
Privacy Broker: Message-Oriented Middleware to
implement Privacy Controls in Schibsted’s
Ecosystem of Services (Industry Article)

Narasimha Raghavan Veeraragavan
Privacy Engineering

Schibsted Products and Technology
Oslo, Norway

narasimha.raghavan@schibsted.com

Karen Lees
Privacy Engineering

Schibsted Products and Technology
Oslo, Norway

karen.lees@schibsted.com

Abstract—Schibsted is a global media and classified ads con-
glomerate with more than 200 million unique users per month,
operating mainly from Europe. The company is currently being
transformed away from traditional paper media and siloed sites
towards a unified global media giant. As part of this transfor-
mation, Schibsted needs to collect a wide variety of datasets
such as profile, behavior, location, payment and communication
messages about the user in order to provide personalized content
and target advertisements to the end users.

With the new EU General Data Protection Regulations
(GDPR) taking effect from May 25 2018, each user using our
products has a right to decide how his/her datasets should be
governed or used in our products. To this end, we are building
some privacy controls for the end users. These privacy controls
are realized by a message-oriented middleware.

In this paper, we present a case study of design of a centralized
topic based pub/sub style of middleware towards implementing
the privacy controls in Schibsted’s ecosystem of services.

I. INTRODUCTION

Schibsted is a global media and classifed ads conglomerate
in 30 countries with more than 200 million users/month, 20
billion page views/month and collecting more than 700 million
events per day.

Schibsted’s ecosystem consists of several hundreds of in-
dependent services that have been evolving organically rather
than a centralized top-down design. Due to the organic nature,
these services work together as many layers of dependencies
rather than strict tiers (hierarchical) as used in traditional large
scale system design.

Every service has an owner (a team) responsible for creat-
ing, operating, maintaining and deprecating the service. Every
service owner is responsible for knowing their clients and
also their dependencies on other services. Additionally, service
owners justify the existence of their services through its usage
and business value.

An emergent property of Schibsted’s ecosystem is neat
service layering, where in the services are organized in logical
layers of functionality depending upon the scenarios. Figure 1
shows two examples of service layering pattern in Schibsted
ecosystem: a) Payment b) Targeted Advertising.

Client facing services for 
payment platform

Core Payment Services

Payment Provider Adapter 
Services

Financial Reporting
Services

Event Processing Services

User Modeling 
Services 

User Profile Services

Segment Calculation and 
Serving Services

Clients
Clients Clients

(Schibsted Sites and Apps)

3rd Party
AD 

ServerPayment 
Service 

Providers

End users

Payment Service Layer Targeted Advertising Service Layer

Fig. 1. Payment and Targeted Advertisement Service Layerings of Schibsted
Ecosystem

Payment service layering is responsible for payment trans-
actions of end users. The entry point to the payment ser-
vice layer contains a set of services that handles all the
incoming traffic to payment platform, performs authorization
and authentication of end users, and delegates invocations to
downstream services. The core payment service layer has a
bunch of services that handles all payment related opera-
tions such as authorize, cancel, capture, reverse, get, search
etc. Furthermore, after executing all the necessary steps in
the core layer, the call is passed to the next layer of pre-
processing payment adapter services where in the appropriate
pre-processing payment adapter is used to have request/reply
type of communication to the corresponding payment service
provider. All these communications are passed to the financial
reporting layer of services for financial reporting and tracking
reasons.

Targeted advertising service layering is responsible for pro-
viding targeted advertisements to the end user based on their
interests and demographics. When the users visit Schibsted’s
sites, the behavorial and location events are generated and



sent to the event processing service layer which process these
events and pass the behavorial events to the user model-
ing layer which predicts the characteristics of users. These
characteristics along with the location events from the event
processing layers are used to generate the profiles for the
anonymous users and complete the profile for identified users
with the help of profile service layer. The input from the profile
service layer is used to calculate the appropriate ad segment
for the user and the calculated segment is served to the 3rd
party ad provider.

For each privacy control to be implemented in the ecosystem
of services, it is important to map the corresponding service
layering that gets affected. Additionally, within the service
layering, the appropriate layers and the services within that
layers should also be mapped in order to send the privacy
signals to these services.

