
Rule-based Reasoning in Semantic Text Analysis
1,2

Ivan Rygaev

Laboratory of Computational Linguistics, A. A. Kharkevich Institute for Information Transmission

Problems, Russian Academy of Sciences, Moscow, Russia

irygaev@gmail.com

Abstract. In this paper we demonstrate the rule engine of the SemETAP semantic text

analyzer being developed in the Laboratory of Computational Linguistics of the Institute for

Information Transmission Problems of the Russian Academy of Sciences. The rule engine is based on

SPARQL queries and implements the forward chaining algorithm for existential rules. In a case study

we show the system’s capabilities and limitations, identify topics for further research and provide

requirements for a reasoner that would satisfy our needs.

Keywords: Semantic text analysis · Semantic concept definitions · Inference · Existential

rules

1 Introduction

The semantic text analyzer SemETAP, under development in the Laboratory of Computational

Linguistics of the Institute for Information Transmission Problems of the Russian Academy of

Sciences, is aiming at performing deep semantic analysis of natural language texts. The analyzer

includes a powerful linguistic processor and various linguistic and extra-linguistic resources – a

combinatorial dictionary, an ontology, a fact base, a set of inference rules and an inference engine [3,

5-8].

One of the applications of SemETAP is a question-answering system able to answer questions

for which there is no direct answer in the original text. Consider a simple sentence:

(1) John sold an umbrella to Peter

We expect from the deep understanding system that, given this sentence as an input, it will be

able to answer at least the following questions:

(2) a. Who bought the umbrella? (Peter)

b. What did John give to Peter? (the umbrella)

c. Who owns the umbrella? (Peter)

d. What did John get? (money)

These are easy questions for a human although there is no direct answer in the original

sentence. We answer them easily because we all know what ‘sell’, ‘buy’, ‘give’, ‘own’ and ‘get’ mean.

This is part of our common knowledge.

1 This paper presents the results of a joint effort of the team of the Laboratory of Computational Linguistics of the Institute

for Information Transmission Problems of the Russian Academy of Sciences. The team includes I. Boguslavsky, L. Iomdin,

A. Lazursky, S. Timoshenko, T. Frolova, V. Dikonov, E. Inshakova, V. Sizov and others. I would like to thank my colleagues

for their wonderful collaboration.

2 This work was supported by the RSF grant 16-18-10422, which is gratefully acknowledged.

SemETAP is aiming at formalizing this knowledge using semantic concept definitions. The

semantic analyzer transforms the original text into a semantic graph consisting of semantic concepts

from the ontology and relations between them. Then semantic concept definition rules are applied to

extend the semantic graph with the implicit information. After that the semantic structure is ready to

answer deep questions.

The goal of this paper is threefold: 1) show the current capabilities of the SemETAP inference

engine; 2) identify topics for further research and 3) provide requirements for a reasoner that would

satisfy our needs. For the reader’s convenience we will take the simple example (1) as the input

sentence for the case study and will show how the rule application process will lead us to the answers

of the questions in (2)
3
.

The paper is structured as follows: Section 2 presents the basic semantic structure which

SemETAP generates from the input sentence; Section 3 discusses the syntax of inference rules;

Section 4 emphasizes the need for anonymous individuals in the rules; Section 5 provides

implementation details of the inference engine; Section 6 discusses the representation of temporal

relations, Section 7 shows the successive rule application process, Section 8 discusses issues related to

facticity and proposition (un)certainty status, Section 9 identifies the need for disjunction, negation

and universal quantification, Section 10 highlights the importance of anonymous individuals in the

query results, Section 11 discusses the optimization issues, Section 12 summarizes our requirements

for an ideal reasoner, and Section 13 concludes the paper.

2 Basic Semantic Structure

The semantic analyzer transforms the original text into a semantic structure consisting of a set

of binary predicates (or RDF triples). Such a semantic structure can be represented as a semantic graph.

