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Abstract. The port of a city is a very dynamic environment that houses
lots of companies. Ships come and go, and goods are always on the move.
Information integration in geographic information systems is of great im-
portance for tracking purposes, and for proactive and reactive incident
handling by the port operators. Linked data and semantic web tech-
nologies can be of benefit for the integration of both streaming data
such as location data about ships, trains and containers, with static data
about companies, their activities and storage sites. With current RDF
stream processors it is possible to execute SPARQL queries over RDF
data streams taking into account static background data. However, none
of them is capable of handling GeoSPARQL queries. GeoSPARQL is
an extension to the SPARQL query language for processing geospatial
data. To address this challenge we extended the RSP engine C-SPARQL
with GeoSPARQL support, making it possible to query geospatial data
streams.
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1 Introduction

Geospatial information is of great importance in a large number of application
domains. Everything that happens, happens at a certain location. With the
growth of the Internet of Things (IoT), it becomes more easy to track things and
monitor actions happening somewhere at a certain place in the world. IoT sensors
and devices constantly generate streams of data that describe their location,
state, and the state of the context or environment they are active in.

The port of a city for example, is a very dynamic environment where lots of
activities take place in which many actors are involved. It houses lots of com-
panies, and goods are always on the move on the water or on land. Information
integration in geographic information systems is of great importance for tracking
purposes, and for proactive and reactive incident handling by the port operators.
Linked data and semantic web technologies can be of benefit for the integration
of streaming data such as location data about ships, trains, containers and the
weather, with static data about infrastructure, companies, their activities, stor-
age sites and others.



With the current RDF stream processors (RSPs) it is possible to execute
SPARQL queries over RDF data streams taking into account static semantic
background data [10]. However, none of these RSPs are capable of handling
GeoSPARQL queries. GeoSPARQL is an extension to the SPARQL query lan-
guage for processing geospatial RDF data [2]. This paper explains how the RSP
engine C-SPARQL [1] can be extended with GeoSPARQL support, making it
possible to query geospatial RDF data streams. Moreover, it shows how stream-
ing geographic RDF data, consisting of ship observations, and static geographic
information about the port and its environment can be queried with this C-
SPARQL extension.

The remainder of this paper is organized as follows. Section 2 represents the
related work. It is followed by the section C-GeoSPARQL that explains the C-
SPARQL extension to support GeoSPARQL. Section 4 presents a use case and
test environment regarding the port of the city of Ghent.

2 Related Work

Semantic Web technologies like the data model RDF, the ontology language
OWL, and the RDF query language SPARQL allow to represent, integrate, query
and reason on heterogeneous data. However, these technologies were developed
for static or slow changing data sources. On the other end of the spectrum Data
Stream Management Systems (DSMS) and Complex Event Processing (CEP)
systems allow to query homogeneous streaming data structured according to a
fixed data model. They are not able to deal with heterogeneous data sources
and lack support for the integration of domain knowledge. To bridge this gap,
stream reasoning has emerged as a challenging research area that focuses on the
adoption of Semantic Web technologies for streaming data [4]. As a result of
the stream reasoning research conducted in the past years, different prototypes
of RSP engines have been presented. Most of them extend SPARQL by using
proven techniques from DSMSs and CEP systems, namely sliding windows and
continuous queries. A continuous query is registered once and produces results
continuously over time as the streaming data in the considered window changes.
In the past years, multiple prototypes of RSP engines have been developed [10],
e.g. C-SPARQL, CQELS, EP-SPARQL and SPARQLStream.

GeoSPARQL is an Open Geospatial Consortium (OGC) standard published
in 2012. It is a SPARQL extension that aims to address the issues of geospatial
data representation and access. The GeoSPARQL specification provides a vo-
cabulary, geometric class taxonomies and relations, for representing geospatial
data in RDF. Moreover, it defines extensions to the SPARQL query language to
query and filter on the relationships between geospatial objects. Like for stan-
dard SPARQL there is no support for streaming data.

To the best of our knowledge Parliament [2][9], a geospatial triple store plat-
form, has the most complete GeoSPARQL implementation. It is a complete
triple store and data management solution that is based on RDF, RDFS, OWL,



SPARQL and GeoSPARQL standards. GeoSPARQL queries can be processed
through an extension on the Jena ARQ engine.

The language stSPARQL [5], is another SPARQL extension for querying
linked geospatial data. It can be used to query linked data represented in stRDF [5],
an extension of RDF. Both, stSPAQRL and stRDF, have especially been de-
signed for representing and querying geographic data that does not only changes
in space but that also evolves over time. However, in analogy with GeoSPARQL
there is no support to deal with streaming data.

