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Abstract. The stream reasoning community is conducting a good amount
of empirical research. It created benchmarks like LSBench, (C)SRBench,
CityBench. They fostered the research in RDF Stream Processing (RSP).
However, they do not stress much the reasoning task. Indeed, they are
limited to RDFS. At the same time, the existing OWL benchmarks do
not consider streaming tasks. There is a need to define, design and eval-
uate a domain-specific benchmark for stream reasoners that go beyond
RDFS, namely Expressive Stream Reasoners (ESR). In this paper, we
address this need, and we present LASS 1.0, a first attempt to realize
a benchmark for ESR. LASS 1.0 comprises an ontology that models in-
fluence in social media, a set of reasoning tasks to stress ESR and an
instance generation algorithm that creates streaming and static work-
loads.

1 Introduction

The Stream Reasoning community is conducting a good amount of empirical
research to show that it is possible to make sense in real-time of heterogeneous
and vast information flows [14]. As in the more mature database community,
domain specific benchmarks [8] are emerging as a dominant approach to foster
technological progress via fair assessments.

Unfortunately, existing stream reasoning benchmarks [21,18, 1,17, 19], focus-
ing on RDF Stream Processing (RSP), only supports continuous query answer-
ing under RDFS entailment regime. Indeed, those who conducted research on
stream reasoning [2, 3,12, 15, 20,22, 23] evaluated their prototypes using tradi-
tional (static) OWL benchmarks [4, 10, 13] rather than RSP ones (see Table 1).

We perceive the need for a new stream reasoning benchmark that supports
OWL2 stream reasoning tasks, namely Expressive Stream Reasoning (ESR).
Therefore, we formulate the research question investigated in this paper as: How
can we define, design and evaluate a domain specific benchmark for ESR?

In this paper, we answer it by the means of LASS 1.0. This is a first attempt
to realize a benchmark for ESR that consists of:

— an OWL 2 RL ontology (named L10) that extends SIOC! with stream
reasoning tasks;

! https://www.w3.org/Submission /sioc-spec/
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Tested With

Entailment|Berlin [4][LUBM [10]|UOBM [13]|DBpedia|Spire|Galen
streamingKB [23]| RDFS v
EP-SPARQL [2] | RDFS v
TrOWL [20] EL+ v
DynamiTE [22] RDFS v
SparkWave [12] RDFS v
RDFox [15] OWL2 RL v v v

Table 1: Stream reasoners and their entailments vs the evaluation benchmarks.

— a data generation algorithm and its implementation (named L1G); and
— a set of continuous reasoning tasks (named L1C).

The reminder of the paper is organized as follows. Section 2 discusses the
design principles. Section 3 details the design process used for LASS 1.0. Section 4
presents the evaluation of LASS 1.0. It shows that .10 adheres to Tom Gruber’s
principles for ontology design [9]. It shows that L1C supports the design of
continuous query using RSPQL syntax. It presents a prototype implementation
of L1G algorithm. Moreover, it shows that the whole benchmark is compliant
to Jim Grays’s critera for benchmark design [8]. Section 5 concludes the paper
discussing its limitations and future work.

2 Desing Principles

We analyzed the requirements for stream reasoning benchmarks presented in
[18] and the criticism [24] to LUBM benchmark for OWL reasoning. [10, 24]. In
the following list, we propose the list of design principles that we elicit. Notably,
the connection between each principle and the there papers cited above is traced
between brackets using the notation [citation].<pointer in the paper>.

[P.1] Static TBoz of moderate size yet of scalable complexity. ([18].57, [10].(3),
[24].R3). Assuming static and moderate size TBoxes is a common assumption
for SR approaches. For benchmarking purposes, it should be possible to scale
the complexity of the TBox by including more axioms and combining them in
more complex expressions.

[P.2] Continuous reasoning tasks. ([18].53/4, [24].R4). The benchmark should
support reasoning tasks that are meaningful for the steaming domain (i.e.,
continuous ones) and relevant to stress the stream reasoner.