A (simplified) graph and a set of triples corresponding to (1) are shown below
4
:

(3) hasGivenName (Human_1, "John")

hasAgent (Selling_1, Human_1)

hasAgent2 (Selling_1, Human_2)

hasObject (Selling_1, Umbrella_1)

hasGivenName (Human_2, "Peter")

before (Selling_1, SpeechTimeInterval)

3 Other examples of concept definitions can be found in [4].

4
 Many names of the semantic concepts used (Human, Selling, Buying etc) are taken from SUMO ontology [18].

There are two types of nodes in the graph – concept nodes and literal nodes. A concept node

represents an individual of a certain class (= semantic concept) from the ontology while a literal node

contains just a string or numeric value.

A class of an individual is encoded in its name to make the semantic structure more readable.

Human_1 is of class Human by default. The class can also be stated explicitly when necessary as

Human(Human_1) or isA(Human_1, Human).

In this example we have Selling_1 object of the class Selling which represents the sale

event. Human_1 of the class Human represents the seller which is indicated with hasAgent relation.

The buyer is marked with hasAgent2 relation and the product with hasObject. The last triple

indicates that the event happened before the speech time interval i.e. in the past.

3 Semantic Concept Definition Rule Syntax

Once the basic semantic structure is built, it is time to apply inference rules to extend it. Most

of the inference rules are concept definition rules, which decompose one concept into a connected set

of other concepts. In our example we can apply the definition of Selling, which is shown below:

(4) Rule Selling:

 Selling(?selling)

Interdefinition:

 hasAgent(?selling, ?seller) & Agent(?seller) &

 hasAgent2(?selling, ?buyer) & Agent(?buyer) &

 hasObject(?selling, ?thing) &

 hasPrice(?selling, ?money) & CurrencyMeasure(?money) &

 sameTime(?buying, ?selling)

Definition:

 Buying(?buying) &

 hasAgent(?buying, ?buyer) &

 hasAgent2(?buying, ?seller) &

 hasObject(?buying, ?thing) &

 hasPrice(?buying, ?money).

This rule says that Selling is Buying with swapped arguments.

A rule consists of several sections. This rule has Body (the first section which follows the rule

name), Interdefinition and Definition sections. In addition to these, a rule may also

contain an Implication section. Each section consists of a conjunction of unary (classes) and

binary (relations) predicates. Logical negation and disjunction are temporarily not supported, although

we have plans to introduce them into the rule syntax. Variables (unlike constant individuals) are

marked with a question mark.

The complicated rule structure follows from the wish to have everything related to a semantic

concept in one place (as a ‘dictionary entry’ for that concept). In particular, a concept definition works

both as a direct and an inverse implication. The logic of the rule sections application is the following:

(5) Body -> Interdefinition & Definition & Implication

Definition -> Body & Interdefinition

Explicit quantifiers are not supported. All variables in the antecedent are treated as implicitly

universally quantified. All new variables in the consequent (not present in the antecedent) are assumed

to be existentially quantified. However, there is a demand for explicit universal quantifiers in the

consequent which we plan to address in the future (see details in Section 9).

Body usually contains the concept being defined, Definition – its necessary and sufficient

conditions which can be applied both ways, Implication – its one-way entailments. A special

section is Interdefinition which is logically a part of the definition but nevertheless must be in

the consequent of the inverse implication. For example, if we combine Interdefinition and

Definition into one section in (4), then the inverse implication will work only if there

is ?selling variable in the first place which does not make much sense. We want the inverse

implication to be able to create the whole Selling object, not just assign Selling class to the

object which is already there.

4 Anonymous Individuals

Our rules allow new variables in the consequent which are not present in the antecedent. Since

a concept definition is a detailed elaboration of the concept it must almost necessarily contain new

variables to represent various parts of the concept definition. Such variables are known as existentials

[9] or anonymous individuals.

For example, we cannot define a concept without mentioning its arguments. Every sale

involves a seller, a buyer, a product, and some amount of money. If any of these is missing then the

situation cannot be called ‘selling’. Nevertheless not all of these four arguments are necessarily

present in a sentence. In (1) there is no mention of money. In The car is sold three of the four

arguments are missing. They may be missing in a sentence but they are still there in the situation the

sentence describes. So, on the semantic level we have to restore all the missing arguments.