For example, the opt-out or opt-in control for targeted
advertising shall affect only the targeted advertising service
layer and has nothing to do with the other servicing lay-
ers within the ecosystem. Furthermore, within the targeted
advertising layer, the first three layers of services (event
processing, user modeling and user profiling) are also a part
of personalized content serving layer (another servicing layer
within the ecosystem) where in the personalized content is
served to the end users.

The goal of targeted advertising privacy control is to af-
fect only the targeted advertising scenario and not the other
scenarios. Accordingly, whenever a user chooses to opt-out
of targeted advertising based on a particular category, the
changes include the following: Services in the User Profile
Service layer update their ACL permission model, which in
turn does not allow the services in the Segment Calculation
and Servicing layers to access the attributes associated with
the opted out categories. Additionally, all the existing segments
calculated and stored based on the opted out categories of the
user in the segment calculation and service layers should be
deleted.

A key observation from the above scenario is that there are
several services that get affected based on a single privacy
event (opt out of targeted advertising based on a category).
A similar pattern is observed for other privacy controls. This
in turn motivates us to build a centralized platform (similar
to the well known communication style of publish/subscribe
systems) to map the privacy events to the potential services
and track these events to make sure that the users’ choice are
reflected in the system.

The rest of the paper is organized as follows: Section II
describe the types and constraints of privacy controls. Section
III briefly explains the architecture of privacy broker, a central-
ized publish/subscribe style middleware towards enabling the
privacy controls. Then, we discuss how the constraints men-
tioned in Section II are satisfied in Section III. Furthermore,
we present the related work section. Finally, we conclude this
paper with the future work.

Additionally, the following topics are considered outside
the scope of this paper: a) verifying whether the backend

honors the users’ choices in a correct manner and b) security
discussions. We believe these topics are complex and worth
separate discussions on different papers in the future.

II. TYPES AND CONSTRAINTS FOR PRIVACY CONTROLS

We broadly classify the common privacy controls offered
to the end users into two types: stateful and stateless.

Stateful controls represent the opt-out and opt-in type of
controls where the users’ choices need to be persisted and
continuously respected by the corresponding services until the
users’ change their choices. For example, if the user chose
to opt-out of targeted advertising based on his demographics
and interests, then this choice must be persisted. Furthermore,
the demographic and interests data feeding services reflect
this choice by continuously denying the access of opted out
users’ datasets to the target advertising services which in turn
will stop the targeted advertising services to generate any new
targeted advertisements for the opted out user.

Stateless controls represent the data deletion request types
of controls where the users’ requests are temporarily stored
until the relevant services honor the users’ requests. The
services honor the request exactly once unlike in the case of
stateful controls. For example, if the user issues data deletion
request for all his personal data, then the relevant services that
control the personal data need to execute their corresponding
data deletion logic. After the successful completion of the
execution, these services do not need to execute the deletion
logic again until a new request comes in.

In order to stick to the privacy by design principles and the
guidelines offered by the Schibsted’s privacy office, the design
and implementation of the stateful controls should satisfy the
following constraints:

A. Constraints for Stateful controls

1) Stateful controls have two states: opt−in and opt−out.
The user can choose between one of these two states.

2) The front-end tool that offers the stateful controls to the
end users should always display the latest states of the
controls persisted in the system.

3) After the relevant services start honoring the latest state
of the privacy controls, then the services should continue
honoring the last known latest states until the services
are aware of next latest states.

4) If the states are not persisted due to failures, then the
user should be asked to retry the operation later. These
should be kept minimum as it is a bad user experience.

5) If there are multiple states generated via the same
stateful control within short time span from the same
user, then only the latest persisted state needs to be
eventually honored.

