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1 Introduction
The development of (semi)-autonomous vehicles requires extensive communication
between vehicles and the infrastructure called V2X communication. This should
allow to increase road safety, which is a major objective of Cooperative Intelligent
Transport Systems (C-ITS), and can be achieved by analyzing traffic scenes
in real-time and detecting events that could lead to accidents, e.g., red light
violations [2]. Roadside C-ITS stations will support V2X communication with
cars and the infrastructure such as traffic lights, but also could be extended
for more complex tasks as traffic scene analysis. We illustrate the necessity of
analyzing traffic scenes by two real-world scenarios, which are known problems
in the field of C-ITS regarding safety and optimization [2].

The first scenario, called road intersection safety, was identified in [2], where
the authors consider “road intersection monitoring” as an important application
to improve road safety. For this scenario, we assume a complex intersection
with a sensor-based roadside C-ITS stations, where traffic accidents happen
frequently. The second scenario, called changing traffic situations, concerns the
deployment and maintenance of these stations. Currently, a roadside station is
configured once at deployment, hence it cannot react dynamically on a changing
environment such as road construction or traffic jams due to a misconfiguration of
signal phases. Smart roadside stations could become autonomous by dynamically
adapting to the changing environment and traffic situations. For instance, they
could recognize unoptimized signal phases and adjust the phases according to the
new situation. Enabling the analysis of traffic scenes as in the above scenarios,
includes more general characteristics such as dealing with the complex C-ITS
domain, as well as handling large quantities of message-based and spatio-temporal
data. This characteristics are not only relevant fo the C-ITS domain, but also
exits in other fields such as robotics or geospatial analysis. Primarily, we have
identified two different abstract levels of understanding for the analysis, each of
them poses its own challenges as:
1. How do we efficiently analyze C-ITS streams for detecting short-term problems

as (complex) events, e.g., accident detection;
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2. How do we diagnose complex problems, e.g., traffic-jams, which need a
long-term observation span.

Each level can be seen independently and poses the additional challenge of
intervening event detection and diagnosis in an efficient way. Another challenge
arises from the nature of roadside C-ITS stations, which are (a) designed with
limited memory and processing resources; (b) deployed in a distributed manner
as a mesh network with a particular (spatial) topology. For enabling traffic scenes
analysis, we aim to investigate tractable (lightweight) Knowledge Representation
& Reasoning (KRR) methods for event detection and model-based diagnosis.
The methods, namely rule- and ontology-based reasoning, have to be extended
to streaming and spatial data taking a C-ITS domain model into account.

Section 2 describes state-of-the-art. Section 3 outlines the problem description,
which is addressed by the research question and goals of Section 4 using the
methods described in Section 5. Section 6 concludes with results and future work.

2 State-of-the-Art

V2X Communication and Integration. The base communication technolo-
gies (i.e., the IEEE 802.11p standard) allow wireless access in vehicular environ-
ments, which enables messaging between vehicles themselves and the infrastruc-
ture, called V2X communication. Traffic participants and roadside C-ITS stations
broadcast every 100ms messages for informing others about their current state
such as position, speed, and traffic light signal phases [2]. The main types of V2X
messages are Cooperative Awareness Messages that provide high frequency status
updates of a vehicle’s position, speed, vehicle type, etc.; Map Data Messages that
describe the detailed topology of an intersection, including its lanes and their
connections; Signal Phase and Timing Messages that give the projected signal
phases (e.g., green) for a lane; and Decentralized Environmental Notification
Messages that inform if specific events like road works occur in a designated area.

Fig. 1. The four layers of a LDM [2]

The Local Dynamic Map (LDM)
is a comprehensive integration
effort of V2X messages; the
SAFESPOT project [2] introduced
the concept of an LDM as an
integration platform to combine
static geographic information sys-
tem (GIS) maps with data from
dynamic environmental objects
(e.g., vehicles, pedestrians). This
was motivated by advanced safety
applications (e.g. detect red light
violation) that need an “overall”
picture of the traffic environment.
The LDM has the following four layers (see Fig. 1): Permanent static (static
information from GIS maps); Transient static (detailed local information such as
intersection features); Transient dynamic (temporary regional information like
weather); Highly dynamic (dynamic information such as V2X messages). Current
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research, e.g., [20], on architectures of an LDM identified that it can be built on
top of a spatial RDBMS enhanced with streaming capabilities. As recognized by
[20], an LDM should be represented by a world model, world objects, and data
sinks that allow the integration of the streamed V2X messages.