The first four lines of the Interdefinition of Selling in (4) serves for that purpose. It

makes sure that all four arguments of sale are there in the semantic structure and assign some classes

to them (Agent and CurrencyMeasure) if those classes are missing for some reason.

In the process of rule application we cannot just create new anonymous individuals for all new

variables in the consequent. First we need to check if some of them are already there in the original

semantic structure. The logic of checking for their existence can be complicated in the general case,

but for semantic arguments it is simple. All semantic arguments are marked as a functional property in

the ontology. So, if the argument property already has some value in the original structure then it just

gets assigned to the existential variable and no new individual is created. In reality one sale event can

include, say, multiple products, but this will be modelled using a separate group individual which will

have a single hasObject relation to a sale event.

The application of the arguments in the Selling definition will introduce

CurrencyMeasure_1 individual to our semantic structure connected by hasPrice to the original

Selling_1 object (existing objects and relations are marked with dashed lines in the graph):

(6) hasPrice (Selling_1, CurrencyMeasure_1)

Now let’s apply the rest of the rule (4). This part will generate a Buying object which has the

same arguments, but Human_1 and Human_2 will swap their roles from Agent to Agent2 and vice

versa (Selling part of the graph is not shown for simplicity):

(7) hasAgent (Buying_1, Human_2)

hasAgent2 (Buying_1, Human_1)

hasObject (Buying_1, Umbrella_1)

hasPrice (Buying_1, CurrencyMeasure_1)

sameTime (Buying_1, Selling_1)

But what will happen if we try to apply this rule once again? Will it create another Buying

object? No. But how does it check for existence? After all Buying_1 is not connected to any of the

existing variables by a functional property. In this case we have a simple rule:

(8) Do not add exactly the same subgraph that already exists.

By a ‘subgraph’ here we mean the largest possible subgraph ending on the existing individuals

and including all of the anonymous individuals one of its nodes is connected to. This is not a logically

perfect rule and not a technically efficient one. In some cases it can create duplicates. For example, if

we had another Buying object in our original structure with the same arguments but missing

hasPrice, it would not be matched and a new Buying object would be created instead.

So this is an open task to develop a logically consistent and efficient algorithm to match for

the existing individuals before adding anonymous ones. One of the ideas to be explored is to look for

noncontradicting individuals rather than exactly the same ones. For example, if we found a Buying

object but it has a different buyer or seller then it is not a match. And if we found a Buying object

that has some arguments matching and others missing then it is a potential match. Exact rules of

noncontradiction still have to be developed. The task seems to be similar to the anaphora and

coreference resolution issue which is also dealt with in our lab.

5 Implementation

The inference engine uses RDF storage to store the semantic structure and SPARQL language

to apply rules and run queries.

Each rule gets compiled into a number of SPARQL insert statements. Each statement:

1. Searches for the rule antecedent pattern in the semantic structure.

2. Checks if the part of the consequent for which it is responsible is not present yet in the

semantic structure.

3. (If 1 and 2 are satisfied) adds the part of the consequent for which it is responsible to the

semantic structure, creating new individuals and/or RDF triples.

Thus, the inference engine uses the forward chaining method of reasoning.

The order of rules application is not determined. Rules are applied in several iterations, each

of which runs all suitable rules. The application process stops when either the last iteration has not

produced any new data or ten iterations have been completed. The latter condition is needed to avoid

potential infinite recursion in the rule application process.

The question is processed in the following way:

1. A (basic) semantic structure of the question is built. The semantic structure of the question

is similar to the semantic structure of the corresponding affirmative sentence but

individuals corresponding to wh-words are marked in a special way.

2. This semantic structure is used as a pattern for a SPARQL select query which is run

against the RDF storage returning individuals corresponding to wh-words in the question.

3. The results returned by the query are either displayed to the user in a table format or

converted into a natural language sentence depending on the mode. In the latter case the

text of the question is used as a pattern to generate the sentence of the answer.

Using RDF storage and SPARQL has its pros and cons. SPARQL is a powerful language

which provides built-in capabilities for searching for a subgraph within the semantic structure. But its

strength is also its weakness because we have almost no control over the search algorithm and very

few possibilities to optimize its performance.

