
8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

From the Desktop to the Grid and Cloud:
Conversion of KNIME Workflows to WS-PGRADE

Luis de la Garza
Center for Bioinformatics

Dept. of Computer Science
University of Tübingen, Germany
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Abstract—Computational analyses for research usually consist
of a complicated orchestration of data flows, software libraries,
visualization, selection of adequate parameters, etc. Structuring
these complex activities into a collaboration of simple, repro-
ducible and well defined tasks brings down complexity and
increases reproducibility. This is the basic notion of workflows.

Workflow engines allow users to create and execute workflows,
each having unique features. In some cases, certain features
offered by platforms are royalty-based, hindering use in the
scientific community.

We present our efforts to convert whole workflows created in
the Konstanz Information Miner Analytics Platform to the Web
Services Parallel Grid Runtime and Developer Environment. We
see the former as a great workflow editor due to its considerable
user base and user-friendly graphical interface. We deem the
latter as a great backend engine able to interact with most
major distributed computing interfaces. We introduce work
that provides a platform-independent tool representation, thus
assisting in the conversion of whole workflows. We also present
the challenges inherent to workflow conversion across systems,
as well as the ones posed by the conversion between the chosen
workflow engines, along with our proposed solution to overcome
these challenges.

The combined features of these two platforms (i.e., intuitive
workflow design on a desktop computer and execution of work-
flows on distributed high performance computing interfaces)
greatly benefit researchers and minimize time spent in technical
chores not directly related to their area of research.
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I. INTRODUCTION

Computers are essential in various scientific fields. Ex-
ample domains requiring high-performance computing (HPC)
include vaccine design, astrophysics, or the multidisciplinary
field of bioinformatics. Here, the declining costs of both
data generation and storage in the last few years [1] pushed
bioinformaticians into using HPC resources such as grids and
clouds.

Simultaneously, the scope of research is getting more and
more refined and complex. As such, upholding the scientific
method increases in difficulty: Being able to reproduce previ-
ously observed results when keeping all variables constant,
can often be an arduous task. Consequently, journals and
news outlets have repeatedly reported cases of published but
irreproducible results [2], [3], [4].

Researchers often break down big, complicated analyses
into smaller units of work that are easier to manage. These
so-called tasks perform one specific function and take an input
along with controlling parameters to produce a defined output.
Input usually takes the form of files, whereas output could
also be for example a set of visualizations. The combination
of tasks is often referred to as a workflow. Task outputs can
be passed on as inputs to other tasks, defining an order of
execution for each step of the comprising workflow. Adoption
of workflows not only increases reproducibility but also offers
the following benefits:

• Storage of intermediate results (e.g., for troubleshooting,
additional analysis, bottleneck identification)

• Simplified substitution of single tasks (e.g., for bench-
marking, testing purposes)

• Parallel execution of workflow branches (i.e., parameter
sweep)

• Reusability of components
• Independent, parallel development of specialized tasks

A. Workflow Interoperability and Conversion

Throughout this work we will use workflow terminology
and representation consistent with our previous work [5], [6].
Figures 1 and 2 briefly summarize this.

Fig. 1. The abstract layer of a workflow. Vertices represent tasks, edges
indicate the execution order. At this point, no implementation or technical
details are represented.

Since the abstract workflow layer contains solely applica-
tion domain information, it is independent of the execution re-
quirements. Thus, the abstract layer remains unchanged across
workflow engines. In contrast, the concrete workflow layer,
the workflow engine and the executing platform are tightly
coupled. This divergence of concrete layers across engines
makes workflow interoperability challenging. Furthermore,



8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

Fig. 2. The concrete layer of a workflow. The concrete layer contains
implicit application domain information. But unlike the abstract layer, vertices
are annotated with extra attributes. These are the required resources to execute
the portrayed tasks.

workflow engines often contain distinct features, complicating
conversion across platforms.

One way to alleviate these problems is the development of
platform-independent workflow representations, e.g., the In-
teroperable Workflow Intermediate Representation (IWIR) [7]
and Yet another Workflow Language (YAWL) [8] to en-
able fine-grained interoperability (FGI). However, platform-
independent workflow representations do not address workflow
implementations. The Sharing interoperable Workflows for
large-scale scientific Simulation on available distributed com-
puting interfaces project (SHIWA) [9], for instance, provides
execution of workflows built on different workflow engines
by uploading them to the SHIWA Simulation Platform. Users
handling data subject to privacy restrictions (e.g., patient data)
might find it an unsuitable solution.

A proper workflow conversion across engines requires that
the abstract layer remains unchanged (i.e., source and target
workflow can be considered logically equivalent). The location
of resources, how different engines implement single nodes
and logical constructs (e.g., parameter sweep) are some of
the aspects to be considered. Features unique to one engine
engine represent a complication. Figure 3 shows an example
of a simplified workflow conversion.

