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Abstract. The aim of this paper is to outline a first-order model for
ampliative reasoning that fruitfully combines the inference patterns of
inductive generalization and factual abduction. The pattern of inductive
generalization is the archetype pattern of inductive inference by which
we arrive at a universally quantified statement (All P s are Q) given one
or more instances (Some P s are Q). In factual abduction, we reason from
a universally quantified statement (All P s are Q) and an instance of its
consequent (object a is Q) to an instance of its antecedent (object a is
P ). It is shown how these patterns can be combined in such a way that
inductively inferred generalizations can be used as premises in abductive
inferences, and that conclusions of abductive inferences in turn can be
used to inductively infer new generalizations. This process is formally
explicated within the adaptive logics framework in terms of a preferential
model semantics.
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1 Introduction

This is an exploratory investigation into combinations of ampliative reasoning
patterns. Ampliative reasoning occurs whenever we draw inferences the conclu-
sions of which cannot be deduced from the available premises by means of one’s
preferred standard of deduction. Examples of ampliative reasoning patterns in-
clude inductive generalization, abduction or inference to the best explanation,
causal discovery, and reasoning by analogy. The study of these patterns is of
interest to philosophers investigating the foundations of defeasible reasoning, to
logicians investigating the formalization of defeasible reasoning, to computer sci-
entists investigating the automation of defeasible reasoning, and to psychologists
investigating defeasible reasoning in the wild.

The focus of this paper is on the formalization of two specific patterns of
ampliative reasoning and their combination. The first is that of inductive gen-
eralization, the archetype pattern of inductive inference by which we reason to
a universally quantified statement (“All P s are Q”) given one or more instances



of it. The second pattern is that of factual abduction, by which we reason from
a universally quantified statement (“All P s are Q”) and an instance of its con-
sequent (“a is Q”) to an instance of its antecedent (“a is P”). The inference
patterns studied here are sub-patterns of the larger classes of inductive infer-
ences and abductive inferences. For a comprehensive taxonomy of patterns of
inductive inference, see [17]. For a comprehensive taxonomy of patterns of ab-
ductive inference, see [19]. The pattern of factual abduction is also known as
simple abduction [23] or plain abduction [1].

The technical implementation and combination of inductive generalization
and factual abduction is realized within the adaptive logics framework for mod-
elling patterns of defeasible reasoning. There are two main reasons for choosing
this framework. The first is that both inductive generalization and factual ab-
duction are well-studied within this framework – see [8, 6, 7, 9, 12, 14, 16]. The
second is that different means are available for combining adaptive logics – see
[24, 25, 21].

Section 3 provides a short introduction to the adaptive logics framework, tai-
lored to the aim of this paper. In Section 4 the logic for inductive generalization
LIr from [4, 6, 8] is presented and illustrated. In Section 5 the logic for factual
abduction FAr is introduced. The latter system is a close cousin of an adaptive
logic for factual abduction defined within the framework of [7] (see footnote 9
below). The logics presented in Sections 4 and 5 are then sequentially combined
(Section 6), resulting in the system SIAr.

The modest contribution of this paper is that it provides a full formal expli-
cation of how inductive generalization and factual abduction can be combined
within a single system, and that this combination is fruitful in the following sense:
inductively obtained conclusions can be used as premises in abductive inferences,
and vice versa. From this, no conclusions should be drawn yet regarding the nor-
mative or descriptive adequacy of this system: more work remains to be done.
For instance, an adequate formalization of these inference patterns and their
combination requires a detailed study of their alternative logical characteriza-
tions, and a richer formal language. Some of these alternatives and enrichments
are discussed in Section 7, alongside a number of design choices which are best
motivated after defining SIAr.

2 Notational Conventions

Let L be a first-order language built using a set P of unary predicates, a set C
of individual constants, a set V of individual variables, and the logical symbols
>,⊥,¬,∨,∧,⊃,≡,∃,∀. In what follows, CL refers to first-order classical logic
without identity, and restricted to L (no n-ary predicates for n > 1, no function
symbols).

Upper case letters P,Q,R, etc., lower case letters a, b, c, etc., respectively
lower case letters x, y, z, denote members of P, C, respectively V . For all α ∈
C ∪V, Lα = {πα,¬πα | π ∈ P}, and Fα is the set of truth-functions of formulas



in Lα. For instance, Pa ∈ La and ¬Px ∨ (Qx ⊃ Rx) ∈ Fx. Where α ∈ C ∪ V,
A(α), B(α), etc. denote members of Fα, unless further specified.

Where M is a CL-model, A ∈ L and Γ ⊆ L, M  A means that M verifies
A; M is a model of Γ iff M  A for all A ∈ Γ . Relative to a logic L, ML(Γ )
denotes the set of L-models of Γ , and Γ �L A means that A is verified by all
M ∈ML(Γ ). CnL(Γ ) is the set of L-consequences of Γ .

3 Adaptive logics

Adaptive logics are tools for explicating defeasible reasoning patterns. They were
originally developed by Batens, who also defined a standard format for adaptive
logics [3, 5, 7]. Systems defined within this format are equipped with a dynamic
proof theory and a selection semantics in the vein of Shoham’s preferred mod-
els [20], KLM’s preferential models [13], or Makinson’s default valuations [15,
Ch. 3].1 For conciseness of presentation, the adaptive logics presented here are
defined only from a semantic point of view.