Sextant [3] is an open-source web-based tool for visualizing time-evolving
geospatial data sources. It is built on top of Strabon [6] a spatiotemporal store.
Sextant has support for querying and visualizing different type of data source
but has no support for querying streaming data sources.

3 C-GeoSPARQL

The C-SPARQL architecture (Fig 1)1 is the result of an evolutionary approach
in which existing solutions for streaming and semantic data are combined and
treated as black-box subsystems. The two subsystems are a DSMS/CEP and a
SPARQL engine. The first copes with the windowing on the RDF streams and
forwards the window content to the SPARQL engine. The last one evaluates
the SPARQL part of the query on a combination of both, the received window
content and possible other static data sources that have to be taken into account
during query evaluation. For its implementation, C-SPARQL is making use of
Esper for the streaming subsystem, and Apache Jena ARQ for the SPARQL
subsystem.

Fig. 1. C-SPARQL architecture

Listing 1.1 shows an example of a C-SPARQL query looking for the location
of a ship which is named “ELM K”. The query is continuously executed with an
interval of 5 seconds and takes into account all observations streamed in the last
60 seconds before execution. The output of the query will consist of the actual

1 https://www.w3.org/community/rsp/wiki/RDF Stream Processors Implementation



REGISTER STREAM pog AS
# pr e f i x e s have been omitted
SELECT ?o ?xWKT
FROMSTREAM <http : / / . . . / sgraph> [RANGE 60 s STEP 5 s ]
WHERE {

?o rd f : type caprads : Observation .
?o geo : hasGeometry ?g .
?g geo :asWKT ?xWKT .
?p caprads : p r op e r t i e s ?p .
?p caprads : shipName “ELM K” .

Listing 1.1. C-SPARQL Query

REGISTER STREAM pog AS
# pr e f i x e s have been omitted
SELECT ?o ? sn ?xWKT
FROMSTREAM <http : / / . . . / sgraph> [RANGE 60 s STEP 5 s ]
FROM <https :// datatank . stad . gent /4/ i n f r a s t r u c t uu r /dokken . kml>
WHERE {

?o rd f : type caprads : Observation .
?o geo : hasGeometry ?x .
?x geo :asWKT ?xWKT .
?p caprads : p r op e r t i e s ?p .
?p caprads : shipName ? sn .
?d rd f : type caprads : Dock .
?d rd f s : l a b e l “ALPHONSE SIFFERDOK” .
?d geo : hasGeometry ?y .
?y geo :asWKT ?yWKT .
FILTER ( geo f : s fWithin (?xWKT, ?yWKT))

}

Listing 1.2. C-GeoSPARQL Query

observation identifier and the geometry of the observed location expressed in the
Well-known Text2 (WKT) format.

The black-box architecture of C-SPARQL makes it easy to replace the subsys-
tems with other implementations. To support GeoSPARQL on the C-SPARQL
engine, we can easily replace the Jena ARQ subsystem with the Parliament
engine which is based on Jena ARQ as well. Due to the modularized implemen-
tation of C-SPARQL, integration of the Parliament engine is straightforward.
As a result of this integration the C-SPARQL engine becomes capable of han-
dling GeoSPARQL queries over streaming RDF data. We call this extension
C-GeoSPARQL.

Listing 1.2 shows an extended version of the C-SPARQL query presented in
listing 1.1. The query is now looking for all ships present in the dock labeled as
“ALPHONSE SIFFERDOK”. Thanks to the parliament integration this can be
done using the geof:sfWithin(X, Y) function. This GeoSPARQL function checks
if a geometry X, describing a certain area, is located inside geometry Y, where X
and Y can be expressed in WKT or in the Geography Markup Language3 (GML).
In this particular example query, geof:sfWithin(?xWKT, ?yWKT), checks if the
geometry related to the ship observation (?xWKT), is laying within the bound-
aries of the geometry of the dock (?yWKT).

2 http://www.opengeospatial.org/standards/wkt-crs
3 http://www.opengeospatial.org/standards/gml



4 The Port of Ghent: A Use Case

To practice with C-GeoSPARQL a test environment regarding the port of the
city of Ghent (PoG) was implemented using TripleWave [7], RSP Services4 and
TripleGeo [8]. The test environment5 is build with open-source libraries and
makes use of open data sources.

4.1 Implementation

Figure 2 shows a high-level overview of the overall architecture. The general
high-level data flow can be summarized in 5 steps:

1. Registration of a (geographic) RDF data stream in the system
2. Getting meta-data about the stream and establishing a websocket connection
3. Receiving the streaming RDF data
4. Registering additional static RDF or KML data sources
5. Registering a C-GeoSPARQL query and wait for results

Fig. 2. High-level architecture

The geographic data sources, both streaming ship observations and static
information about the port, are represented at the right side of figure 2.