[P.3] Arbitrary scaling of static and streaming data. ([18].S1, [10].(2), [24].R2/8).
The benchmark should allow to tune: the size of static ABox, the number of
streams and their rates rates.

[P.4] Usage of continuous queries. ([18].52/3/4, [10].(1)). For compatibility
with the existing RSP works, the benchmark should embed stream reasoning
tasks in continuous queries.

Building on these principles, we now introduce what an ESR benchmark is.
We do so building on the definition of RSP benchmark that we introduced in [21].
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Definition 1. An expressive stream reasoning benchmark consist of a set of
experiments of the form < R,E,T,D,S,Q,K >, where

is a stream reasoner;

is an entailment regime to test;

s a static TBox expressive enough to enable £;

is a static ABox;

s streaming ABox;

s set of continuous queries involving reasoning tasks under &;, and;
is a set of key performance indicators (KPIs) to measure.

.

.
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In accordance with [P.1], an SR Ezperiment separates the entailment regime
& from the static TBox T allowing to scale the domain complexity. Adhering
to [P.2], the domain complexity can be scaled independently from the involved
reasoning tasks. It separates static and streaming ABoxes definitions, support-
ing their independent scaling as required by [P.3]. As recommended by [P.4],
it allows to select a set of queries O that stimulates the stream reasoner R
against specific reasoning tasks [P.2]. Last but not least, it allows to specify the
KPIs set for each experiment, e.g. completeness and soundness with the selected
entailment regime, and reactiveness.

3 LASS 1.0

In this section, we describe how we design LASS 1.0. We tell how we chose a
domain relevant for stream reasoning (Section 3.1). We discuss how we chose the
maximum entailment regime and how we developed a TBox that fully captures
the domain complexity (Section 3.2). We present how we wrote a query set that
targets continuous reasoning tasks relevant for the domain (Section 3.3). And,
we report on the design of an approach to generate ABox streaming and static
data according with our TBox (Section 3.4).

3.1 Domain Selection

We selected the Social Media domain for our benchmark because it includes in-
formation that is naturally represented as streams, e.g. users continuously gener-
ate content. It is well-known to the Semantic Web community that proposed the
popular Semantically-Interlinked Online Communities ontology (SIOC) [5]. And,
it allows to encode meaningful (stream) reasoning tasks, e.g. users’ interactions
or user reputation [16].

The validity of this choice is confirmed by the recent adoption of this domain
also by the Linked Data Benchmark Council (LDBC) for one of its benchmarks?.

2 http://ldbcouncil.org/benchmarks/snbs
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3.2 Ontology Engineering

SIOC [5] is a vocabulary to anno-

tate data from social media. Its IMicroPost M Post (1)
core module includes 17 classes Jdeontains. T M Post (2)
a?d glﬁproperties. Its Type(si mod- Jleads M has_in fluence_on (3)
ule defines user generated con- ,

tents, and its Serv;gces module de- TN Veontains.Tag (4)
fines the web services interfaces. writes = per formed_ by~ (5)
Considering all the modules, its  is_sharing o is_sharing = is_sharing (6)

DL_ expr(.assiven(-ess is SHI(D)' Single Author Post = Post A
This entailment includes interest- 7)
ing features, e.g. inverse property. = Iper formed-by.User Account
LASS 1.0 Ontology, shortly
L10, is a medium-size ontology
that comprises 43 Classes, 24 Ob-
ject Properties and 7 Datatype
Properties®. L10 adds to SIOC Core users influence roles, competences and
responsibilities, e.g. technical member, discussion leaders, moderators. It adds
complex interactions, e.g. shared posts, likes, comments and their popularity
within a discussion. It adds post content, e.g. topics and tags. As a result, L.10
includes the following DL features: class inclusion (Listing 1.1); role inclusion
(Listing 1.3); domain/range restriction (Listing 1.2, Listing 1.4); inverse prop-
erties (Listing 1.5); transitive properties (Listing 1.6), and; qualified cardinality
restrictions (Listing 1.7).