So we are contemplating the possibility of using one of the existing reasoners which would

cover our needs, e.g. Graal [2], or, alternatively, rewriting our inference engine with the full control

over the algorithms without using SPARQL.

6 Temporal Relations

At this point based on (7) we are almost able to answer the question (2a): “Who bought the

umbrella?” The only thing we are missing is the indication that Buying_1 happened in the past.

To represent event timeframes we adopted a slightly modified version of Allen’s temporal

interval logic [1]. We use six Allen’s base temporal relations, some additional relations (including

sameTime for equality) and a number of transitivity rules which form the composition table.

Figure 1. Allen’s base temporal relations.

The transitivity rule which we need in our case is as follows:

(9) Rule TimeSameTimeBefore:

 sameTime(?a, ?b) &

 before(?b, ?c)

Implication:

 before(?a, ?c).

Having sameTime(Buying_1, Selling_1) from (7) and before(Selling_1,

SpeechTimeInterval) from (3) and (6) we can conclude:

(10) before (Buying_1, SpeechTimeInterval)

Now structures (7) and (10) provide us with all the information we need to answer the

question (2a).

7 Going Deeper

Now we can apply the definition of Buying:

(11) Rule Buying:

 Buying(?buying)

Interdefinition:

 hasAgent(?buying, ?buyer) & Agent(?buyer) &

 hasAgent2(?buying, ?seller) & Agent(?seller) &

 hasObject(?buying, ?thing) &

 hasPrice(?buying, ?money) &

 sameTime(?exchange, ?buying)

Definition:

 Exchange(?exchange) &

 hasAgent(?exchange, ?buyer) &

 hasObject(?exchange, ?money) & CurrencyMeasure(?money) &

 hasAgent2(?exchange, ?seller) &

 hasObject2(?exchange, ?thing).

This rule says that Buying is an Exchange for money. It is structured in a way similar to

the Selling rule, and it will add the following data to our structure:

(12) hasAgent (Exchange_1, Human_2)

hasObject (Exchange_1, CurrencyMeasure_1)

hasAgent2 (Exchange_1, Human_1)

hasObject2 (Exchange_1, Umbrella_1)

sameTime (Exchange_1, Buying_1)

Appling the temporal transitivity rule (9) again, we can conclude:

(13) before (Exchange_1, SpeechTimeInterval)

This does not provide us with new information needed to answer questions (2b) – (2d), so we

proceed to the definition of Exchange:

(14) Rule Exchange:

 Exchange(?exchange1)

Interdefinition:

 hasAgent(?exchange1, ?agent) & Agent(?agent) &

 hasObject(?exchange1, ?object) &

 hasAgent2(?exchange1, ?agent2) & Agent(?agent2) &

 hasObject2(?exchange1, ?object2) &

 during(?giving1, ?exchange1) &

 during(?giving2, ?exchange1)

Definition:

 Giving(?giving1) &

 hasAgent(?giving1, ?agent) &

 hasRecipient(?giving1, ?agent2) &

 hasObject(?giving1, ?object) &

 Giving(?giving2) &

 hasAgent(?giving2, ?agent2) &

 hasRecipient(?giving2, ?agent) &

 hasObject(?giving2, ?object2)

Implication:

 Exchange(?exchange2) &

 hasAgent(?exchange2, ?agent2) &

 hasObject(?exchange2, ?object2) &

 hasAgent2(?exchange2, ?agent) &

 hasObject2(?exchange2, ?object) &

 sameTime(?exchange2, ?exchange1).

This rule defines Exchange as two mutual Givings. It also contains an Implication

section which introduces a symmetric Exchange event proposition. If John exchanged with Peter

then it is also true that Peter exchanged with John.