Adaptive logics strengthen a core logic called the lower limit logic. The adap-
tive semantics is a mechanism for selecting a preferred subset among the models
of the lower limit logic relative to a premise set. The selected set contains models
that are minimal with respect to a set of abnormalities: a set of formulas charac-
terized by some logical form. The exact way in which an adaptive logic minimizes
abnormalities verified by its lower limit models varies with the adaptive strategy
used. Depending on the strategy used in the minimization process, different sets
of lower limit models may be selected relative to a premise set, giving rise to
possibly different sets of logical consequences. An adaptive logic defined within
the standard format is fully characterized in terms of three elements: a lower
limit logic, a set of abnormalities, and an adaptive strategy.

Below two adaptive logics will be presented: the logic for inductive general-
ization LIr, and the logic of factual abduction FAr. These logics have CL as
their lower limit logic. They differ with respect to their respective sets of ab-
normalities. The superscript r is the first letter of the adaptive strategy used by
these logics: the reliability strategy.

Adaptive logics provide a flexible framework for studying different types of
defeasible reasoning patterns and their combinations. This makes them very
suitable for the present exploration of combining inductive generalization and
factual abduction. The format for combination used here is that of sequential
superposition [21, Ch. 3], [22].

Given a premise set Γ ⊆ L, the logics LIr and FAr are sequentially combined
in the following way:

. . . CnFAr(CnLIr(CnFAr(CnLIr(Γ )))) . . . (1)

1For the sake of historical accuracy: the semantics for adaptive logics – first pre-
sented in [2] for the minimal abnormality strategy (cfr. infra) – was developed inde-
pendently of the accounts of Shoham, KLM, and Makinson.



In a first step, LIr is applied to check which generalizations can be inferred
from the premise set Γ . Next, FAr is applied to infer new predictions via fac-
tual abduction. These new predictions can in turn be used to check for new
generalizations by means of LIr, and so on.

4 Inductive Generalization

The adaptive logic LIr strengthens its lower limit logic, CL, by interpreting the
world ‘as uniformly as possible’. It does so by taking as its set of abnormalities
a set of falsified universally quantified statements, so that its least abnormal
models are those in which these universally quantified statements hold true. The
set Ωi of LIr-abnormalities is defined as follows:2

Ωi = {¬∀α(A1(α) ∨ . . . ∨An(α)) | α ∈ V, A1(α), . . . , An(α) ∈ Lα}

In the remainder the term generalization refers to formulas of the form ∀α(A1(α)∨
. . . ∨An(α)), so that Ωi is the set of negated generalizations.

To complete the characterization of LIr, a mechanism is needed for selecting
a ‘preferred’ subset of the CL-models of a given premise set relative to the set
Ωi. This mechanism is provided by the reliability strategy, which selects a set
Mr

i (Γ ) of i-reliable models of Γ ⊆ L. The characterization of this set requires
some more terminology. ‘Dab’ is an acronym for ‘disjunction of abnormalities’.
Where ∆ ⊆ Ωi, Dabi(∆) =

∨
∆.3 Dabi(∆) is a Dabi-consequence of Γ iff

Γ �CL Dabi(∆), and Dabi(∆) is a minimal Dabi-consequence of Γ iff Dabi(∆)
is a Dabi-consequence of Γ and there is no ∆′ ⊂ ∆ such that Dabi(∆

′) is a
Dabi-consequence of Γ . Where Dabi(∆1),Dabi(∆2), . . . are the minimal Dabi-
consequences of Γ , Ui(Γ ) = ∆1 ∪∆2 ∪ . . . is the set of i-unreliable formulas of
Γ . Where Abi(M) = {A ∈ Ωi |M  A}:

Mr
i (Γ ) = {M ∈MCL(Γ ) | Abi(M) ⊆ Ui(Γ )}

Definition 1. Γ �LIr A iff M  A for all M ∈Mr
i (Γ ).

As an illustration of the workings of LIr, consider the premise set Γ1 = {Pa ∧
Qa∧¬Ra∧¬Sa,Qb∧Rb, Pb ⊃ ¬Sb,¬Pc∧¬Qc∧¬Rc∧Sc,¬Pd∧Qd∧¬Rd∧
Sd,¬Pe∧¬Qe∧¬Re∧¬Se, Pf ∧Qf ∧¬Rf ∧ Sf, Pg ∧Qg ∧Rg,¬Ph∧¬Qh∧
Rh,¬Pi ∧Qi ∧Ri,¬Pj ∧Qj ∧ ¬Rj ∧ ¬Sj}.

For future reference, it is convenient to list all i-abnormalities that can be
formed using only the four predicates occurring in Γ1 (see Table 1).

The set of Dabi-consequences of Γ1 contains, amongst others, all disjunc-
tions between formulas listed in Table 1 that are CL-derivable from Γ1, includ-
ing ‘single-disjunct’ disjunctions. The minimal Dabi-consequences of Γ1 are all
minimal such disjunctions. They include

2In [26, Sec. 4.2.2] it is shown that the same logic is obtained if Ωi is defined as the
set of formulas of the form ¬∀αA(α), where α ∈ V and A(α) ∈ Fα.