4 http://streamreasoning.org/resources/rsp-services
5 https://github.com/adejonghe/pog-demo



An Automatic Identification System (AIS) is an automatic tracking system
used for collision avoidance on ships and by Vessel Traffic Services (VTS). It
produces a continuous stream of detected ships in the area under surveillance.
Today the port of Ghent and Zeeland is monitored by a system called Enigma+
(Electronic Network for Information in the Ghent-Zeeland Maritime Area). Un-
fortunately this platform is not publicly accessible. As an alternative we make
use of MarineTraffic6 data. MarineTraffic is an internet service offering payed
and free services regarding ship tracking. To test the application an off-line
dataset with ship movements from MarineTraffic is used. The ship observation
from MarineTraffic are stored on disk and can be replayed with TripleWave to
create a stream of data consisting of ship observations.

TripleWave7 is an open-source tool for making RDF streams available to the
Web. The aim of the framework is to help creating and publishing streaming
RDF data through the Web, in such a way the data can be used in a continu-
ous execution model. The framework is a generic and flexible solution that can
be used for different purposes: (1) transforming streaming data on the web to
RDF streams using R2RML mappings; (2) replaying RDF dumps with tempo-
ral information; or (3) Replaying RDF data with temporal information exported
through a SPARQL endpoint. For the implementation of the use case the second
application is used. The stored ship observations from MarineTraffic are replayed
to create the data streams.

The ship observations from MarineTraffic are encoded as GeoJSON8. Geo-
JSON is a format for encoding a variety of geographic data structures using
JavaScript Object Notation (JSON). To be able to use GeoSPARQL to query
over the observed geometries, these have to be expressed in WKT or GML for-
mat. Listing 1.3 shows how an observation expressed in JSON looks like after
serializing the geometry into the WKT format. To annotate the observations
semantically and express them in JSON-LD, a context, of which a snapshot is
displayed in listing 1.4, is added.

Next to the ship observations, the system also needs information about the
location of the docks, the company sites and the quays. This static data about
the port is publicly available in the datatank9 of the city of Ghent10. It is a data
platform offering open data about the city of Ghent. The data is publicly avail-
able in Keyhole Markup Language (KML) format which is an XML based GIS
format. These KML files can easily be displayed on maps. However, conversion
is needed to perform semantic integration with the streaming data and other
semantic data sources.

TripleGeo11 is an open-source tool for extracting features from files with
geospatial data into RDF triples. It has been integrated in the RSP services to

6 http://www.marinetraffic.com/
7 http://streamreasoning.github.io/TripleWave/
8 https://tools.ietf.org/html/rfc7946
9 http://http://thedatatank.com/

10 http://datatank.gent.be
11 https://web.imis.athena-innovation.gr/redmine/projects/geoknow public/wiki/TripleGeo



{
“@id ” : “ http :// id l ab . ugent . be/ obse rvat i on /Ob1473441121001 ” ,
“ type ” : “Feature ” ,
“geometry ” : {

“@id ” : “ http :// id l ab . ugent . be/geometry/Ob1473441121001 ” ,
“ type ” : “Point ” ,
“asWKT”:{

“@type ” : “ http ://www. openg i s . net /ont/ geosparq l#wktL i t e ra l ” ,
“@value ” : “POINT(3 .75623 51 .11656)”

}
} ,
“ p r op e r t i e s ” : {

“@id ” : “ http :// id l ab . ugent . be/ p r op e r t i e s /Ob1473441121001 ” ,
“ f l a g ” : “DK” ,
“ g t sh ip type ” : “ 12” ,
“ heading ” : “ 335” ,
“ l ength ” : “ 230” ,
“ d e s t i n a t i on ” : “BREVIK” ,
“ lon ” : “ 3 .75623” ,
“ sh iptype ” : “Cargo ” ,
“ speed ” : “ 3” ,
. . .
“ s h i p i d ” : “ 157073” ,
“shipname ” : “BEGONIA SEAWAYS” ,
“ l a t ” : “ 51 .11656” ,
“ t imem i l l i s ” :1473441121001 ,
“ timestamp ” : “2016−09−09T17 : 1 2 : 0 1 . 0 0 1Z”

}
}

Listing 1.3. Ship Observation

{
“@context ” : {

“ s f ” : “ http ://www. openg i s . net /ont/ s f #”,
“geo ” : “ http ://www. openg i s . net /ont/ geosparq l#”,
“ caprads ” : “ http :// id l ab . ugent . be/ caprads /vocab#” ,
“xsd ” : “ http ://www.w3 . org /2001/XMLSchema#”,
“Feature ” : “geo : Feature ” ,
“Point ” : “ s f : Point ” ,
“ p r op e r t i e s ” : “ caprads : p r op e r t i e s ” ,
“geometry ” : “geo : hasGeometry ” ,
“asWKT” : “geo :asWKT” ,
“ type ” : “@type ” ,
. . .