Listing. 1: Example of DL axioms showing
L10O’s language features.

3.3 Reasoning & Querying
To stimulates reasoning, we considered the following reasoning tasks :

[RT.1] Continuously monitor the posts that contain a given tag. “SingleAuthor-
Post” has several subclasses and requires hierarchical reasoning.

[RT.2] Continuously monitor the users that are sharing a given post. The prop-
erty “is_sharing” is transitive and requires to compute its transitive closure to
retrieve all the share posts.

[RT.3] Continuously monitor the relevant posts. The Axiom RELEVANTPOST C
3 CONTAINS. TRENDINGTOPIC requires realization reasoning.

[RT.4] Continuously monitor a given user’s posts. The property “performed_by”
is the inverse of “writes” and requires to inferred.

[RT.5] Continuously monitor the participants roles to a given discussion. The
property “participates” has two subproperties and involves hierarchical role rea-
soning. Moreover, the axiom DISCUSSIONLEADER C J LEADS.DISCUSSION re-
quires realization reasoning.

3 http://streamreasoning.org/ontologies/lass.owl
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Fig.2: A sub-portion of LASS 1.0 ontology L10O. The figures highlights with
different strokes and background colors the logical modules of L10.

3.4 Data Generation

To generate instances, we need to distinguish between static ABox D and stream-
ing ABox S&. The former scales in size, while the latter scales in numbers of
streams and rates of change. § instance generation relies on ordering relations
that are naturally present in data and captured in the TBox. In L10, we distin-
guish four logical modules that we highlighted in Figure 2:

The Community module is identified with a double stroke with gray back-
ground. It models users and groups generating content. SIOC Community
and UserAccount are the module’s root; we included classes as Social Net-
work, e.g. Facebook or Twitter; Argumentative Discussion, e.g. users posting
about a Topic; Event, e.g. a concert where users are.

The Influence module is identified with a double stroke with white back-
ground. It models users’ influence roles within a community. SIOC Role is
the module’s root; we included with classes as Expert, i.e. someone who
knows about a Topic; Influencer, i.e. someone who can spread opinions.
The Content module is identified with a single stroke with gray background.
It models what characterizes posts and discussions. SKOS Concept is the
module’s root that we extended it with Topic, e.g. a TV-Show or a football
team; Tag, i.e. a label attached to a post that relates it to other posts or to
an event.

The Action module is identified with a single stroke with white background.
It models users’ interaction within a community. SIOC Item and Post are the
module’s roots; we included Action, i.e. everything that a user can perform
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and Reaction, e.g. comment and likes; MicroPost, e.g. tweets; RelevantPost
characterizes the relevance w.r.t. the presence of some Topic.

L10’s modules have dif-
ferent velocities, i.e. class ‘
instances change at differ-
ent rates. Properties link in- || Community < Event | Threads < UserAccounts ” (b)
stances across and within
modules, but do not influence
directly the ordering. Figure 3
visualize the different veloc- | BlogPost < MicroPost < Likes | ]
ity between the instances of
L10’s classes. Communities Fig.3: Class changing rates to generate L10 in-
and User Accounts change stances. A < B= A slower than B.
daily, i.e., less frequently than
influence roles that change hourly. Content, i.e. topics, tags, pictures change
faster (in minutes), but less than user actions, e.g posts, likes, shared-posts, etc.,
which change in seconds. Within class modules, further differences in changing
rates can be found, e.g. a VIP role changes less frequently than a discussion
leader or Blog Posts are slower than tweets. Notably, this ordering relationships
are specific for L10, but similar ones are present in SR domains.

L1G is a data generation algorithm that exploits these ordering relations to
instantiates individuals. It starts from the “slowest” classes that in L10 belong
to the Community Module: Discussion, Event, Thread and UserAccount (Fig-
ure 3.b). Then, it continues with “faster” classes from the Content Module like
Topic, Tag and TrendingTopic (Figure 3.c). Finally, it generates the “fastest”
classes, e.g. Post, Like, SharedPost, that belong to the Actions Module (Fig-
ure 3.e).