III. ARCHITECTURE OF PRIVACY BROKER

In this section, we describe the technical architecture of
the privacy broker that facilitates the interaction between
the different services towards honoring the users’ privacy
choices. The communication paradigm of the architecture is



Front-end Tool 1 

Front-end Tool 2

Front-end Tool n

Privacy Event 
Publishers

Pr
iv

ac
y 

B
ro

ke
r A

PI

Privacy Broker Console

Privacy Compliance 
Monitor

Broker
DB

Privacy Event 
Subscribers

Backend service 1

Backend service 2

Backend service 3

Backend service n

Async

Sync

User 
Notification 

Module

Profile
DB

1

3c
4

4c

4d

Pr
iv

ac
y 

B
ro

ke
r E

ng
in

e1

1

1

2

2

2 2
3a3 3

3b

3c

3c

4b

4a

5

5 5

6

6a

6a

Simple Queue Service

Simple Notification Service

7

8

Fig. 2. Privacy Broker Architecture

loosely based on popular topic based pub/sub model, where
in each topic represents a privacy control. At one end of the
architecture, the publishers are the front-end tools that generate
the privacy signals (such as opt-out of targeted advertising) and
at the other end are the subscribers, which are essentially the
backend Schibsted services. In addition to routing the signals
to the appropriate subscribers, it is important to track the status
of the subscribers with respect to honoring the users’ choices.

The high-level architecture consists of publishers, sub-
scribers and five core components: a) Privacy Broker API,
b) Privacy Broker Engine, c) Privacy Broker Console, d)
Compliance Monitor and e) User Notification Module that
are essential for enabling privacy controls in Schibsted’s
ecosystem of services.

A. Publishers and Subscribers

Publishers are the various end user facing front-end tools
that are available at Schibsted digital products (sites and apps)
in several countries across the world. These front-end tools
provide customized privacy controls based on the geographical
region and the nature of the digital products.

For example, the privacy controls offered to the newspaper
sites are different in compared to the dating sites due to the
inherent nature of content of these two sites.

Furthermore, even though the GDPR will imply more
similar privacy rules across Europe there will still be room
for some interpretations by national regulators that we have to
take into account. For example, the general GDPR rule is that
we can not process data about individuals younger than age 16
without parental consent. However, the regulation leaves room
for the countries implementing the GDPR in their national
laws to set the bar as low as 13 instead.

In addition to the age factor, other differences include the
following areas,

• Deletion: When is data sufficiently deleted?
• Security Measures: What measures need to be in place

in order for security to be at sufficient level?
• Opt-out/opt-in: When do we need opt-in or opt-out as a

default option?

Moreover, our sites outside Europe have different regula-
tions. Due to these reasons, we require customized privacy
controls per geographical region.

Publishers generate the privacy events whenever users’ use
the privacy controls. Each privacy event corresponds to a topic
in a well known pub/sub model. Publishers introduce new
topics (after discussing with the Privacy Office) to the privacy
broker console.

Subscribers are the various proprietary backend services of
Schibsted that are part of one or more service layerings as
described in the Section I. A subscriber can be a service or
a group of services. Subscribers subscribe to the available
topics via the privacy broker console. After subscribers receive
the appropriate events from the broker, subscribers make
appropriate changes to their services towards honoring the
users’ choices and notify the completion of changes back to
the broker (flow #5 in Figure 2).

B. Privacy Broker Console

The main design goal of the broker console is to be a self-
service portal for the publishers and subscribers to configure
the privacy broker towards enabling the privacy controls in the
Schibsted ecosystem of services.

The self-service portal is accessible only to the developers
within Schibsted. The common functionalities of the broker
console include:

• Register new publishers and subscribers
• Register new privacy controls for a publisher
• Update the broker configurations for publishers and sub-

scribers
• Delete publishers and subscribers
Any communications related to the configurations of pub-

lishers and subscribers to the privacy broker happen via the
broker console as shown in data flow #1 and flow #2 in
Figure 2 respectively. Additionally, all the configuration details
given by the publishers and subscribers are validated in the
broker engine and then persisted in the broker database. If
there are any incorrect configuration details detected by the
broker engine, then appropriate error messages are shown to
the corresponding publishers or subscribers.

The configuration parameters for publishers and subscribers
are stored in the broker database as described in the Table I
via the Broker API. Sample configurations of the publishers
and the subscribers stored in the broker database are shown
in Table II and Table III.

C. Privacy Broker API

The main design goal for the privacy broker API is to
provide endpoints for publishers, subscribers and console to
interact with the core broker engine.

The direct communications of the publisher and subscribers
to the privacy broker API endpoints are guarded with the help
of SDKs. SDKs ensure the communication from the broker
clients (publishers, subscribers) are happening in a consistent
(all clients using same protocols and messaging format), secure



TABLE I
IMPORTANT CONFIGURATION PARAMETERS FOR PUBLISHERS AND

SUBSCRIBERS

Parameters Definition
Publisher ID ID that uniquely identifies the

front-end tool that provides privacy
controls within Schibsted ecosys-
tem.