3If ∆ is a singleton {A}, Dabi(∆) = A.



1. ¬∀x(Px)
2. ¬∀x(¬Px)
3. ¬∀x(Qx)
4. ¬∀x(¬Qx)
5. ¬∀x(Rx)
6. ¬∀x(¬Rx)
7. ¬∀x(Sx)
8. ¬∀x(¬Sx)
9. ¬∀x(Px ∨Qx)

10. ¬∀x(Px ∨ ¬Qx)
11. ¬∀x(¬Px ∨Qx)
12. ¬∀x(¬Px ∨ ¬Qx)
13. ¬∀x(Px ∨Rx)
14. ¬∀x(Px ∨ ¬Rx)
15. ¬∀x(¬Px ∨Rx)
16. ¬∀x(¬Px ∨ ¬Rx)
17. ¬∀x(Px ∨ Sx)
18. ¬∀x(Px ∨ ¬Sx)
19. ¬∀x(¬Px ∨ Sx)
20. ¬∀x(¬Px ∨ ¬Sx)
21. ¬∀x(Qx ∨Rx)
22. ¬∀x(Qx ∨ ¬Rx)
23. ¬∀x(¬Qx ∨Rx)
24. ¬∀x(¬Qx ∨ ¬Rx)
25. ¬∀x(Qx ∨ Sx)
26. ¬∀x(Qx ∨ ¬Sx)
27. ¬∀x(¬Qx ∨ Sx)

28. ¬∀x(¬Qx ∨ ¬Sx)
29. ¬∀x(Rx ∨ Sx)
30. ¬∀x(Rx ∨ ¬Sx)
31. ¬∀x(¬Rx ∨ Sx)
32. ¬∀x(¬Rx ∨ ¬Sx)
33. ¬∀x(Px ∨Qx ∨Rx)
34. ¬∀x(Px ∨Qx ∨ ¬Rx)
35. ¬∀x(Px ∨ ¬Qx ∨Rx)
36. ¬∀x(Px ∨ ¬Qx ∨ ¬Rx)
37. ¬∀x(¬Px ∨Qx ∨Rx)
38. ¬∀x(¬Px ∨Qx ∨ ¬Rx)
39. ¬∀x(¬Px ∨ ¬Qx ∨Rx)
40. ¬∀x(¬Px∨¬Qx∨¬Rx)
41. ¬∀x(Px ∨Qx ∨ Sx)
42. ¬∀x(Px ∨Qx ∨ ¬Sx)
43. ¬∀x(Px ∨ ¬Qx ∨ Sx)
44. ¬∀x(Px ∨ ¬Qx ∨ ¬Sx)
45. ¬∀x(¬Px ∨Qx ∨ Sx)
46. ¬∀x(¬Px ∨Qx ∨ ¬Sx)
47. ¬∀x(¬Px ∨ ¬Qx ∨ Sx)
48. ¬∀x(¬Px∨¬Qx∨¬Sx)
49. ¬∀x(Px ∨Rx ∨ Sx)
50. ¬∀x(Px ∨Rx ∨ ¬Sx)
51. ¬∀x(Px ∨ ¬Rx ∨ Sx)
52. ¬∀x(Px ∨ ¬Rx ∨ ¬Sx)
53. ¬∀x(¬Px ∨Rx ∨ Sx)
54. ¬∀x(¬Px ∨Rx ∨ ¬Sx)

55. ¬∀x(¬Px ∨ ¬Rx ∨ Sx)
56. ¬∀x(¬Px ∨ ¬Rx ∨ ¬Sx)
57. ¬∀x(Qx ∨Rx ∨ Sx)
58. ¬∀x(Qx ∨Rx ∨ ¬Sx)
59. ¬∀x(Qx ∨ ¬Rx ∨ Sx)
60. ¬∀x(Qx ∨ ¬Rx ∨ ¬Sx)
61. ¬∀x(¬Qx ∨Rx ∨ Sx)
62. ¬∀x(¬Qx ∨Rx ∨ ¬Sx)
63. ¬∀x(¬Qx ∨ ¬Rx ∨ Sx)
64. ¬∀x(¬Qx ∨ ¬Rx ∨ ¬Sx)
65. ¬∀x(Px ∨Qx ∨Rx ∨ Sx)
66. ¬∀x(Px ∨Qx ∨Rx ∨ ¬Sx)
67. ¬∀x(Px ∨Qx ∨ ¬Rx ∨ Sx)
68. ¬∀x(Px ∨Qx ∨ ¬Rx ∨ ¬Sx)
69. ¬∀x(Px ∨ ¬Qx ∨Rx ∨ Sx)
70. ¬∀x(Px ∨ ¬Qx ∨Rx ∨ ¬Sx)
71. ¬∀x(Px ∨ ¬Qx ∨ ¬Rx ∨ Sx)
72. ¬∀x(Px∨¬Qx∨¬Rx∨¬Sx)
73. ¬∀x(¬Px ∨Qx ∨Rx ∨ Sx)
74. ¬∀x(¬Px ∨Qx ∨Rx ∨ ¬Sx)
75. ¬∀x(¬Px ∨Qx ∨ ¬Rx ∨ Sx)
76. ¬∀x(¬Px∨Qx∨¬Rx∨¬Sx)
77. ¬∀x(¬Px ∨ ¬Qx ∨Rx ∨ Sx)
78. ¬∀x(¬Px∨¬Qx∨Rx∨¬Sx)
79. ¬∀x(¬Px∨¬Qx∨¬Rx∨Sx)
80. ¬∀x(¬Px∨¬Qx∨¬Rx∨¬Sx)

Table 1. i-abnormalities for the predicates P,Q,R, S.