II. IMPLEMENTATION

The Web Services Parallel Grid Runtime and Developer
Environment Portal (WS-PGRADE) [10] is a web-based work-
flow engine that interacts with a wide array of resource
managers (e.g. Moab, LSF) to access distributed computing
interfaces (DCIs). This makes it a great back-end workflow
execution engine. Tasks of the same workflow can be executed
on different DCIs. However, workflow creation is a multi-step
process, posing problems for users without adequate training.

The Konstanz Information Miner Analytics Platform
(KNIME Analytics Platform) [11] is hosted on a personal
computer. It features an intuitive interface, contains more than
1,000 pre-loaded tools and hundreds of sample workflows.
Addition of new tools requires knowledge of the Java pro-
gramming language—an aspect that might keep some users
away from this feature. A couple of royalty-based variants (i.e.,
the so-called KNIME Collaborative Extensions) are offered to

Fig. 3. Workflow conversion challenges. Two different engines (i.e., e1,
e2) running on two different platforms (i.e., p1, p2) contain different concrete
layers of the same workflow. The abstract layer, however, remains unchanged.
A successful workflow conversion must take into account not only the
differences among the source and target engines, but must also consider the
source and target platforms or operating systems.

remotely execute workflows, however, WS-PGRADE offers a
wider support for resource managers to access DCIs.

We focus on providing fine-grained interoperability between
a great workflow editor such as the KNIME Analytics Platform
and a versatile, scalable workflow execution platform such as
WS-PGRADE.

The first step to provide interoperability is to represent tasks
in a platform-independent manner. Certain attributes of tool
execution remain unchanged across platforms (e.g., version
and parameters), while some others change (e.g., location
of executables, input and output files). Attributes in need of
adjustment have to be identified. A platform-independent tool
representation facilitates the task conversion across platforms
and thus the conversion of full workflows.

One of the first challenges in the conversion between these
engines is the maintenance of a database that relates tools
on the user’s computer with tools on each of the target DCI
platforms. The next set of challenges concerns the implemen-
tation of nodes and logical workflow constructs. The KNIME
Analytics Platform implements parameter sweep via node-
delimited workflow sections (i.e., using ZipLoopStart, Zip-
LoopEnd nodes). WS-PGRADE delimits such sections with
generator and collector ports. Furthermore, WS-PGRADE
allows users to assign data files directly to input ports. The
KNIME Analytics Platform, however, requires a dedicated
node (e.g., Input File, Input Files), whose output port refers
to a file and this reference can be channeled to an input port.

Some features present in the KNIME Analytics Platform
are not found in WS-PGRADE. The former requires ports to
declare which data types they are compatible with and supports
file lists as inputs; the latter is more flexible and lacks native
support of file lists as inputs (i.e., each input or output port is
related to one file). Different to WS-PGRADE, KNIME Nodes
produce outputs not only via output ports: They can also set
flow variables, which can be read further down the execution
flow.
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The KNIME Analytics Platform is a Java program with a
graphic interface. KNIME Nodes are then instances of Java
classes that live inside the process which launched the KNIME
Analytics Platform. In other words, they require a running
instance of the KNIME Analytics Platform to be executed,
making their execution on a DCI a challenge.

The following sections describe our approach to address the
mentioned challenges.

A. Conversion of Nodes: Addressing Disparities between
Workflow Engines

The KNIME Analytics Platform features a node repository
in which users can select any of the available nodes (see Figure
4). Creation of workflows in the KNIME Analytics Platform
requires a single step, thus the abstract and concrete layers are
merged into the user-friendly workflow editor. Each KNIME
Node performs a specific task and defines a fixed number of
input, output ports. Each port is associated to a port type,
which is similar to content types (e.g., csv, pdb). Only ports of
compatible types can be interconnected. Furthermore, KNIME
Nodes rely on the assumption that incoming and outgoing data
are arranged in custom in-memory data tables. Each KNIME
Node iterates over the rows of incoming data and is able to
modify the contents of the input table, as well as its structure
(e.g., by adding columns or rows). File handling is done by
using these same data tables, their cells containing uniform
resource identifiers (URI) pointing to the needed files.

Fig. 4. The KNIME Analytics Platform Node Repository. Available nodes
can be selected from the node repository by drag and dropping them into the
current workflow editor.

WS-PGRADE, on the other hand, requires the creation of
an abstract and a concrete workflow in a multi-step process
(see Figure 5). During the creation of the concrete workflow,
users input the required attributes and command line to as-
sociate a node to a specific remote binary. In contrast to the
KNIME Analytics Platform, WS-PGRADE allows to assign
files directly to input ports and it doesn’t perform a strict type

checking: Any output port can be connected to any input port.
Additionally, the structure of the incoming and outgoing files
is arbitrary.

