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Abstract 
The dominant approach to argumentation 
mining has been to treat it as a text 
classification problem. However some 
applications to scientific text, such as 
accurately summarizing argumentation in 
research articles, require a deeper 
understanding of the text. This paper 
provides a novel approach in which 
argumentation schemes are represented as 
logic program rules for use in argumentation 
mining. The logic programs can be used, not 
only to recognize fully explicit arguments, 
but also arguments with implicit 
conclusions. This paper presents seven 
implemented rules based on analysis of an 
open-access biomedical research article.  
The rules are specializations of general 
schemes that can apply to other qualitative 
causal domains in the natural sciences.  
 

1 Introduction 
The dominant approach in the relatively new field of 
argumentation mining [e.g., Green et al., 2014; 
Cardie et al., 2015] has been to treat it as a machine 
learning problem, enabling researchers to adopt 
methods that have been applied successfully to other 
natural language processing tasks such as sentiment 
analysis and information extraction. That general 
approach can be useful for certain types of 
applications such as classification of sentiment as 
positive or negative in social media, or classification 
of sentences as premise or conclusion for the purpose 
of automatic assessment of student essay quality. 
However some applications, such as accurately 
summarizing argumentation in scientific research 
articles, require a deeper understanding of the text.   
     There are a number of problems with mining 
argumentation at the text level (sentence, clause, or 
smaller phrases) rather than at the semantic level 
[Green, 2015a; 2015b].  Often scientific text contains 
enthymemes, i.e. arguments with implicit premises or 
an implicit conclusion.  Interpretation of enthymemes 
may require use of the preceding discourse context 
(including inferred conclusions of other arguments), 
presumed shared knowledge of the author and 

audience, as well as constraints of the underlying 
argumentation scheme [Green, 2010].  Furthermore, 
explicitly given components may not occur in 
contiguity with other components of the same 
argument.  In fact, the content of two arguments may 
be interleaved at the text level.   
    Although human-level understanding of natural 
language text is currently beyond the state of the art, 
we contend that an inference-based approach is 
feasible for scientific applications requiring a deeper 
analysis of argumentation. In support of this position, 
this paper demonstrates a novel approach in which 
argumentation schemes are implemented as logic 
programs. In addition, this paper explains how this 
inference-based approach fits into an argumentation 
mining system architecture.  
 
2   Representing Biomedical Arguments  

Argumentation schemes are abstract descriptions of 
acceptable, possibly defeasible, arguments used in 
conversation as well as in formal genres such as legal 
and scientific text [Walton et al., 2008]. As a step 
towards argumentation mining scientific text, in 
previous work we described some argumentation 
schemes used in biomedical research articles on 
human genetic variants with adverse health effects 
[Green, 2015a; 2015b].  Designed for use by human 
analysts for creation of annotated corpora, the 
descriptions were given at a level of abstraction 
applicable to argumentation not just in biomedicine 
but also in other domains.   
     In order to enable computer programs to represent 
and reason about scientific argumentation, this paper 
shows how to represent key argumentation schemes 
as logic program rules written in Prolog [Bratko, 
2001]. The schemes are ‘key’ in the sense that they 
are specializations of schemes that can apply to other 
qualitative causal domains in the natural sciences. In 
our approach, the argumentation scheme and its 
premises and conclusion are recognized at the same 
time.  This is in contrast to surface text-based 
machine-learning approaches to argumentation 
scheme identification, e.g. [Feng and Hirst, 2011].  In 
that approach, clauses must be labeled as premise or 
conclusion before argumentation scheme recognition 
is performed.  Another significant feature of our 
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approach is that the rules only make use of semantic 
predicates, rather than superficial text features, such 
as the presence of a certain discourse connective. As 
discussed in Section 3, the semantic predicates refer 
to a partial semantic interpretation of the text, as well 
as limited domain knowledge. 
    To provide argumentation schemes for freely 
available text to the argumentation mining research 
community in this paper, we analyzed argumentation 
schemes in the Results section of an open-access 
biomedical research article (CRAFT175900787) [van 
de Leemput et al., 2007] in the CRAFT corpus 
[CRAFT]. The CRAFT corpus has been annotated by 
other researchers for purposes of biomedical text 
mining [Verspoor et al., 2012; Bada et al., 2012], but 
not for argumentation mining.    Based upon analysis 
of the CRAFT article we implemented the seven 
causal argumentation schemes shown in Figures 1 to 
7.   Some of the schemes were used in more than one 
argument in the article. Note that the conclusions of 
these schemes are not asserted with complete 
certainty. The corresponding arguments in the source 
text range in force from ‘plausible hypothesis’ to 
‘fairly certain conclusion’.  It is outside of the scope 
of this paper to address modality, although this is an 
important issue for our future research.   
    Figure 1 shows the logic program for recognizing 
an argument following a pattern similar to Mill’s 
Method of Agreement [Jenicek and Hitchcock, 
2005].  Note that in this and in the other logic 
programs defining the argumentation schemes given 
in Figures 1 to 7, domain-specific predicates are 
used.  However, these argumentation schemes can be 
seen as specializations of more general descriptions, 
e.g. as given in [Green, 2015a; 2015b] or [Walton et 
al., 2008]. The source of domain knowledge used in 
the rules is covered in Section 3. 
    As exemplified in Figure 1, the seven schemes 
have been implemented in such a way that not only 
the argumentation schemes but also their conclusions 
can be inferred by the rule. The motivation for so 
implementing the schemes is that in this genre the 
text often contains enthymemes, arguments with 
implicit premises or an implicit conclusion.  After an 
implicit conclusion has been inferred it can be added 
to the knowledge base used in recognition of 
argumentation schemes (Section 3). Then it can be 
used to recognize a subsequent argument it which it 
functions as an implicit premise. 
    The scheme shown in Figure 2 differs from the 
preceding scheme as follows: the premise in Figure 1 
referring to the expected phenotype P is negated and 
the conclusion in Figure 1 that genotype M causes P 
is negated. Note that the implementation in Figure 2 
and several other of the schemes in this paper makes 
use of a ‘knot’ operator that we defined to mean 