– the abnormalities 1–10, 12–30, 33–36, 39–44, 47–50, 53, 54, 57, 58, 61, 62,
65, 66, 69, 70, 77, and 78 from Table 1, and

– the disjunctions listed in Table 2.4

31∨32 31∨64 32∨51 32∨67 51∨60 52∨59 55∨56 56∨79 63∨64 64∨79
31∨52 31∨68 32∨55 32∨71 51∨64 52∨63 55∨64 59∨60 63∨72 67∨68
31∨56 31∨72 32∨59 32∨79 51∨68 52∨67 55∨80 59∨68 63∨80 71∨72
31∨60 31∨80 32∨63 51∨52 51∨72 52∨71 56∨63 60∨67 64∨71 79∨80

Table 2. Two-disjunct minimal Dabi-consequences of Γ1. Numbers refer to the corre-
sponding abnormalities in Table 1.

Importantly, the abnormalities 11, 37, 38, 45, 46, 73–76 do not occur as disjuncts
in any minimal Dabi-consequence of Γ1. Indeed, for any Dabi-consequence of Γ1

containing one of these abnormalities as one of its disjuncts, there is a strictly
shorter disjunction which is a minimal Dabi-consequence of Γ1 and which does
not contain the abnormality in question as one of its disjuncts. Thus the set
Ui(Γ1) of i-abnormalities that behave unreliably with respect to Γ1 contains all
abnormalities in Table 1 except for 11, 37, 38, 45, 46, 73–76. This means that
the set Mr

i (Γ1) of i-reliable models of Γ1 contains no models which verify any
of these abnormalities. So the negations of 11, 37, 38, 45, 46, 73–76 hold true in
all i-reliable models of Γ1. By Definition 1:

Γ1 �LIr ∀x(¬Px ∨Qx) (2)

Clearly, the negations of 37, 38, 45, 46, 73–76, which are CL-consequences of
∀x(¬Px ∨Qx), are also among the LIr-consequences of Γ1.

The logic LIr, like all adaptive logics defined within the standard format,
inherits a number of meta-theoretical properties such as

– CnCL(CnLIr(Γ )) = CnLIr(Γ ) (CL-closure)
– CnLIr(CnLIr(Γ )) = CnLIr(Γ ) (fixed point)
– If M ∈ MCL(Γ ) \ Mr

i (Γ ), then there is an M ′ ∈ MLIr(Γ ) such that
Abi(M

′) ⊂ Abi(M) (smoothness)

For the generic proofs of these properties for adaptive logics in standard format,
see [5, Sec. 6-8]. For a slower-paced introduction to LIr, and for more illustrations
of its workings, see [4, 8].

5 Factual Abduction

The inference pattern of factual abduction is a defeasible version of the backward
modus ponens (BMP) rule. Where α ∈ V, β ∈ C, A(α), B(α) ∈ Fα, A(β), B(β) ∈

4The tedious exercise of verifying that Γ1 has no minimal Dabi-consequences of
three or more disjuncts is safely left to the interested reader.



Fβ :
∀α(A(α) ⊃ B(α)), B(β)/A(β) (BMP)

In order to prevent that the adaptive logic FAr over- or undergenerates abductive
consequences, a number of further technical requirements must be imposed on
inferences of the form (BMP), as the following examples illustrate.5

Example 1. Let Γ2 = {∀x(Sx ⊃ Qx),∀x(Rx ⊃ Px), Pa,Qa}. Sa is derivable
by (BMP) applied to ∀x(Sx ⊃ Qx) and Qa. But ∀x(Rx ⊃ Px) �CL ∀x((Rx ∧
¬Sx) ⊃ Px), so by the same token (BMP) can be applied to ∀x((Rx ∧ ¬Sx) ⊃
Px) and Pa so as to infer Ra ∧ ¬Sa, which contradicts the earlier inference of
Sa.
This example motivates a restriction according to which (BMP) is not appli-
cable to universally quantified conditionals the antecedents of which have been
strengthened, such as ∀x((Rx ∧ ¬Sx) ⊃ Px).

Example 2. Let Γ3 = {∀x(Px ⊃ Qx), Ra}. One would not expect Pa to be
derivable via (BMP). But ∀x(Px ⊃ Qx) �CL ∀x(Px ⊃ (Qx ∨Rx)) and Ra �CL

Qa∨Ra. So Pa can be inferred by applying (BMP) to ∀x(Px ⊃ (Qx∨Rx)) and
Qa ∨Ra. The resulting logic overgenerates.
This example motivates a restriction according to which (BMP) is not appli-
cable to universally quantified conditionals the consequents of which have been
weakened, such as ∀x(Px ⊃ (Qx ∨Rx)).