Topic Type Privacy control that will be used by
the end users within that publisher
ID.

Async User Notificaiton Type Mode of notifications to the end
users about the status of their pri-
vacy requests triggered via the pri-
vacy controls. Refer Table VIII for
different types of notifications.

Failure Retry Count Number of retries that need to be
performed in case the privacy bro-
ker is not reachable from the pub-
lisher.

Retry Delay Gap Time difference between two suc-
cessive failure retries.

Subscriber ID ID that uniquely identifies a service
or a group of services that needs
to make changes to their internal
behaviors and states towards hon-
oring the users’ choices.

Time to Honor Total time taken for the backend
services to acknowledge, make ap-
propriate changes to their services,
and send completion signal to the
broker. The maximum value for
time to honor for a service corre-
sponding to a topic type is con-
trolled by the legal team of Schib-
sted.

Contact Emails for alert messages in pres-
ence of failures such as broker en-
gine not able to reach the backend
or the broker engine not receiving
the completion signal within men-
tioned Time to Honor.

Subscription Type Mode of communication to the
backend service. Four options are
supported towards addressing wide
variety of services owned by dif-
ferent teams: a) Synchronous call,
b) Asynchrnous call, c) Amazon
Simple Queue Service [1] and d)
Amazon Simple Notification Ser-
vice [1].

URI Endpoints offered by the backend
services to the broker to send the
privacy events.

(all clients are authenticated and authorized) and reliable ways
(number of retries in case of not able to reach the broker).

• Publisher SDKs are responsible for sending synchronous
privacy requests when users using stateful privacy con-
trols and asynchronous privacy requests when users using
stateless privacy controls from the publishers.

• Subscriber SDKs are responsible for sending synchronous
status notification that indicates the current status of
progress towards honoring the users’ choices.

Both the SDKs use gRPC protocol [2] to communicate with
the broker endpoints and use protocol buffer [3] as the
messaging format.

D. Privacy Broker Engine

The key purposes of the privacy broker engine are the
following:

• Process the incoming requests from broker clients and up-
date the broker configuration and user profile databases.

• Match the incoming privacy events from publishers to
appropriate subscribers.

• Disseminate the events from publishers to subscribers.
1) Processing Logic for the Requests Coming via Con-

sole: Developers from Publishers (front-end) and Subscribers
(backend services) teams provide configuration parameters via
console UI to the broker (flow #1 and flow #2 in Figure 2),
the parameters of configuration are validated with the help of
corresponding configuration schemas and with routine input
validation. After validation, the broker configuration database
is updated. Sample publisher and subscriber configurations in
broker database are shown in Table II and Table III.

2) Processing Logic for the Privacy Events Coming via
Publisher: The privacy events that are coming via the pub-
lisher are classified into stateful and stateless privacy events as
described in Section II. For both stateful and stateless privacy
events, the broker engine creates privacy requests in the broker
database (flows #3 and #3a in Figure 2) in order to notify the
corresponding subscribers and also track the progress of the
subscribers towards honoring the users’ choices.

Table IV shows sample privacy requests table in the broker
database. There are various status options used with the
privacy request to track the request in Table IV. These statuses
are explained in Table V.

Furthermore, for stateless privacy events, the corresponding
publishers are notified that their privacy event will be eventu-
ally honored as soon as the requests are written in the broker
database (flow #3c in Figure 2). This in turn will be helpful
for the publisher to display appropriate information to the end
users. If it is a stateful privacy event, the broker engine updates
the state of the privacy event to the corresponding user’s profile
in profile database (flow #3b in Figure 2) and then notifies the
corresponding publisher (flow #3c in Figure 2).

The primary reason for writing to the profile database is
two fold: a) Profile database serves as a source of truth for
users’ profile attributes and settings for all back-end services.
Hence, it is relatively easy to implement filtering mechanisms
on top of profile attributes based on opt-out preferences when
these preferences are stored along with the profile. And, b) we
prefer to avoid multi-master complications and keep only one
master/source of truth for all opt-out preferences to make it
simple.