This rule will add two Giving objects and one Exchange object to our semantic structure

as shown below:

(15) hasAgent (Giving_1, Human_2)

hasObject (Giving_1, CurrencyMeasure_1)

hasRecipient (Giving_1, Human_1)

during (Giving_1, Exchange_1)

(16) hasAgent (Giving_2, Human_1)

hasObject (Giving_2, Umbrella_1)

hasRecipient (Giving_2, Human_2)

during (Giving_2, Exchange_1)

(17) hasAgent (Exchange_2, Human_1)

hasObject (Exchange_2, Umbrella_1)

hasAgent2 (Exchange_2, Human_2)

hasObject2 (Exchange_2, CurrencyMeasure_1)

sameTime (Exchange_2, Exchange_1)

Both Giving objects are connected to Exchange_1 by during temporal relation. That

means that they occurred within Exchange_1 timeframe. We can apply another transitivity rule for

them:

(18) Rule TimeDuringBefore:

 during(?a, ?b) &

 before(?b, ?c)

Implication:

 before(?a, ?c).

Resulting in:

(19) before (Giving_1, SpeechTimeInterval)

before (Giving_2, SpeechTimeInterval)

The subgraph in (16) plus (19) gives us the answer to (2b) “What did John give to Peter?”

8 Facticity and Uncertainty

Now we can apply the definition of Giving:

(20) Rule Giving:

 Giving(?giving)

Interdefinition:

 hasAgent(?giving, ?agent) & Agent(?agent) &

 hasRecipient(?giving, ?agent2) & Agent(?agent2) &

 hasObject(?giving, ?object)

Implication:

 Own(?own1) &

 hasAgent(?own1, ?agent) &

 hasObject(?own1, ?object) &

 meetsTemporally(own1, ?giving) &

 Own(?own2) &

 hasAgent(?own2, ?agent2) &

 hasObject(?own2, ?object) &

 meetsTemporally(?giving, own2).

This rule says that Giving results in changing the owner. The rule has an Implication

section and no Definition because not every change of the owner is Giving. The

Interdefinition section without Definition works in the same way as Implication, but

it is preserved here for visual split between the arguments and the other type of content. The

application of this rule will add four Own events (two for each Giving):

(21) meetsTemporally (Own_1, Giving_1)

hasAgent (Own_1, Human_2)

hasObject (Own_1, CurrencyMeasure_1)

meetsTemporally (Giving_1, Own_2)

hasAgent (Own_2, Human_1)

hasObject (Own_2, CurrencyMeasure_1)

(22) meetsTemporally (Own_3, Giving_2)

hasAgent (Own_3, Human_1)

hasObject (Own_3, Umbrella_1)

meetsTemporally (Giving_2, Own_4)

hasAgent (Own_4, Human_2)

hasObject (Own_4, Umbrella_1)

The predicate meetsTemporally means that two events follow each other, one event starts

right after the other finishes. By applying another transitivity rule:

(23) Rule TimeBeforeMeets2:

 before(?a, ?b) &

 meetsTemporally(?a, ?c)

Implication:

 startsBefore(?c, ?b).

We can conclude that Own_2 and Own_4 events started in the past:

(24) startsBefore (Own_2, SpeechTimeInterval)

startsBefore (Own_4, SpeechTimeInterval)

Do we now have enough information to answer the question (2c) “Who owns the umbrella?”

Yes and no. Strictly speaking, this question does not have a definite answer. If Peter started owning

the umbrella sometime in the past he could since then sell it again or lose it somewhere or pass on to

somebody else, etc. We cannot be sure that he still owns it now. But without any additional

information we choose to think that he does. This is called implicature [12], or invited inference [10].

This pragmatic phenomenon is based on the expectation that if it were not so then the speaker would

tell that in an explicit way.

There are also other types of uncertain inferences which we generalize under the term

(plausible) expectations. Expectation is a proposition that is likely to be true based on the information

we have so far. It is not strict entailment, so it can be confirmed or disproved by a subsequent

discourse.

SemETAP is able to capture plausible expectations at the level of individuals. Event objects

can be assigned to special predicates Fact or Implicature to mark their certainty status. It is also

possible that some event objects get assigned neither of the two. Consider the example:

(25) Peter wants to buy an umbrella.

The semantic structure of this sentence will contain predicate Fact(Want_1) (by the rule:

“Trust the speaker”), but will contain neither Fact(Buying_1) nor Implicature(Buying_1)

since the facticity status of buying is not asserted in the sentence.