A single technical requirement suffices to ensure that the problems in Examples
1 and 2 are avoided. Note that the universally quantified conditional in argu-
ments of the form (BMP) can be expressed equivalently as a (conjunction of)
universally quantified disjunction(s). For instance, ∀x(Px ⊃ Qx), respectively
∀x((Px ∨ Rx) ⊃ Qx, ∀x(Px ⊃ (Qx ∧ Rx)) are equivalent to ∀x(¬Px ∨ Qx),
respectively ∀x(¬Px ∨ Qx) ∧ ∀x(¬Rx ∨ Qx), ∀x(¬Px ∨ Qx) ∧ ∀x(¬Px ∨ Rx).
If we do the same in Examples 1 and 2, it is immediate that in the undesir-
able applications of factual abduction the universally quantified premise results
from weakening a logically stronger generalization. In Example 1, the general-
ization ∀x(¬Rx ∨ Px) was weakened to ∀x(¬Rx ∨ Sx ∨ Px). In Example 2, the
generalization ∀x(¬Px∨Qx) was weakened to ∀x(¬Px∨Qx∨Rx). These weak-
ened generalizations or their conditional equivalents cause trouble when used as
premises in abductive inferences. This motivates a restriction of applications of
factual abduction to generalizations from which no disjuncts can be removed.
Such generalizations will be called starred generalizations. They make use of a

starred quantifier ‘
∗
∀’, expressing that the generalization in question cannot be

shortened. Where α ∈ V and A1, . . . , An, B1, . . . , Bk ∈ Lα:

∗
∀α(A1 ∨ . . . ∨An) = ∀α(A1 ∨ . . . ∨An) ∧ ¬

∨
{∀α(B1 ∨ . . . ∨Bk) |

∅ 6= {B1, . . . , Bk} ⊂ {A1, . . . , An}}
5Both examples presuppose CL in the background. The first example is adopted

from the technical appendix in [9]. The second example is by Frederik Van De Putte
(personal communication).



The logic FAr allows for the defeasible application of the factual abduction pat-
tern to starred generalizations. More precisely, it implements a defeasible version
of the ‘backward disjunctive syllogism’ rule obtained by replacing ∀α(A(α) ⊃
B(α)) with

∗
∀α(¬A(α) ∨B(α)) in (BMP).

The lower limit logic of FAr is CL. Its set of abnormalities is the set Ωa.
Where α ∈ V, β ∈ C, A1(α), . . . , Ai(α), B1(α), . . . , Bj(α) ∈ Lα, i ≥ 1, j ≥ 1:

Ωa = {
∗
∀α(A1(α) ∨ . . . ∨Ai(α) ∨B1(α) ∨ . . . ∨Bj(α)) ∧ (A1(β) ∨ . . . ∨Ai(β))∧

(B1(β) ∨ . . . ∨Bj(β))}

Given a premise set Γ , a CL-model M of Γ , and a set ∆ ⊆ Ωa, the setsMr
a(Γ ),

Daba(∆), the set of (minimal) Daba-consequences of Γ , and the set Ua(Γ ) of
a-unreliable formulas of Γ are defined exactly like their inductive counterparts:
just replace subscripts ‘i’ with ‘a’ in their respective counterpart definitions in
Section 4.

Definition 2. Γ �FAr A iff M  A for all M ∈Mr
a(Γ ).

Given a premise set Γ , FAr selects the CL-models of Γ which verify no a-
abnormalities except for those in Ua(Γ ), just like LIr would select the CL-models
of Γ which verify no i-abnormalities except for those in Ui(Γ ). By way of illus-
tration, let Γ4 = CnLIr(Γ1). Recall that ∀x(¬Px ∨ Qx) ∈ Γ4, and note that

Γ4 �CL ¬∀x¬Px∧¬∀xQx. Thus Γ4 �CL

∗
∀x(¬Px∨Qx). In fact,

∗
∀x(¬Px∨Qx)

is the only starred generalization which is CL-derivable from Γ4: all other gener-
alizations are either not in the set of LIr-consequences of Γ4, or they are logically
weaker than ∀x(¬Px ∨Qx). Generalizations which are not LIr-consequences of
Γ4 include the negations of all i-abnormalities which are CL-derivable from Γ1,
as well as the negations of all i-abnormalities occurring as a disjunct in Table 2.
Generalizations which are CL-equivalent to a generalization which is logically
weaker than ∀x(¬Px∨Qx) include the negations of abnormalities 37, 38, 45, 46,
73–76 in Table 1.

