bridge the semantic gap in the music information
plane

including its MusicBrainz fingerprint, a string that uniquely identifies each audio
file based on its content, named PUID. The next example shows an RDF/N3
description for a track with the calculated tempo and fingerprint:

<http://example.org/track#1> a simac:Track;

simac:tempo "74";

musicbrainz:puid "3c41bc1-4fdc-4ccd-a471-243a0596518f".

On the other hand, MusicBrainz database has the editorial metadata —as
well as the fingerprint already calculated— for more than 3 millions of tracks.
For example, the RDF description of the song “Blowin’ in the wind”, composed
by Bob Dylan, is:

<http://example.org/track#2> a musicbrainz:Track;

dc:title "Blowin’ in the wind";

dc:author [musicbrainz:sortName "Bob Dylan"];

musicbrainz:puid "e3c41bc1-4fdc-4ccd-a471-243a0596518f".

A closer look to both examples should highlight that the two resources are
sharing the same MusicBrainz’s fingerprint. Therefore, it is clear that, using a
simple rule, one can assert that both audio files are actually the same file, that
is to say the same instance in terms of OWL, owl : sameIndividualAs. Figure
3 shows a possible rule that detects duplications of individuals.



simac : Artist ⊆ mpeg7 : CreatorType

simac : name ≡ mpeg7 : GivenName

simac : Track ⊆ mpeg7 : AudioSegmentType

simac : title ⊆ mpeg7 : T itle

simac : duration ≡ mpeg7 : MediaDuration

simac : Descriptor ≡ mpeg7 : AudioDSType

simac : mode ≡ mpeg7 : Scale

simac : key ≡ mpeg7 : Key

simac : tempo ≡ mpeg7 : Beat

simac : meter ≡ mpeg7 : Meter

Table 1. Simac music ontology to MPEG-7 OWL ontology mappings.

mpeg7 : AudioType(track1) ∧ mpeg7 : AudioType(track2) ∧ musicbrainz :
puid(track1, puid1) ∧ musicbrainz : puid(track2, puid2) ∧ (puid1 = puid2)
⇒

owl : sameIndividualAs(track1, track2)

Fig. 3. Simple rule to assert that two individuals (track1 and track2) are the same.

From now on, we have merged the metadata from both sources and we have
deduced that the metadata related with both tracks is, actually, referred to
the same track. This data integration (at the instance level) is very powerful
as it can combine and merge context-based data (editorial, cultural, etc.) with
content-based data (extracted from the audio itself).

4.2 Propagation of annotations

Another interesting usage is the propagation of annotations. That is, when we
have information from one source (i.e an audio file) and we want to propagate
some of the annotations to another source.

Given a song (track1) with a set of high-level annotations (either supervised
by a musicologist, or gathered through a process of web mining, for instance),
and a song (track2) that lacks some of these high-level descriptions, then we
can apply a set of rules that can propagate part of the annotations of track1

to track2. To decide whether we can propagate this information, we need an
extra component in the system that tell us how similar —based on automatically
extracted audio features— are songs track1 and track2. If they are close together,
then it makes sense to propagate some annotations from one song to another.
Figure 4 exemplifies this case.

This process could be supervised by an expert. Thus, the process of annotat-
ing would be, now, to check whether this propagated annotations make sense or
not. This can clearly improve the time spent for an expert to annotate a given
song.



mpeg7 : AudioType(track1) ∧ mpeg7 : AudioType(track2) ∧ similars(track1, track2))
⇒

propagateAnnotations(track1, track2)

Fig. 4. Simple rule to propagate annotations from one song (track1) to another
(track2).

5 Conclusions

We have presented the music information plane and the existing semantic gap.
To overcome this gap we have presented a set of mid-level music descriptors that
allow to describe the music audio files with a reasonable level of detail. Moreover,
we have proposed a mixing approach (both bottom-up and top-down) that we
belive it can help to reduce the existing semantic gap in the music field.

Most of the problems addressed in the SIMAC project could be alleviated
or would change its focus if music files were enriched with metadata from their
own origin (i.e. the recording studio). As this does not seem to be a priority
for music technology manufacturers, we foresee a long life to our field, as digital
music consumers are asking for the benefits of populating their music collections
with a consistent and varied set of semantic descriptors.

Moreover, we are now viewing an explosion of the practical applications
coming out from the MIR research: Music Identification systems, Music Rec-
ommenders, Playlist Generators, Music Search Engines, Music Discovery and
Personalization systems, and this is just the beginning. If we succeed in bridg-
ing the semantic gap there will be no limit to the applications that could be
developed. At this stage, we might be closer in bridging the semantic gap in
music than in any other multimedia knowledge domain. Music was a key factor
in taking Internet from its text-centered origins to being a complete multimedia
environment. Music might do the same for the Semantic Web.
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