Can we use Implicature predicate to mark the expectation that Peter still owns the

umbrella? Unfortunately, no. We could assign Implicature to Own_4 but it would not be what we

need. Moreover, Own_4 must have already been assigned the Fact predicate inherited through the

rule application process. It is a fact (if we trust the speaker) that Peter started to own the umbrella

sometime in the past. What we need to assign Implicature to is not the whole Own_4 event, but

the proposition that this event persists till now. This proposition can be expressed with the following

predicate:

(26) during (SpeechTimeInterval, Own_4)

But our system does not support (yet) having a proposition or a predicate as an argument of

another predicate. This is a topic for further development: how to model such a possibility within RDF

model and process it consistently.

9 Disjunction, Negation and Universal Quantifier

Another type of uncertainty is a situation when the agent does not know a particular thing

exactly, but knows the (closed) set of alternatives to which this thing can belong. This knowledge can

be represented by a disjunction. An apple can be green, yellow or red. If we encounter an apple in the

text we cannot be sure about its color, but at least we can be sure that it is not blue. A soccer pass can

be performed with the player’s leg, head or chest, but not with the arm etc.

This leads to the demand for the ability to include disjunctive information (possible

alternatives) in the semantic structure and to allow disjunction in the consequent of the implication

rules. This feature is not yet supported by our system mainly because of the difficulties concerning the

introduction of disjunction into the RDF model.

Another issue is the representation of the negative knowledge. We are working in the open

world paradigm and cannot rely on the negation as failure. If some proposition is missing in the

semantic structure then its status cannot be assumed to be false by default. So, if we need to be able to

capture negative sentences such as the following:

(27) Peter did not buy an umbrella

we need an explicit way to represent negation. This is partially supported in our system

through the use of Negation predicate. Similar to Fact and Implicature it can be assigned

only to event individuals, not to propositions. It denotes the absence of the whole event. The example

(27) will be represented as follows:

(28) hasGivenName (Human_1, "Peter")

hasObject (Negation_1, Buying_1)

hasAgent (Buying_1, Human_1)

hasObject (Buying_1, Umbrella_1)

before (Buying_1, SpeechTimeInterval)

In this example the Fact predicate will be assigned to Negation_1, not to Buying_1 (the

absence of Peter’s purchase is the fact). Negation, as any other predicate, can be used in a

nonfactive context as well, as in the sentence: Peter promised not to buy an umbrella.

Since the scope of the Negation predicate is fixed to the whole event, it cannot cover all the

situations when the negation is needed. Consider the following sentence:

(29) It was not Peter who bought the umbrella from John

In this example the scope of negation is only the following predicate:

(30) hasAgent (Buying_1, Human_1)

As we mentioned in the previous section we cannot have a predicate or a proposition as an

argument of another predicate. So, we cannot represent (29) correctly.

Another problem with Negation is that anonymous individuals within the scope of negation

must be universally quantified, but our system support only default existential quantification. The

sentence (27) entails that Peter did not buy an umbrella from anybody. Existential quantification leads

to the wrong understanding that there is somebody from whom Peter did not buy an umbrella. It will

not produce definite answer to the question “Did Peter buy an umbrella from John?” since John and

the person from whom Peter did not buy an umbrella do not necessarily coincide.

10 Anonymous Individuals in Answers

We are left with the last question (2d) “What did John get?”. To answer it we need to apply

the definition of Getting:

(31) Rule Getting:

 Getting(?getting)

Interdefinition:

 hasRecipient(?getting, ?agent) & Agent(?agent) &

 hasSource(?getting, ?agent2) & Agent(?agent2) &

 hasObject(?getting, ?object) &

 sameTime(?getting, ?giving)

Definition:

 Giving(?giving) &

 hasAgent(?giving, ?agent2) &

 hasRecipient(?giving, ?agent) &

 hasObject(?giving, ?object).