Fig. 5. The multi-step creation of Workflows in WS-PGRADE. An abstract
is first created (left pane), after which a concrete can be created and configured
(right pane).

Adding nodes to the KNIME Analytics Platform re-
quires knowledge of the Java programming language. Generic
KNIME Nodes (GKN) [5], [6] was developed to add nodes
without programming experience by allowing arbitrary com-
mand line tools to behave as KNIME Nodes and to seamlessly
interact with other nodes inside the KNIME Analytics Plat-
form. The only requirement is the representation of the tools
by Common Tool Descriptors (CTDs), which are XML files
describing the inputs, outputs and parameters of a tool [5], [6].
Currently, several software suites [12], [13], [14] are able to
parse and generate CTDs (i.e., they are CTD-enabled). Figure
6 illustrates how CTDs interact with CTD-enabled tools.

We introduce KNIME2gUSE, an extension to the KNIME
Analytics Platform which converts workflows from the
KNIME Analytics Platform to WS-PGRADE, combining the
features of both engines and overcoming their disadvantages.

Conversion of KNIME Nodes that were imported using
GKN is somewhat trivial. Each of these nodes represents an
external tool that is independent of the KNIME Analytics
Platform. In this case, the matching binary for the represented
tool is required on each of the target DCIs.

We identify native nodes as those KNIME Nodes that were
not imported using GKN (i.e., pre-packaged nodes, nodes
added as third-party extensions or nodes added by the user
via other means). Each native KNIME Node is an instance
of a Java class managed by the KNIME Analytics Platform.
Such nodes exist only in the context of the process that
hosts the KNIME Analytics Platform. Execution of a single
KNIME Node requires a running instance of the KNIME
Analytics Platform and converting these nodes is not trivial.
Furthermore, a suitable distribution of the KNIME Analytics
Platform must be present on each of the target DCIs.

Data between KNIME Nodes can only be channeled be-
tween ports with compatible data types. Since channeled data
are in-memory representations of table-formatted data (i.e.,
data tables), we have devised a solution that allows native
KNIME Nodes to be executed as if they were command line
tools: During the export process, native KNIME Nodes are
individually packed into a small KNIME workflow. Each such
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generated workflow contains a copy of the original node, along
with any user-established settings. Since inputs and outputs
for the exported node won’t be channeled inside an instance
of the KNIME Analytics Platform, extra reader and writer
nodes (i.e., Table Reader and Table Writer) are also included
in this small workflow. These nodes allow the serialization
and deserialization of the in-memory data format required
by native KNIME Nodes. The KNIME Analytics Platform
can execute workflows in a so-called batch mode, without
the need of a graphical user interface. A suitable command
line is automatically generated during our export process.
When the batch mode execution of this generated workflow
is started, input files will be read into the KNIME data table
format; upon completion, any output will be serialized from
the KNIME data table format into a file.

The work previously presented in [5], [6] introduced work
we have done in the field and showcased conversion of
KNIME workflows composed solely of nodes that were im-
ported via GKN. We have extended KNIME2gUSE in order
to convert workflows composed of any kind of nodes. Figures
7 and 8 depict how the conversion of nodes is performed.

Fig. 6. A CTD in action. Top section: Parameters needed for the tool
Ligand3DGenerator [14] to be executed, namely input file, output file and
the desired force field. Middle section: A sample CTD snippet representing
an execution of the Ligand3DGenerator using the shown parameter values.
Bottom section: A CTD-enabled tool with the given sample CTD.

B. Conversion of Workflows: Exporting KNIME wofkflows to
WS-PGRADE

The KNIME2gUSE plug-in produces files that can be
imported into WS-PGRADE, ready to be executed on any
configured DCI with minor modifications.

We have chosen WS-PGRADE as the target engine for
the export process due to the fact that it interacts directly
with a wide selection of resource and cloud managers (a
feature not present in the royalty-based KNIME editions that
allow remote execution). It also features workflow submission,
control, monitoring and statistics. These are functionalities
which resource managers or cloud engines often lack.

The KNIME Analytics Platform natively supports the as-
sociation of single input/output ports to a file list determined
at runtime, a functionality not present in WS-PGRADE. To
overcome this, a wrapper script is automatically generated
by KNIME2gUSE that zips corresponding files into a single
archive. To translate parameter sweep sections, conversion re-
moves KNIME Analytics Platform ZipLoopStart and ZipLoop-

Fig. 7. Conversion of native KNIME nodes. Since Row Splitter exists
only in the context of the KNIME Analytics Platform, it requires an instance
of a KNIME Analytics Platform for its execution. KNIME2gUSE generates
a workflow containing the required input/output nodes and a copy of Row
Splitter with the same configuration settings as its origin node. The generated
command line invokes a KNIME Analytics Platform in the target DCI in
batch mode, reads input from a file and writes outputs to files.