For example, if the stateful privacy event is opt-out of
targeted advertising based on age and gender, then correspond-
ing privacy request is created in the broker database towards
notifying the subscribers and then broker engine updates the
corresponding user profile in profile database with his/her opt-
out preferences.

3) Matching the privacy events with subscribers: For each
request available in the Table IV, the target subscribers can



TABLE II
SAMPLE PUBLISHER CONFIGURATION IN THE BROKER DATABASE

Publisher ID Topic Type Async Notification Type Retry Count Retry delay gap
1234 Payment Data Deletion {User Email, User Mobile SMS} 3 2 seconds
1234 Behavioral Data Deletion {User Email, User Mobile SMS} 3 3 seconds
1234 Opt-out of Targeted Advertising (based on age & gender) {In-client with endpoint address} 3 2 seconds

TABLE III
SAMPLE SUBSCRIBER CONFIGURATION IN THE BROKER DATABASE.

Subscriber ID Topic Type Subscription Type URI Time to Honor Failure Retry count Retry delay gap Contact
12344 Payment Data Deletion {Async API call} https://payment.domainname/UUserID/Delete 1 day 5 2 seconds abc@schibsted.com
12346 Behavioral Data Deletion {Amazon SQS} https://sqs.eu-west.amazonaws.com/queueID 1 day 4 3 seconds def@schibsted.com
12348 Opt-out of Targeted Advertising (age, gender) {Amazon SNS} https://sns.eu-west.amazonaws.com/snsID 1 day 3 5 seconds jkl@schibsted.com

TABLE IV
SAMPLE PRIVACY EVENT REQUESTS IN THE BROKER DATABASE

Request ID Publisher ID Unique User ID Request Topic Type Request Status
123453 1234 A8910 Opt-out of Targeted Advertising (age) INIT
123442 1234 A1235 Account Data Deletion SOMEFAILED
123461 1234 B1235 Payment Data Deletion COMPLETED
123430 1234 A4567 Opt-out of Targeted Advertising (gender) INPROGRESS

TABLE V
STATUS FIELD OPTIONS IN THE PRIVACY EVENT REQUESTS TABLE IN

BROKER DATABASE

Request Status Options Definition
INIT Progress details are writ-

ten to the broker database,
privacy event not yet sent
to the subscriber

INPROGRESS The request is in progress
by the broker engine or by
the subscribers

COMPLETED User’s choice is honored
by all the necessary ser-
vices

SOMEFAILED At least one of the nec-
essary has failed to either
honor or send the comple-
tion notification

TABLE VI
SAMPLE SUBSCRIPTION NOTIFICATION PROGRESS TABLE IN THE

BROKER DATABASE

Request ID Subscriber ID Time to Honor Progress Status
123453 12348 1 day INIT
123442 12344, 12346 1 day FAILED
123461 B1235 1 day SENT
123430 12348 1 day COMPLETED

be found by a simple lookup on the request topic type on the
subscribers configuration Table III.

With the target list of subscribers, broker engine creates
a subscription notification progress table as shown in the
Table VI with the default status to INIT. The various status
options in the subscribers notification progress table and the
corresponding definitions are mentioned in the Table VII

4) Disseminating the privacy events to the appropriate
subscribers: Using the pairing between Request ID and Sub-
scriber ID in Table VI and the URI, Failure Retry Count and
Retry Delay information available in Table III, Broker engine
sends the appropriate request to all subscribers available in

TABLE VII
STATUS FIELD OPTIONS IN THE SUBSCRIPTION NOTIFICATION PROGRESS

TABLE IN BROKER DATABASE

Status Options Definition
INIT Progress details are writ-

ten to the DB, Privacy
Event not yet sent to the
subscriber

SENT The request has been sent
to the subscriber

ACKNOWLEDGED Subscriber has Acknowl-
edged about the receipt of
the request but not yet
honored the request

COMPLETED Subscriber has honored
the user’s choice and
completion notification
received

SENDFAILED Failure in sending the re-
quest to the subscriber.
Refers to the last attempt
to resend the request

FAILED Alert has been sent to
the team. Used Maximum
number of retries

the Table VI (flows #4, #4a, #4b, #4c and #4d in Figure 2)
and updates the statuses for each subscriber to either SENT
or SENDFAILED in Table VI and INPROGRESS or SOME-
FAILED in Table IV. Furthermore, when the subscribers send
the acknowledgement and completion signals (flow #5 in
Figure 2) back to the broker, then the engine updates the
status to ACKNOWLEDGED and COMPLETED respectively.
Moreover, if the broker database has COMPLETED status
from all the subscribers, then the broker engine updates the sta-
tus field of Privacy Event Requests Table IV to COMPLETED.