L1G does not generate classes from the Influence Module, but it ensures that
they can be deducted. For instance, it randomly assigns a leads relation that
triggers the inference of lass:DiscussionLeader (Figure 3.d). L1G does not assign
a time.stamp to instances, but maintains the ordering relations*. Thus, times-
tamps can be assigned post-hoc according to flow rates that better represent the
domain of choice [21].

Social Influence Content Action

(@

|| News < VIP < Expert < OpinionMaker < DiscussionLeader ” (c)

| Topic < Tag < TrendingTopic | (d)

4 Evaluation

In this section, we report on our experience in evaluating an ESR benchmark. To
this extent, we evaluate LASS 1.0 soundness. First, we evaluate L10 and L1C
independently. Then, we evaluate LASS 1.0 as a whole showing that it com-
plies to Jim Gray’s principles for domain-specific benchmarks. We leave L1G’s
evaluation to future empirical studies that involve LASS 1.0.

4 For instance, Posts are generated first then a user is selected as author. Tags, Topics
and Mentions are assigned to each Post just after. Reactions are assigned in the end.
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4.1 L1O

To evaluate L10, we consider Tom Gruber’s principles for ontology design [9].
According with Gruber, an ontology should effectively communicate the intended
meaning (Clarity). It should be formally consistent to its specifications (Coher-
ence). It should welcome the definition of new terms for special uses (FExtendibil-
ity). Tt should be specified at knowledge-level, without depending on the sym-
bolic representation (Minimal Encoding Bias). It should make as few claims as
possible to capture the intended knowledge (Minimal Ontological Commitment).
To evaluate L10, we interpret these principles as follow:

— Clarity is satisfied, all properties and classes are paired with a natural lan-
guage descriptions and aligned with existing and well-known ontologies and
vocabularies (e.g. SIOC).

— Coherency is satisfied, since no inconsistency or meaningless information is
inferred in the ABox w.r.t. all TBox inferences.

— Extendibility is satisfied, since L10O is based on SIOC and it does not con-
trasts with SIOC modules.

— Minimal Encoding Bias is satisfied because L10O is released using W3C stan-
dards (e.g. OWL2), and, thus, it uses only the allowed axioms.

— Minimal Ontological Commitment is not satisfied intentionally, since L10
is designed for benchmarking purposes and, thus, it intentionally includes
expressive language constructs that stress the stream reasoner.

4.2 L1C

To evaluate L1C, we consider its adherence to the practice of micro-benchmarking
that in the SPARQL benchmarking context has been already applied through
the idea of choke points [7]. A choke point is an aspect of the query execution
which is known to be problematical for the present generation of engines [7].
In accordance with micro-benchmarking practice L1C isolates stream reasoners
choke points as reasoning tasks. We can use them to design continuous queries
that stress engines. Listing 1.1 presents an example using RSP-QL syntax that
captures RT 2 and RT 3 reasoning tasks.

PREFIX lass: <streamreasoning.org/ontologies/lass.owl>
SELECT ?u 7p
FROM NAMED WINDOW : winl ON :facebook [RANGE 30 minutes STEP 30 minute]
FROM NAMED WINDOW : win2 ON :twitter [RANGE 30 minutes STEP 30 minute]
WHERE {

WINDOW : winl {

?p ; lass:performed_-by ?7u .

?7u lass:SingleAuthorPost;

lass:isSharing 7pl .

}
WINDOW : win2 {
?7pl a lass:PopularPost;
lass :performed_by <@realDonaldTrump> .

Iy
Listing 1.1: Example RSP-QL continuous query that captures RT 2 and RT 3.
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4.3 LASS 1.0

. The Linked Data Benchmarking Council® (LDBC) recently adopted criteria for
good benchmark design from the Database community [8, 11] to evaluate Linked
Data benchmarks. Jim Gray’s design principles [8] are:

[G.1] Simplicity. A benchmark must be understandable.