Γ4 has three minimal Daba-consequences:

∗
∀x(¬Px ∨Qx) ∧ ¬Pd ∧Qd (3)
∗
∀x(¬Px ∨Qx) ∧ ¬Pi ∧Qi (4)
∗
∀x(¬Px ∨Qx) ∧ ¬Pj ∧Qj (5)

Thus, Ua(Γ4) = {
∗
∀x(¬Px∨Qx)∧¬Pd∧Qd,

∗
∀x(¬Px∨Qx)∧¬Pi∧Qi,

∗
∀x(¬Px∨

Qx) ∧ ¬Pj ∧Qj}. Reliable CL-models of Γ4 – members of Mr
a(Γ4) – verify no

further a-abnormalities. So they falsify the abnormality
∗
∀x(¬Px∨Qx)∧¬Pb∧Qb.

Since they verify both
∗
∀x(¬Px ∨Qx) and Qb, they must falsify ¬Pb, so that:

Γ4 �FAr Pb (6)



6 Iteration

Let Γ5 = CnFAr(CnLIr(Γ1)). If LIr were applied to this premise set, would
that deliver new consequences on top of the members of Γ5? Note that since
Pb ∈ Γ5, the i-abnormalities 31, 55, 63, and 79 are CL-consequences of Γ5.
Thus, a number of disjunctions in Table 2 are no longer minimal with respect to
Γ5. In particular, the disjunctions 31∨56, 31∨80, 55∨56, 55∨80, 56∨63, 56∨79,
and 79∨80 are no longer minimal. As a result, the abnormalities 56 and 80 no
longer occur as disjuncts in minimal Dab-consequences of Γ5. Because of this,
they do not belong to Ui(Γ5), and they are falsified by all reliable models of Γ5.
As a result:

Γ5 �LIr ∀x(¬Px ∨ ¬Rx ∨ ¬Sx) (7)

∀x(¬Px ∨ ¬Rx ∨ ¬Sx) 6∈ Γ5, so a new generalization becomes derivable upon
applying LIr to CnFAr(CnLIr(Γ1)).

So far, new information was obtained at each ‘round’ of application of the log-
ics LIr and FAr: ∀x(¬Px∨Qx) ∈ CnLIr(Γ1) while ∀x(¬Px∨Qx) 6∈ CnCL(Γ1),
Pb ∈ CnFAr(CnLIr(Γ1)) while Pb 6∈ CnLIr(Γ1), and ∀x(¬Px ∨ ¬Rx ∨ ¬Sx) ∈
CnLIr(CnFAr(CnLIr(Γ1))) while ∀x(¬Px ∨ ¬Rx ∨ ¬Sx) 6∈ CnFAr(CnLIr(Γ1)).
What if FAr was applied to CnLIr(CnFAr(CnLIr(Γ1)))? Can new information be
abduced still? No. The inference pattern of factual abduction is only applicable
to starred generalizations. The only new generalization obtained in the previous
round was ∀x(¬Px ∨ ¬Rx ∨ ¬Sx), so the only way to obtain new information
by factual abduction is via the use of this generalization. But we cannot infer
its starred version.

∗
∀x(¬Px ∨ ¬Rx ∨ ¬Sx) 6∈ CnLIr(CnFAr(CnLIr(Γ1))) (8)

The reason is that we cannot infer ¬∀x(¬Rx ∨ ¬Sx). Indeed, neither this i-
abnormality nor its negation is a member of CnLIr(CnFAr(CnLIr(Γ1))).6 Since
we cannot infer any new starred generalizations from CnLIr(CnFAr(CnLIr(Γ1))),
nothing new can be abduced.

The iterative process of applying inductive generalization and factual abduc-
tion can be repeated ad infinitum. The consequence operation CnSIAr is defined
as follows:

CnSIAr(Γ ) = . . . CnFAr(CnLIr(CnFAr(CnLIr(Γ )))) . . . (9)

Alternatively, this operation can be described as follows. Given a premise set
Γ , first select the CL-models of Γ (level 0). Next select the LIr-models of the
resulting set (level 1). Next, select the FAr-models (level 2), then again select
via LIr (level 3), and so on.

6This i-abnormality is number 32 in Table 1. It is a member of
Ui(CnFAr(CnLIr(Γ1))) in view of the following minimal Dabi-consequences of
CnFAr(CnLIr(Γ1)): 32 ∨ 51, 32 ∨ 59, 32 ∨ 67, and 32 ∨ 71. In view of this, some but
not all reliable models of CnFAr(CnLIr(Γ1)) verify ∀x(¬Rx∨¬Sx), while others falsify
this generalization.



Definition 3. Where j ≥ 1:

M0(Γ ) =MCL(Γ )

Mj(Γ ) =


{M ∈Mj−1(Γ ) | Abi(M) ⊆ Ui({A |M ′ � A

for all M ′ ∈Mj−1(Γ )})} if j is odd,

{M ∈Mj−1(Γ ) | Aba(M) ⊆ Ua({A |M ′ � A
for all M ′ ∈Mj−1(Γ )})} if j is even.

Definition 4. Where j ∈ N, Γ �SIAr
j
A iff M  A for all M ∈Mj(Γ ).

It was shown generically (for adaptive logics using the reliability strategy) in
[21, Sec. 3.2.1] that, at each step in the construction, the resulting logics are
semantically adequate with respect to the sequence in (9): Γ �SIAr

1
A iff A ∈

CnLIr(Γ ), Γ �SIAr
2
A iff A ∈ CnFAr(CnLIr(Γ )), and so on. Next, we turn to

the limiting case.