Stream-Processing, Complex Event Detection, and Stream-Reasoning.
Stream reasoning studies how to introduce reasoning processes into scenarios
that involve streams of continuously produced information. In that, domain
models provide background knowledge for the reasoning and lift streams to
a “semantic” level. Particular aspects of stream reasoning are incremental and
repeated evaluation, either push-based, i.e. on data arrival, or pull-based at
given points in time, and using data snapshots (called windows) to reduce
the data volume. Windows can be obtained by selecting e.g. data based on
temporal conditions (time-based windows), or data counts (tuple-based windows).
Besides the seminal Continuous Query Language (CQL) [4], many formalisms
and languages for stream reasoning exist. Among them are (1) extensions of
the SPARQL web query language, e.g., Morph-streams [9], and CQELS [22];
(2) extensions of ontology languages to streams e.g. by Ren and Pan [25], and
STARQL [21]; (3) rule-based formalisms e.g., ETALIS [3], Reactive ASP [16],
Teymourian et al. [27], and LARS [6]; (4) usage of temporal operators such as
LTL in [5], and [8].

Diagnosis. In A.I., diagnosis is one of the classical application areas and evolved
around expert systems such as MYCIN. It can roughly be divided in the data-
driven [19], [28], case-based reasoning [1], and model-based diagnosis approaches.
Data-driven and case-based reasoning have the disadvantage of not guaranteeing
sound and completeness for the diagnoses, which is crucial for traffic management
because a predictable behavior is desired to ensure safety regulations, e.g., no
conflicts in the signal phases. Model-based diagnosis can be further subdivided
into the categories consistency-based diagnosis [26], [24] and abductive diagnosis
[11], [23]. Both categories include observations O of a real system, a (fault) model
of the real system S that simulates the predicted observation, and a list of system
components C, which can be healthy or faulty. In contrast to consistency-based
diagnosis, with abductive diagnosis the relation between causes and effects can
be directly encoded in S. Since we focus on abductive diagnosis, a diagnose D
is a subset of C, which is consistent with S and combined with S entails O. In
the work of Lecue et al. [18], stream reasoning with description logics (namely
EL) has been applied to diagnose “quasi” real-time traffic congestions in Dublin
using semantic matchmaking. In Khalastchi et al. [17], the authors developed new
methods of model-based diagnosis for car accidents in an autonomous vehicle
setting by reducing the problem into a SAT-based and a conflict-driven approach.

3 Problem Description
The motivating scenarios road intersection safety and changing traffic situations
provide the setting, where we have identified theoretical and related technical
problems. The problems are in the scope of lightweight systems with limited
processor and memory resources. Hence, we limit ourselves to tractable KRR
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methods and techniques. We already have defined in [12] an integration layer
with a DL-Lite [10] ontology representing the LDM and capturing its layers. We
divide the problems into the topics listed below.

Event Detection. Event detection is crucial to filter safety relevant events
like vehicle collisions, or traffic patterns like a traffic jam. It is closely tied to
stream processing, since the events are filtered from different C-ITS data streams,
where the integration layer allows us to map the streams to the ontology. Since,
there is no query and ontology language yet suited for querying the streams
that include spatial data, we face the following problems: Which data model and
query language is suited for our streams and what “features”this language should
include. For instance, what kind of window operators and aggregate functions
could be applied. In case of DL-Lite, our extension might affect its computational
properties as First-Order-Rewritability (FO-Rewritability). Further, how can we
deal with missing and inconsistent data inside a window. Simple events might be
detected by this new query language, but complex events (e.g., multiple-vehicle
collisions), which are a chain of simple events satisfying specific temporal and
spatial relations, are not captured. This might require more powerful methods
related to stream reasoning.