E. Compliance Monitor

Compliance Monitor monitors the status column in Table VI
and with the help of Table III, it scans for the requests that
have not been completed within the expected completed time.
It sends retries and updates the expected completion time
after each retry. After the maximum number of retries, the
Compliance Monitor looks up the corresponding contact email
and mobile information from the Subscriber Configuration
Table III and sends alert messages to them (flow #6a in
Figure 2) and updates the status to FAILED in Table VI.



TABLE VIII
ASYNC NOTIFICATION TYPES AND DEFINITIONS

Notification Types Definition
Email Email address of the user

who triggered the privacy
event

SMS Mobile Phone number of
the user who triggered the
privacy event

In-client Push to the vendor spe-
cific mobile notification
services for mobile de-
vices and display in the
privacy notification sec-
tion of the front-end tool

F. User Notification Module

User Notification Module monitors the status column in Ta-
ble IV. For each privacy request that has status COMPLETED,
the User Notification Service finds the corresponding publisher
ID and its preferred notification type (refer Table VIII) and cor-
responding notification details for that request using Table II
(flow # 7).

If the Preferred Notification Type is Email and/or SMS, the
corresponding contact attributes are fetched from the profile
database using the Unique User ID (flow #8). This contact
information in turn will help the Notification Module to deliver
the messages to appropriate end users. If the Notification Type
is In-client, then the corresponding endpoints are fetched from
the Table II.

IV. DISCUSSION ON SATISFYING THE PRIVACY CONTROL
CONSTRAINTS

A. Discussion on Stateful Privacy Constraints

1) Constraint 1: It is straight forward for front-end tool
to provide these settings to the end users. The front-end tool
should make sure that there are no intermediate states such as
unknown.

2) Constraint 2: After the request gets persisted in the
profile database and broker database, whenever the user logs in
to the front-end tool and see the privacy settings/notification
pages, then the front-end can lookup for the status field in
the Table IV in the broker database to know the status of the
privacy request and can display the UX message accordingly.
If there are any failures happened before flow #3c in Figure 2,
then the users are asked to retry the operation.

3) Constraint 3: The profile database always has latest
state from the Privacy Broker. The broker engine sends only
notifications to the appropriate backends indicating that there
has been a change of state to the subscribed topic type and
the relevant backend services are required to fetch the latest
state from the profile database and act according to only the
latest state.

4) Constraint 4: This is straightforward in our design. If
there are any failures happened before flow #3c in Figure 2,
then the users are asked to retry the operation. Any failures
happened after flow #3c will be resolved without the knowl-
edge of the user.

5) Constraint 5: If there are multiple states persisted within
short time span for the same stateful control, the broker sends
notification for all the persisted states to the corresponding
services, the services will continue fetching the latest state
until it stops receiving the notification from the broker. Thus,
the latest state will be eventually honored.

V. RELATED WORK

Variants of Publish/Subscribe systems [4] have been studied
and used in many applications for several decades. The closest
variant to our proposed design is centralized topic based
publish/subscribe systems. In the past decades, there have
been several topic based publish subscribe systems proposed
in academia and industry. Examples for academic focused
topic based publish/subscribe systems include Scribe [5],
Bayeux [6], SpiderCast [7] and PolderCast [8]. Examples for
industry focused topic based publish/subscribe systems include
JMS [9], Google Pub/Sub [10], Spotify Pub/Sub [11], and
Apache Kafka [12].

However supporting the privacy controls in the services
ecosystem like Schibsted require specific set of requirements
and constraints to be met. There is a need to distinguish
between the stateful and stateless privacy events since stateful
privacy events correspond to the settings of users which in
turn needs to be continuously honored by the backend services
until the next change of settings have occurred. In case of
stateless events, after the relevant services honor the user’s
request exactly once, the request can be removed or archived
for legal reasons.