M∞(Γ ) = lim inf
j→∞

Mj(Γ ) =
⋂
j∈N
Mj(Γ ) (10)

Definition 5. Γ �SIAr A iff M  A for all M ∈M∞(Γ ).

In [24, Sec. 3.3.2] the generic semantic adequacy result from [21] is extended to
the infinite case. Applied to the present setting, (11) follows immediately:

Γ �SIAr A iff A ∈ CnSIAr(Γ ) (11)

For languages with a finite signature the logic SIAr is decidable. It remains an
open question whether this is also the case for languages of infinite signature.
Another open issue is that of determining the computational complexity of SIAr.
In [18] it was shown that for adaptive logics defined within the standard format –
such as LIr and FAr – the complexity upper bound in the arithmetical hierarchy
is Σ0

3 . There are currently no published results on the computational complexity
of sequentially combined adaptive logics such as SIAr.

7 Discussion and Variation

Here is a different way of writing the outcomes obtained for Γ1 in Sections 4-6:

Γ1 �SIAr
1
∀x(¬Px ∨Qx) (12)

Γ1 �SIAr
2
Pb (13)

Γ1 �SIAr
3
∀x(¬Px ∨ ¬Rx ∨ ¬Sx) (14)

The example shows how information obtained via factual abduction can in
turn serve to inductively infer generalizations not previously derivable from the
premise set. Stretching things a bit, this example logically explicates and con-
firms the view – revived by Douglas in [10] – that part of what makes (abduced)



explanations useful is their help in generating new predictions (in this case, via
inductive generalization). The ‘stretch’ here concerns the use of the term ‘ex-
planation’ for referring to formulas inferred via factual abduction. Arguably,
conclusions drawn via factual abduction classify at best as mere potential expla-
nations, and a richer formalism is needed to adequately represent their epistemic
status as opposed to e.g. observations in the premise set, cfr. infra. In this re-
spect, the logic SIAr oversimplifies matters.

Besides factual abduction, the logic SIAr goes some way towards explicating
another ‘pattern’ of abductive inference, namely the pattern of law-abduction,
which has the following logical form [19]:

∀α(A(α) ⊃ B(α)) (Explanandum)

∀α(C(α) ⊃ B(α)) (Background law)

∀α(A(α) ⊃ C(α)) (Explanatory hypothesis)

Following an illustration given in [19], let P,Q,R denote respectively ‘con-
tains sugar’, ‘tastes sweet’, and ‘is a pineapple’. Our background knowledge
includes ∀x(Px ⊃ Qx). Some things contain sugar while others don’t, and some

things taste sweet while others don’t, so
∗
∀x(¬Px ∨ Qx). The aim is to explain

∀x(Rx ⊃ Qx) – which we obtained by inductive generalization from a number of

instances Ra∧Qa, Rb∧Qb, etc. Via factual abduction applied to
∗
∀x(¬Px∨Qx)

and Qa,Qb, . . ., the formulas Pa, Pb, . . . can be inferred. And by inductive gen-
eralization applied to Ra ∧ Pa,Rb ∧ Pb, etc., we obtain ∀x(Rx ⊃ Px). When
asked why pineapples taste sweet, we can now answer by telling that pineapples
contain sugar.7

An important design choice in the construction of SIAr is the preference
for a sequential combination of the patterns of inductive generalization and fac-
tual abduction. As is clear from the characterization of SIAr-consequence in
Definitions 3 and 4, SIAr-models are selected sequentially or stepwise relative
to either Ui or Ua. At each step in the sequence we select either exclusively
with respect to i-unreliable formulas, or we select exclusively with respect to
a-unreliable formulas.

A different, ‘parallel’ rather than sequential, combination strategy would be
to look at both i-unreliable formulas and a-unreliable formulas in one single step.
To this end, we could define a unique set of abnormalities Ωia = Ωi ∪ Ωa. The
sets Mia, Dabia(∆), Uia, etc. are then redefined accordingly in terms of Ωia.
In the resulting logic, (minimal) Dabia-consequences may consist of disjunctions
between one or more members of Ωi and/or one or more members of Ωa. For

7Flach & Kakas thought of law-abduction as a hybrid inference pattern combining
inductive generalization and factual abduction [11, pp. 21-22]. This view was criticized
by Schurz on the grounds that this decomposition of law-abduction is “somewhat
artificial. Law-abductions are usually performed in one single conjectural step” [19,
p. 212]. For an adaptive logic explicating the latter view, see [12].



instance, the disjunction

¬∀x(¬Px ∨Qx) ∨ (
∗
∀x(¬Px ∨Qx) ∧Qd ∧ ¬Pd) (15)

is a minimal Dabia-consequence of Γ1, since it is a CL-consequence of Γ1 and
neither of its disjuncts is a CL-consequence of Γ1. As a result, ¬∀x(¬Px ∨Qx)
is a member of Uia(Γ1), and ∀x(¬Px ∨ Qx) is not a logical consequence in the
resulting logic, so the resulting logic clearly differs from SIAr.