}
}

Listing 1.4. JSON-LD context



make it possible to register KML files as static data sources. When this type of
data sources are registered at the RSP Service, the RSP Service collects the data
and uses TripleGeo to convert it to RDF data that is loaded as static background
knowledge into the RSP engine.

At the top left of figure 2, the PoG web interface is visualized. The user
interface, a simple web application (Fig. 3), is composed of a map and some
I/O text fields. The text field components are used to load static data sources,
register streams and register queries. The map is used to display both, the static
geographic data sources and the streaming query results. On the map in the
figure 3 for example, we can distinguish docks (blue), company sites (green) and
quays (red dots).

Fig. 3. User interface

The main components of the semantic stream processing unit are displayed at
the bottom left of figure 2. The RSP service API offers simple REST interfaces on
top of the underlying RSP engine to help exposing RSP engine capabilities to the
Web. It provides different interfaces to manage streams, queries and static data
sources in the underlying RSP engine. The actual RSP engine is the adapted
C-SPARQL engine where the Jena ARQ subsystem has been replaced by the
Parliament engine.

4.2 Scenarios

Some possible scenarios the application can deal with are:

1. Get all ships:
In this scenario only the streaming ship observations are queried. The query
is limited to C-SPARQL features and does not make use of any GeoSPARQL
features.



# pr e f i x e s have been omitted
CONSTRUCT {

? s rd f : type geo : Feature .
? s geo : hasGeometry ?x .
?x geo :asWKT ?xWKT .
? s caprads : p r op e r t i e s ?p .
?p ?pred ?prop .

}
FROMSTREAM <http : / / . . . / sgraph> [RANGE 180 s STEP 3 s ]
FROM <http : / / . . . / i n c i d en t s . rdf>
FROM <http : / / . . . / b ed r i j f s p e r c e l enhavengen t . kml>
WHERE {

? s rd f : type geo : Feature .
? s rd f : type ? t .
? s geo : hasGeometry ?x .
?x geo :asWKT ?xWKT .
? s caprads : p r op e r t i e s ?p .
?p ?pred ?prop .
? f rd f : type caprads : CompanySite .
? f caprads : impactedBy ? in c i d en t .
? f geo : hasGeometry ?y .
?y geo :asWKT ?yWKT .
? i n c i d en t rd f : type caprads : Inc ident .
? i n c i d en t caprads : evacuat ionRadius ? rad ius .
? i n c i d en t caprads : rad iusUni t ? un i t .
{

SELECT ? id (MAX ( f : timestamp (? z , caprads : shipId , ? id ) ) AS ? t s )
WHERE {

? z caprads : sh ip Id ? id
}
GROUP BY ? id
}
FILTER( f : timestamp (? s , rd f : type , ? t ) = ? t s )
FILTER( geo f : s fWithin (?xWKT, geo f : bu f f e r (?yWKT, ? radius , ? un i t ) ) )

}

Listing 1.5. Scenario 3: Get ships in evacuation zone

2. Get all ships of a certain type present in a certain dock:
This scenario makes use of both streaming ship observations and static in-
formation about the docks. Ship observations can be selected based on the
gt shiptype property, and filtered making use of the GeoSPARQL function
geof:sfWithin(X, Y) where X is the geometry of the observed ship and Y is
the geometry of the dock.

3. Get ships in evacuation zone:
By means of example the query for this scenario is shown in listing 1.5. In
this query three data sources are used: the stream with ship observations,
information about company sites and a file with incidents. An incident can
be a fire or a kind of leak like an oil or gas leak. Thanks to the RDFS
reasoning support of the C-SPARQL engine we can make abstraction of the
actual incident type. The incident is related to a company site with the
impactedBy property. To determine if ships are in a certain evacuation zone
filtering can be performed using the GeoSPARQL functions geof:sfWithin(X,
Y) and goef:buffer(X, radius, unit).



5 Conclusions & Future Work

In this paper we presented how the C-SPARQL engine, designed for querying
RDF data streams, can easily be extended with GeoSPARQL support to allow
querying geospatial RDF data streams. To test the solution a use case regarding
the port of the city of Ghent was implemented.

Future work includes looking at benchmarking the extended C-SPARQL en-
gine to quantify the impact of the integration with the Parliament library. For
this a set of well chosen test queries, that allow us to measure the execution
time spent at evaluating the GeoSPARQL functions, has to be defined. Another
thing to look at is integration of geographic stream processing in more advanced
semantic visualization tools for geographic data.
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