Diagnosis. With event detection, we cannot find the cause for a traffic jam,
merely the observations and aggregated facts are captured. Since we only consider
model-based diagnosis, we aim to find a minimal set of multiple diagnosis models,
where different combinations of faulty components might occur. Creating multiple
diagnoses models could be computationally expensive, hence we need a techniques
of iteratively calculating these models. Furthermore, we need to investigate how
the quality of a model can be determined by allowing preferences. Another
challenge arises from the complex domain model of C-ITS, which adds temporal,
spatial, and ontological aspects to the diagnosis. For instance, one diagnosis
model might be valid now, but already invalided at the next time point. For event
detection a query answering based approach might suffice, but for diagnosis a
rule-based language like ASP or Datalog might be better suited. However the
mentioned languages have to be adapted according to the desired features, e.g.,
streaming data, but keeping desired computational properties as tractability.

Interaction between Event Detection and Diagnosis. Since the calculation
of a diagnosis step is slower than updates in the C-ITS data streams, a two-level
approach has to be applied, where the input data is first fed into event detection
component for shallow reasoning to determine whether the changed data needs
deeper reasoning on the second level, i.e. the full diagnosis. However, an efficient
and simple interaction needs to been thoroughly investigated.

4 Research Questions and Goals

Research Questions. The overall research question is whether lightweight
KRR methods and techniques are suitable for C-ITS applications such as traffic
scene analysis. This question can be divided into the following sub-topics:
- Which tractable methods and techniques are suitable to extract (complex)

events from C-ITS data streams having an elaborate domain model?
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- Based on the detected events, how can model-based diagnosis be applied to
find long-term problems in roadside C-ITS stations?

- How is an efficient interaction between both components feasible?

Following from the research questions, the goals of this thesis are as follows:

1. Goal: Event Detection for C-ITS. Based on the integration layer with an
LDM ontology, we aim to work out an event detection component by extending
DL-Lite for query answering over C-ITS streams. For this, we aim (a) to define a
data model and query language suited for spatial data streams; (b) to extend
the semantics for query answering with DL-Lite including window operators and
aggregates over streams and spatial relations over spatial objects; (c) to provide
a technique for query rewriting taking the above into account. The above results
might not suffice for complex event detection, hence the language has to be
extended to capture temporal relations as in LTL.

2. Goal: Model-based Diagnosis for C-ITS. We aim to develop a model-
based diagnosis component that includes a clear definition and encoding of
observations O, a (fault) model S, and a list of system components C applied to
the C-ITS domain and in particular to roadside stations. The encoding has to
capture the temporal, spatial, and ontological aspects of C-ITS. Based on the
encoding, we aim to apply or extend standard rule-bases evaluation with an ASP
or Datalog solver. We might encounter technical limitations, e.g., tractability,
with standard techniques and might need an iterative approach for evaluation.

3. Goal: Component Integration. Since the event detection part must com-
municate changes in the requirements to the diagnosis component, a suitable
interface and sharing of the domain is required. We aim to define the bidirectional
interface between the event detection and diagnosis component, and design meth-
ods and techniques to realize the 2-level approach for shallow and deep reasoning,
such that unnecessary diagnosis computations are avoided while necessary ones
are correctly initiated.

5 Methodology
Since our overal goal regards lightweight KRR methods and techniques, our
focus is on tractable rule- and ontology-based reasoning. As already mentioned,
we start with DL-LiteA for the LDM ontology, which is the main language for
ontology-based data access [10] (OBDA). First, we describe our research plan
and its current progress, and give afterwards details on the steps:
1. We define a framework that includes all components such as the LDM ontology,

the integration layer the query answering, and the diagnosis component.
Further, we define the application scenarios and related benchmarks. This
step is already finished and the results published in [12];

2. We work out the component for query answering over streams to allow event
detection. This step is also finished and results are available in [14] and [15];

3. We develop the model-based diagnosis component and connect both compo-
nents. This step has started and some outline of the ideas is given below;

4. We evaluate and implement the developed methods and techniques. This
should lead to an initial prototype suited for C-ITS environments, where
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the actual evaluation for each scenario will be conducted using the traffic
simulation PTV Vissim.3

Query Answering over Streams. The query answering allows us a fast access
to the streamed data in the LDM.