The disjunction in (15) serves to illustrate that the ‘parallel’ combination
of inductive generalization and factual abduction is problematic. To see why,
note that this disjunction is a CL-consequence of {Pa,Qa,¬Pc,¬Qc,¬Pd,Qd},
which is a proper subset of Cn(Γ1). The instances a, c, and d all confirm the gen-
eralization ∀x(¬Px∨Qx). Still, we can infer (15) as a minimal Dabia-consequence
of this premise set, effectively blocking the derivation of the confirmed general-
ization ∀x(¬Px ∨Qx).

In SIAr the logic LIr is applied first in the sequence in (9). Alternatively, a
logic could be defined which applies FAr in the first step of the sequence. In the
absence of quantifiers in the premise set, both approaches – ‘inductive generaliza-
tion first’ vs. ‘factual abduction first’ – would lead to the same consequence set,
since we need generalizations (and so we need to apply LIr) before we can ab-
duce further facts. If generalizations are already present in the premises, the two
approaches may lead to a different set of consequences, since in this case a gener-
alization step may be incompatible with an abductive step at the beginning of the

sequence. The premise set may contain, for instance, Pa, Ra, and
∗
∀x(¬Qx∨Px)

amongst its CL-consequences, so that the i-abnormality ¬∀x(¬Rx ∨ ¬Qx) is

true if Qa holds, while the a-abnormality
∗
∀x(¬Qx ∨ Px) ∧ Pa ∧ ¬Qa is true if

¬Qa holds. An ‘inductive generalization first’ approach then prefers the falsity
of ¬∀x(¬Rx ∨ ¬Qx) (and the truth of ¬Qa) while a ‘factual abduction first’

approach prefers the falsity of
∗
∀x(¬Qx∨Px)∧Pa∧¬Qa (and the truth of Qa).

There is a ‘chicken or egg’ reason in favor of the ‘inductive generalization
first’ approach. Inductive generalization has priority over factual abduction in
the sense that we need to generalize before we can even start abducing (every
application of factual abduction requires a generalization among its premises).
A ‘factual abduction first’ approach would require some explanation as to how
generalizations are attained prior to abduction, if not by inductive generalization.
No such explanation is required in an ‘inductive generalization first’ approach of
the kind adopted here.

The logic SIAr is instructive in explicating what a combination of the infer-
ence patterns of inductive generalization and factual abduction could (and could
not) look like. It was used to show how these patterns of ampliative reasoning
can be fruitfully combined to infer new predictions and generalizations, and how
they can shed light on a different pattern, law-abduction. Still, it is too early to
make bold claims regarding the adequacy of SIAr in capturing these patterns,
for at least two reasons. First, there are many alternative ways to model these



ampliative inferences. And second, a fully adequate model requires additional
expressive resources.

In [6] Batens considers a number of alternative ways of modeling inductive
generalization via an adaptive logic. Various roads for variation are open here.
A first is to change the adaptive strategy.8 A second is to vary the set of ab-
normalities. Instead of taking negated generalizations such as ¬∀x(Px ∨ Qx)
as members of Ωi, one could take, for example, conjunctions of instances and
counterinstances of a generalization, such as ∃x(Px ∨Qx) ∧ ∃x¬(Px ∨Qx). As
shown in [6], this gives rise to a slightly different logic. A third, unexplored, road
for variation is to change the lower limit logic from CL to some non-classical
logic. More complex variations still can be obtained by coupling these roads, or
even by moving to a combined adaptive logic for inductive generalization – see
[6] for some examples.

The inference pattern of factual abduction too can be modeled in a variety
of ways. The technical issues discussed in in Examples 1 and 2 can be avoided
by means other than the restriction of applications of (BMP) to starred gener-
alizations.9 More generally, a richer framework with more expressive power is
required for suitably representing factual abduction. Inferred explanations do
not generally have the same epistemic status as observations in our premise set,
and generalizations used as premises in an application of factual abduction of-
ten have a law-like status which separates them from mere regularities in the
explanatory framework. These distinctions are too subtle to make in the first-
order language used in this paper. One of the main open research questions for
the present investigation is how we can enrich this formal language with addi-
tional expressive resources while preserving the fruitful sequential application of
inductive generalization and factual abduction.
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8Two strategies are currently defined within the standard format for adaptive logics:
reliability and minimal abnormality. Using the minimal abnormality strategy for se-
quential combinations of adaptive logics has the disadvantage that semantic adequacy
results as in (11) are not guaranteed – see [24, Sec. 3.3.3] for the details.

9As mentioned in Section 1, FAr is closely related to the system AALr defined in
[7]. In the latter logic, the technical issues discussed in Examples 1 and 2 are likewise
avoided by admitting only a restricted set of generalizations as candidate premises
for abductive inference: FAr admits only ‘starred’ generalizations, while AALr ad-
mits only universally quantified conditionals the antecedent [consequent] of which has
a restricted conjunctive [disjunctive] normal form. In FAr conclusions of abductive
inferences are members of Lα for some α ∈ C. In AALr conclusions of abductive infer-
ences are formulas of the form π(α) B π′(α) where π(α), π′(α) ∈ Lα for some α ∈ C.
π(α) B π′(α) denotes that π(α) is a ‘potential explanation’ for π′(α).
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