Furthermore, real-time performance is not very critical
(since from a legal perspective we have given some time to
honor the privacy requests) in compared to the reliability (able
to deliver the messages at least once to the broker from front-
end and back-end services and broker to the back-end services)
and consistency (always the message displayed in the front-
end tool is consistent with the back-end happenings).

Moreover, the communication mode required by the back-
end services are different and each service has different
configuration parameters that need to be supported by the
centralized publish/subscribe system.

Additionally, we need to keep track of all services involved
per privacy event in order to ensure the completeness of the
privacy operations associated with that event.

To the best of our knowledge, this work is the first in
using the centralized publish/subscribe design pattern towards
enabling the privacy controls as expected by the GDPR
regulations in the ecosystem of services. In other words, we
present another use case for publish/subscribe system in the
context of privacy engineering.

VI. CONCLUSION

In this paper, we present our customized design of simple
pub/sub style middleware that we are implementing towards
enabling the privacy controls required for GDPR regulations.
At the time of writing this paper, the design is implemented



and matured for integration testing and soon to be in produc-
tion.

It is possible that the integration testing may help us in
finding new practical challenges with the proposed design,
which may require us to adapt the design according to the
new findings. For example, if the majority of the teams are
not comfortable using SDKs due to legacy reasons or other
reasons, then we may provide secure REST APIs instead of
SDKs.

In the future, we also would like to experiment out with
the various open source policy based languages such as eX-
tensible Access Control Markup Language XACML [13] and
PrimeLife Policy Language [14] to figure out to what extent
they are usable, scalable, and adoptable in large scale service
oriented architectures such as in Schibsted’s ecosystem.

Last but not least, we have written this paper in the hopes
that our work will be helpful to the academic community in
giving the context of practical challenges in implementing the
privacy controls in the large scale system.

ACKNOWLEDGMENT

We thank the following people for their inputs and support
for this paper: Ingvild Naess (Group Privacy Officer, Schibsted
ASA) and Sverre Sundsdal (Director of Engineering, Schibsted
Products and Technology). Additionally, we are grateful to all
the engineers, product managers and legal members of the
privacy team who are working towards the success of the
Privacy Broker project within Schibsted. Finally, we thank the
reviewers for their feedbacks on the submitted version of the
paper.

REFERENCES

[1] J. Varia and S. Mathew, “Overview of amazon web services,” Amazon
Web Services, 2014.

[2] Google, gRPC, http://www.grpc.io/.
[3] Protocol Buffers, https://developers.google.com/protocol-buffers/.
[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications, vol. 20, no. 8, pp.
1489–1499, 2002.

[6] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination,” in Proceedings of the 11th international
workshop on Network and operating systems support for digital audio
and video. ACM, 2001, pp. 11–20.

[7] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Spidercast: a
scalable interest-aware overlay for topic-based pub/sub communication,”
in Proceedings of the 2007 inaugural international conference on
Distributed event-based systems. ACM, 2007, pp. 14–25.

[8] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris, “Poldercast: fast,
robust, and scalable architecture for p2p topic-based pub/sub,” in Pro-
ceedings of the 13th International Middleware Conference. Springer-
Verlag New York, Inc., 2012, pp. 271–291.

[9] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java
message service,” Sun Microsystems Inc., Santa Clara, CA, p. 9, 2002.

[10] J. Reumann, “Goops: Pub/sub at google,” Lecture & Personal Commu-
nications at EuroSys & CANOE Summer School, 2009.

[11] V. Setty, G. Kreitz, R. Vitenberg, M. Van Steen, G. Urdaneta, and
S. Gimåker, “The hidden pub/sub of spotify:(industry article),” in
Proceedings of the 7th ACM international conference on Distributed
event-based systems. ACM, 2013, pp. 231–240.

[12] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

[13] S. Godik and T. Moses, “Oasis extensible access control markup lan-
guage (xacml),” OASIS Committee Secification cs-xacml-specification-
1.0, 2002.

[14] S. Trabelsi, J. Sendor, and S. Reinicke, “Ppl: Primelife privacy policy
engine,” in 2011 IEEE International Symposium on Policies for Dis-
tributed Systems and Networks (POLICY), 2011, pp. 184–185.