[G.2] Portability. It must be applied to many different systems.

[G.3] Scalability. It must scale up to small or larger systems.

[G.4] Relevance. It must measure performance/price of typical system tasks
according with a cost model.

Moreover, we consider Karl Huppler’s Verifiability principle:

[H.1] a benchmark must represent the system performance in a formally verifi-
able way [11]°.

LASS 1.0 satisfies [G.1] because it is set to a natively streaming domain that is
known to the SR community. It satisfies [G.3] because in its experiment defini-
tion it allows to variate both data and expressiveness. It satisfies [G.2] because
we used standard W3C semantic technologies to develop it. It satisfies [H.1]
because of the formal experiment definition that is compliant to the experi-
mental environment defined in [21] and results into formal reports that can be
automatically compared.

5 Discussion & Conclusion

In this paper, we investigate how to define (Section 2), design (Section 3) and
evaluate (Section 4) a domain specific benchmark for expressive stream rea-
soning. We presented LASS 1.0, a first attempts to realize a benchmark for
expressive stream reasoners, that contributes to the state of the art with:

L10 an ontology for the social media domain of expressiveness SRZQ(D);
L1C a set of continuous reasoning tasks to stress the stream reasoner; and
L1G a instance generator for L10 that exploits the implicit ordering relation
between the classes that is given by their different variance over time.

LASS 1.0’s domain of application is adequate for stream reasoning. It con-
tains complex concepts that demand for expressive reasoning, comparable to
traditional OWL benchmark. It involves information flows that naturally pro-
vide streaming workloads (Table 2). It is scalable and verifiable thanks to an
experiment-driven methodology inspired by [21].

The main limitation of this work is that it lacks of an empirical study that
proves LASS 1.0 effectiveness. This choice is motivated by the absence of a

® http://1ldbcouncil.org
6 As argued in [11], for a proper evaluation it is not necessary to be compliant to all
the principles, but only to those that reflects the benchmark purpose.
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Benchmark |Domain W3C|Data Scalability| Entailment |Streaming| Verifiability
CityBench [1] [IoT v ds rdfs6 v Correctness
BSBM [4] e-Commerce | v/ v RDFS v
CSRBench [6]|IoT v ds rdfs6 v Oracle
LUBM [10] |Academic v v OWL Lite v
UOBM [13] |Academic v v OWL DL v
LSBench [17] |SN & IoT v v None v

SRBench [19] [IoT v v rdfs6 v

Spire” Botanic v v RDFS v
Galen® Medical v ds EL++ v
LASS 1.0 Social media| v/ v SRZIQ(D) v Definition 2

Table 2: Benchmarks used for stream reasoner evaluation. IoT= Inter-
netOfThings; SN=SocialMedia; v'9=generator; ds=dataset; rdfs6=SubClassOf.

method to ensure comparability for stream reasoners evaluation. In [21] authors
investigate it for RSP engines, but the question is still open when reasoning is
involved. Moreover, we consider the benchmark as a scientific effort that aims
at positioning an approach in the solution space. Inevitably, the benchmark
influences the evaluation, but this bias can be predictable if the logical path
that sustains the benchmark specification is clear. However, we understand its
value and we consider it an immediate future work.

A second limitation of this work, is that it does not discuss in detail the
metrics that the benchmark should consider. Key performance indicators (KPIs)
selection has been discussed in the state of the art [1, 17, 19]. We consider sound-
ness, completeness and throughput as relevant KPIs for expressive stream rea-
soning benchmarking. However, a broader study has still to be conducted.
Future Work. As previously mentioned, we are planning to empirically test
LASS 1.0 to evaluate existing stream reasoners. However, this requires to investi-
gate the problem of correctness. Moreover, we aim at introducing more language
features in LASS 1.0, defining modules that cover different OWL 2 profiles. Last
but, not least, we plan to explore further reasoning types, e.g. Event Calculus
or temporal reasoning.
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