Fig. 8. Conversion of GKN-imported nodes. The nodes depicted on the
left side directly interact with binaries located on the user’s desktop computer.
The right column shows the mapped binaries and an equivalent execution on
a target DCI. Since Ligand3DGenerator is CTD-enabled, a suitable CTD file
can be generated; this is not the case for the blastn tool.

End nodes and substitutes suitable WS-PGRADE generator
and collector ports.

C. Example Application: Biomarker Discovery in
Metabolomics

Metabolomics is a mass spectrometry-based approach aimed
to evaluate the entirety of a metabolite sample. Applications
include the tracking of chemicals and their transformation
products in waste water [15], identification of cancer types via
biomarkers [16], [17] and elucidation of disease-underlying
mechanisms [18]. Compared to complementary omics tech-
nologies (e.g., transcriptomics, proteomics), metabolomics is
closer to the actual biochemical processes that occur, making
it attractive for biomarker development.

A common analysis approach for studies interested in com-
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Fig. 9. Metabolics biomarker discovery workflow both in the KNIME Analytics Platform and WS-PGRADE. Top: Workflow implemented in the
KNIME Analytics Platform, OpenMS [12] was imported using GKN. Bottom: Workflow generated by KNIME2gUSE imported into WS-PGRADE (workflow
slightly edited for visual clarity). Even if some elements are missing after conversion (e.g., ZipLoopStart, ZipLoopEnd, Input File nodes), both versions have
the same abstract layer. This is due to the difference in implementation of logically equivalent constructs in WS-PGRADE and the KNIME Analytics Platform,
such as parameter sweep.

parative metabolite concentrations is label-free quantification.
The independence from chemical labels allows the direct
comparison of small molecules across an arbitrary number of
samples. As a consequence, the need to evaluate hundreds
of gigabyte-sized samples in concert is already common.
Numbers and sizes of concurrently evaluated samples are
steadily increasing, emphasizing the necessity for distributed
computing.

We provide an example workflow for metabolomics
biomarker discovery using OpenMS [12] for mass spectrome-
try algorithms as well as various native KNIME Nodes (includ-
ing nodes for the R scripting language). The KNIME workflow
and its converted WS-PGRADE version are shown in Figure

9. We assume some initial preparations were performed prior
to the execution of the workflow, namely, conversion from
closed mass spectrometer vendor formats to the open mzML
format and data reduction by means of peak picking, which
could also be implemented in KNIME via OpenMS [12] tools.

Using a detection method for so-called small
molecules [19], we adapted a label-free quantification
pipeline [20]. The quantification part of our biomarker
discovery workflow consists of sample specific feature
detection (i.e., finding the convex hulls and respective
centroids of analyte mass traces) followed by temporal
alignment of samples and the quantification of corresponding
features across samples.

5
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Downstream small molecule identification was done via
mass-based search in the Human Metabolome Database. In-
cluded sample normalization allows for comparison of analyte
abundances across samples. Analytes whose abundances vary
significantly after false discovery rate correction are anno-
tated with the mass-based identifications and exported to a
Microsoft Excel Spreadsheet (XLS format).

III. FUTURE WORK

The KNIME Analytics Platform features Metanodes en-
capsulating complete workflows. We would like to extend
KNIME2gUSE to support their conversion. Furthermore, see-
ing that considerable effort has been put into creating platform-
independent workflow representation formats, we would like
to add IWIR and YAWL file generation to KNIME2gUSE.
We would also like to extend our converter to support other
workflow engines, such as Galaxy.

IV. CONCLUSION

Workflows assist reproducibility and minimize time spent
validating research by reducing analysis complexity. There are
currently several workflow engines with user-friendly inter-
faces that support remote execution of workflows. However,
we feel that their scalability and support of major resource
managers is still lacking. In contrast, HPC infrastructures
and their resource managers rarely support the execution and
control of workflows. As a consequence, HPC users often
require programming skills to handle the channeling of data
as well as to submit, monitor and control the respective
computing jobs.

We present our efforts to support workflow export from
the KNIME Analytics Platform to WS-PGRADE, identified
challenges for both node and workflow conversion and detailed
our solutions. KNIME offers remote workflow execution, but it
is a royalty-based solution and support of DCIs is limited—an
aspect in which WS-PGRADE excels. KNIME2gUSE brings
together a user-friendly and intuitive workflow engine for
personal computers together with a scalable HPC workflow
platform that interacts with several DCIs.

We thus provide the individual advantages of both engines
without any of their shortcomings. Overall, our methods
decrease time spent designing workflows and troubleshooting
conversion for different workflow engines.
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