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The last decade has seen an exponential increase in the popularity of the
Semantic Web. However, given the nature of the domains usually modeled in
such scenario and the origin of available data, the interest for the development
of methods for combining probability with Description Logics (DLs) has been
exponentially increased as well.

A possible probabilistic semantics for DLs is DISPONTE [3, 5], which applies
to them the distribution semantics, one of the most prominent semantics in
probabilistic logic programming. DISPONTE allows to annotate axioms with
a probability, interpreted as epistemic probability, indicating the degree of our
belief in the truth of the corresponding axiom.

Prob-ALC considers only epistemic probabilities, while crALC extends ALC
by allowing only statistical probabilities. In both these approaches the proba-
bility can be assigned to a limited set of axioms, differently from DISPONTE
where every axiom can be probabilistic. P-SHIQ(D) uses probabilistic lexico-
graphic entailment from probabilistic default reasoning and allows to annotate
with a probabilistic interval both assertional and terminological axioms. BEL
exploits Bayesian networks to extend the EL DL, while Probabilistic Datalog±

uses Markov networks.

Several algorithms have been proposed for supporting the development of the
Semantic Web. Efficient DL reasoners are able to extract implicit information
from the modeled ontologies. Despite the availability of many DL reasoners, the
number of probabilistic reasoners is quite small. BUNDLE [3, 5] is a reasoner able
to compute the probability of queries w.r.t. DISPONTE DL KBs. It implements
the tableau algorithms and returns the set of all explanations for the query, then
represented with a Binary Decision Diagram (BDD), i.e., a tree representing a
boolean formula, used for computing the probability.

However, some tableau expansion rules are non-deterministic forcing to ex-
plore all the non-deterministic choices to compute the set of all explanations
for the query. This non-determinism can be managed with Prolog language.
Thus, we developed TRILL [6, 5] which implements the tableau algorithm in
Prolog to perform inference over DISPONTE DLs. We also developed TRILLP

[6, 5], which builds a monotone Boolean formula, called “pinpointing formula”,
instead of the set of explanations, which compactly represents them and can
be directly translated into a BDD. Finally, TORNADO builds BDDs instead of
pinpointing formulas during the inference process. TRILL, TRILLP and TOR-



NADO are available at http://trill.ml.unife.it in the web service “TRILL
on SWISH”.

Other examples are PRONTO, which follows P-SHIQ(D) semantics and
BORN following BEL semantics. A completely different approach addresses rea-
soning for Datalog± ontologies with an Abductive Logic Programming frame-
work named SCIFF, with existential and universal variables, and Constraint
Logic Programming constraints in rule heads.

The correct values of the axioms’ probabilities are unfortunately difficult to
set, since they depend on many different factors. Therefore, it is necessary to
develop systems able to automatically learn such values. Moreover, often KBs
are incomplete or poorly structured, requiring systems able to correct erroneous
information and learn new definitions. We developed EDGE [2] that learns the
parameters of a DISPONTE KB from the information available in the domain.
It exploits BUNDLE for building the BDDs representing explanations for the in-
put examples and an Expectation Maximization algorithm to define probability
values. We also developed LEAP [4], which combines EDGE with the learning
system CELOE, in order to learn the structure of a DISPONTE KB by build-
ing new axioms. EDGE is used to learn the parameters of the KB. A different
approach is used in Goldminer where association rules are exploited to define
probabilistic terminological axioms.

However, nowadays most of the KBs are defined following the vision of Big
Data and Linked Open Data. Thus, they require the implementation of algo-
rithms exploiting parallelization and cloud computing to handle such big amount
of data. Therefore, we extended EDGE and LEAP by developing EDGEMR [2]
and LEAPMR [1], which distribute the work load.
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