This rule says that Getting is a Giving with slightly different roles of the arguments. By

applying the rule in the opposite direction followed by the transitivity rule (9) we will get:

(32) hasRecipient (Getting_1, Human_1)

hasObject (Getting_1, CurrencyMeasure_1)

hasSource (Getting_1, Human_2)

sameTime (Getting_1, Giving_1)

before (Getting_1, SpeechTimeInterval)

(33) hasRecipient (Getting_2, Human_2)

hasObject (Getting_2, Umbrella_1)

hasSource (Getting_2, Human_1)

sameTime (Getting_2, Giving_2)

before (Getting_2, SpeechTimeInterval)

The subgraph in (32) is what we need to answer (2d). Note that the answer is

CurrencyMeasure_1 which is anonymous individual created by the inference rules. Nevertheless

it is a meaningful answer since we know its class. We do not know which particular amount of money

John got but we can be sure that it was money and not something else. This can be useful information

for subsequent inferences. This example shows that anonymous individuals are worth being returned

by queries but only with (some) predicates involving them (in this example their class).

11 Optimization Issues

In this case study we used simplified semantic structure and simplified rules, without modality

and other implications that can be made from the concepts we examined. And we even did not touch

the definition of other concepts in our semantic structure such as Human, Umbrella and

CurrencyMeasure. Nevertheless we had to go five levels deep through the rule application process

to find the answers for questions which a human can answer within a second. And our semantic

structure has grown significantly.

This shows that probably forward chaining is not the best algorithm from the performance

point of view especially if we aim at processing large texts with many different concepts involved.

The alternative would be to use backward chaining and one of the query rewriting algorithms

[11, 13, 15-16]. Instead of modifying the data, such algorithms modify the query extending it with new

propositions so the query can be successfully run against the original data.

We will explore this option, but limitations of this method are already visible. For example,

the backward chaining would not give us the answer for (2d) “What did John get?” because there is

no CurrencyMeasure object in the original semantic structure. Also, there could be other tasks

involving deep semantic analysis and not related to queries such, as semantics-based translation or

making an abstract of a text.

It might be sensible to build a hybrid system using both forward and backward chaining [14,

17, 19]. Yet the main question will be where and how to stop forward chaining in order not to

overload the semantic structure with lots of unnecessary data. We do not have a definite answer to this

challenge yet. But it needs to be emphasized that we are not trying to build a data-mining system or

something similar. We are trying to build a system which would be comparable to humans in the

performance of reasoning and not necessarily would outperform them. So the answer may lie in the

pragmatically induced constraints (e.g. limiting the depth of the forward chaining) rather than in the

theoretical ones (such as limiting the expressive power of the rule language).

12 Summary: Requirements for the Reasoner

An ideal reasoner for our needs has to support the following:

1. Anonymous individuals in the consequent of the rule with an efficient “find or create”

algorithm for them.

2. Anonymous individuals in the result of a query with all or selected propositions involving

those individuals.

3. Representation of uncertainty and the ability to apply it not only to individuals but to a

particular predicate or proposition.

4. Disjunction, negation and universal quantification in the consequent of the rules.

5. Selected and directed reasoning depending on the task.

13 Conclusion

In a case study we have demonstrated the process of the concept definition rules application in

the SemETAP inference engine, its capabilities and limitations, discussed various issues associated

with the inference process, and specified the requirements for an ideal reasoner that would suit our

needs.

A collection of semantic concept definition rules of a particular knowledge domain can

potentially be used to build benchmark tests for the task of conjunctive query answering under

existential rules.

References

1. Allen, J.F. and Ferguson, G. 1994. Actions and Events in Interval Temporal Logic, J. Logic

and Computation 4, 5, 1994.

2. Baget J.-F. et al. Graal: A Toolkit for Query Answering with Existential Rules / J.-F. Baget, M.

Leclère, M.-L. Mugnier, S. Rocher, and C. Sipieter. In: RuleML 2015 Conference, August

2015.

3. Boguslavsky I. 2011. Semantic Analysis Based on Linguistic and Ontological Resources. In:

Proceedings of the 5th International Conference on the Meaning - Text Theory. Barcelona,

September 8 – 9, 2011. Igor Boguslavsky and Leo Wanner (Eds.), p. 25-36.

4. Boguslavsky I. 2017. Semantic Descriptions for a Text Understanding System. In:

Computational Linguistics and Intellectual Technologies. Papers from the Annual

International Conference “Dialogue” (2017), p. 14-28.