Example 1. The following query illustrates the component as it detects red-light
violations on intersections by searching for vehicles y with speed above 30km/h
on lanes x whose signals will turn red in 4s:

q(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, r) ∧ pos[line, 4s](y, r)∧
Vehicle(y) ∧ speed[avg, 4s](y, v) ∧ (v > 30) ∧ isManaged(x, z)∧
SignalGroup(z) ∧ hasState[first,−4s](z, s) ∧ (s = Stop)

Query q exhibits the different dimensions that need to be combined: Vehicle(y)
and isManaged(x, z) are ontology atoms that have to be unfolded with respect to
the LDM ontology; intersects(u, v) and hasLocation(x, u) are spatial atoms, where
the first checks spatial intersection and the second the assignment of geometries
to objects; speed[avg, 4s](y, v) resp. pos[line, 4s](y, r) defines a window operator
that aggregates the average speed resp. positions (as points) of the vehicles over
the streams speed and pos; hasState[first,−4s](z,Stop) gives us the traffic lights
that switch in 4s to the state “Stop”.

For the evaluation of this query, we have to extend OBDA to handle spatial
and streaming data, which is not considered in the standard approaches as [10].
In detail, we aim at answering pull-based queries at a single time point Ti with
stream atoms that define aggregate functions on different windows sizes relative
to Ti. For this, we consider a semantics based on epistemic aggregate queries
(EAQ) over ontologies by dropping the order of time points inside a window
and handle the streamed data items as bags (multi-sets). Roughly, we perform
two steps, where we (1) calculate only “known” solutions, and (2) evaluate the
rewritten query, which contains the rewritten TBox axioms, over these solutions.
EAQs are evaluated over temporal filtered and merged sets of data items, called
windowed ABoxes. The filtering and merging, relative to the window size and
Ti, creates for each EAQ φ one windowed ABox A�φ

, which is the union of the
static ABox A and the filtered streaming data items in the associated windows.
The EAQ is then applied on A�φ

, which creates groups of aggregated normal
objects, constant values, and spatial objects.

We introduce a bag-based epistemic semantics for the queries, so that we locally
close our world for A�φ

and avoid “wrong” aggregations due to the open world
semantics of DL-LiteA. For normal objects and constant values, we allow different
aggregate functions such as min, max, sum on the data items of a stream.
For spatial objects, geometric aggregate functions such as point, line, poly are
applied, which create new geometries based on the aggregates.

Model-based Diagnosis. As already outlined, we will support model-based
diagnosis as our method of choice. First, we need to define our roadside station
and the related problems (e.g. the model of an accident) as a formal diagnosis
problems with O, S and C. Observations O are taken from the detected events

3 http://vision-traffic.ptvgroup.com/de/produkte/ptv-vissim/
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via the bidirectional interface; C is defined as the list of system components
that includes details on the actors involved in traffic scene such as traffic lights,
vehicles, and the topological definition of an intersections. Further S is the model
of a real system’s behavior, which includes a definition of correct signal plans
for traffic lights, driving behavior of cars, and traffic properties like accidents
and traffic flow. A diagnosis D is then a subset of C, which is consistent with S
and combined with S entails O. Then, we could compile the resulting diagnosis
problem into a standard encoding for an ASP or Datalog solver. The results of
Beck et al. [7] might be a good starting point for the encoding and compiling.

Combining Rules and Ontologies. Different approaches for combining rules
and ontologies could be used for the interfacing. We focus on loose coupling,
where the rule and ontology level are kept as separate, independent components,
and an interface mechanism (guaranteed decidability on both sides) connects
both components allowing the exchange of knowledge between them (e.g., [13]).

6 Conclusion
In this paper, we have presented a framework for allowing traffic scene analysis
in C-ITS systems based on tractable KRR methods and techniques such as rule-
and ontology-based reasoning. For the scene analysis, we have identified that we
need a fast event detection and a model-based diagnosis component that have a
common vocabulary based on an LDM ontology. Then, we have shown that event
detection is feasible by extending OBDA with query answering over streams of
spatial data. Further, the model-based diagnosis component was outlined, so we
will be able to identify faulty components of a C-ITS system.

The first two steps are almost finished, however results regarding correct-
ness and handling possible inconsistencies in query answering are desired. An
initial prototype needs further development including optimizations and complex
spatial aggregates. The third step is ongoing work that currently involves a
clear definition and encoding of the model-based diagnosis problem including
all involved components, which should allow us to encode and compute it with
a ASP/Datalog solver. At the same time, we need to specify the bidirectional
interface and work out the information flow between the components. Finally, we
aim at evaluating and testing the integrated components using a traffic simulation
under real conditions.
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