5. Boguslavsky I. et al. 2010. Interfacing the Lexicon and the Ontology in a Semantic Analyzer /

I. Boguslavsky , L. Iomdin, V. Sizov, S. Timoshenko. In: COLING 2010. Proceedings of the

6th Workshop on Ontologies and Lexical Resources (Ontolex 2010), Beijing, August 2010,

pages 67-76.

6. Boguslavsky I. et al. 2013. Semantic representation for NL understanding / I. Boguslavsky, V.

Dikonov, L. Iomdin, S. Timoshenko. In: Computational Linguistics and Intellectual

Technologies. Papers from the Annual International Conference “Dialogue” (2013), p.132-

144.

7. Boguslavsky I. et al. 2015. Semantic Analysis and Question Answering: a System Under

Development / I. Boguslavsky, V. Dikonov, L. Iomdin, A. Lazursky, V. Sizov, S. Timoshenko.

In: Computational Linguistics and Intellectual Technologies. Papers from the Annual

International Conference “Dialogue” (2015), p.62-79].

8. Boguslavsky I. et al. 2016. Plausible Expectations-Based Inference for Semantic Analysis / I.

Boguslavsky, V. Dikonov, T. Frolova, L. Iomdin, A. Lazurski, I. Rygaev, S. Timoshenko. In:

Proceedings of the 2016 International Conference on Artificial Intelligence (ICAI"2016). USA:

CSREA Press, 2016. pp. 477-483. ISBN: 1-60132-438-3.

9. Cali A. et al. 2010. Datalog+/-: A Family of Logical Knowledge Representation and Query

Languages for New Applications / A. Cali, G. Gottlob, Th. Lukasiewicz, B. Marnette, A.

Pieris. Keynote Lecture. 2010 25th Annual IEEE Symposium on Logic in Computer Science.

10. Geis M. L. and Zwicky A. M. 1971. On Invited Inferences. Linguistics Inquiry, 2. 1971: 561–

566.

11. Gottlob G. et al. 2014. Query Rewriting and Optimization for Ontological Databases / G.

Gottlob , G. Orsi, A. Pieris. In: ACM Transactions on Database Systems (TODS), 2014.

12. Grice H. P. 1975. Logic and Conversation. Syntax and Semantics, Vol. 3, Speech Acts, ed. by

Peter Cole and Jerry L. Morgan. New York: Academic Press 1975: 41–58.

13. Kikot S. et al. 2012. Conjunctive Query Answering with OWL2QL / S. Kikot , R. Kontchakov

and M. Zakharyaschev. KR-2012.

14. Kontchakov R. et al. 2011. The Combined Approach to Ontology-Based Data Access / R.

Kontchakov, C. Lutz, D. Toman, F. Wolter and M. Zakharyaschev. In: Proceedings of IJCAI

2011.

15. König M. et al. 2012. A Sound and Complete Backward Chaining Algorithm for Existential

Rules / M. König, M. Leclère, M.-L. Mugnier, M. Thomazo. Proc. of the 6th International

Conference on Web Reasoning and Rule Systems (RR 2012), September 2012.

16. König M. et al. 2013. On the Exploration of the Query Rewriting Space with Existential Rules

/ M. König, M. Leclère, M.-L. Mugnier, M. Thomazo. Proc. of the 7th International

Conference on Web Reasoning and Rule Systems (RR 2013), July 2013.

17. Lutz C. et al. 2009. Conjunctive query answering in the description logic EL using a relational

database system / C. Lutz, Toman, D., Wolter, F. In: Proc. of IJCAI 2009.

18. Niles I. and Pease A. 2001. Towards a Standard Upper Ontology. In: Proceedings of the 2nd

International Conference on Formal Ontology in Information Systems (FOIS-2001), Chris

Welty and Barry Smith, eds, Ogunquit, Maine, October 17-19, 2001.

19. Zhou Y. et al. 2014. Pay-as-you-go OWL Query Answering Using a Triple Store / Y. Zhou, Y.

Nenov, B. C. Grau and I. Horrocks. AAAI 2014.