‘known not’, to be distinguished from Prolog’s 
negation operator ‘not’, which means ‘cannot be 
proven’. 
 
 
 
arg(!
!!scheme('Agreement'),!
!!premise(have_phenotype(G,!P)),!!
!!premise(have_genotype(G,!M)),!
!!conclusion(cause(M,!P)))!!
:=!!
group(G),!
have_phenotype(G,!P),!
have_genotype(G,!M).!
 
Paraphrase:  For all G, P, M 
Premises:  

•! Group G has phenotype P 
•! Group G has genotype M 

Conclusion:  M causes P.  
 
Figure 1. Method of Agreement 
!
!
!
!
arg(!
!!scheme('Failed=Agreement=effect'),!
!!premise(knot(have_phenotype(G,!P))),!
!!premise(have_genotype(G,!M)),!
!!conclusion(knot(cause(M,!P))))!!
:=!!
group(G),!
knot(have_phenotype(G,!P)),!
have_genotype(G,!M).!
 
Paraphrase:  For all G, P, M 
Premises:  

•! Group G does not have phenotype P 
•! Group G has genotype M 

Conclusion:  M does not cause P.  
 
Figure 2.  Method of Failed Agreement (no effect) 
 
 
    The scheme shown in Figure 3 is a specialization 
of Mill’s Method of Difference [Jenicek and 
Hitchcock, 2005].  The scheme shown in Figure 4 is 
a specialization of Argument by Analogy described 
by argumentation theorists, e.g. [Walton et al., 2008].   
An example is given in the Appendix. 
!
!
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arg(!
!!scheme('Difference'),!
!!premise(have_phenotype(G1,!P1)),!
!!premise(have_genotype(G1,!M1)),!
!!premise(knot(have_phenotype(G2,!P1))),!
!!premise(knot(have_genotype(G2,!M1))),!!
!!conclusion(cause(M1,!P1)))!!
:=!!
group(G1),!group(G2),!not(G1=G2),!
have_phenotype(G1,P1),!
have_genotype(G1,M1),!
knot(have_phenotype(G2,P1)),!
knot(have_genotype(G2,!M1)).!
 
Paraphrase:   For all G1, G2, P1, P2, M 
Premises:  

•! Group G1 has phenotype P 
•! Group G1 has genotype M 
•! Group G2 does not have phenotype P 
•! Group G2 does not have genotype M 

Conclusion:  M causes P.  
Figure 3. Method of Difference 
     
arg( 
!!scheme('Analogy'),!
!!premise(have_phenotype(G1,!P1)),!
!!premise(have_phenotype(G2,!P2)),!
!!premise(similar(P1,!P2)),!
!!premise(have_genotype(G1,!M1)),!
!!premise(have_genotype(G2,!M2)),!
!!premise(similar(M1,!M2)),!!
!!premise(cause(M1,!P1)),!
!!conclusion(cause(M2,!P2)))!
:=!
group(G1),!!group(G2),!not(G1=G2),!
have_phenotype(G1,!P1),!
have_phenotype(G2,!P2),!
have_genotype(G1,!M1),!
have_genotype(G2,!M2),!
cause(M1,!P1),!
similar(P1,!P2),!!similar(M1,!M2).!
 
Paraphrase:  For all G1, G2, P1, P2, M1, M2 
Premises: 

•! Group G1 has phenotype P1 
•! Group G2 has phenotype P2, where P2 is 

similar to P1 
•! Group G1 has genotype M1 
•! Group G2 has genotype M2, where M2 is 

similar to M1 
•! M1 causes P1 

Conclusion:  M2 causes P2. 
Figure 4. Analogy  

 
    The scheme shown in Figure 5 is very similar to 
Method of Difference (Figure 3).  In Method of 
Difference, the presence/absence of a potential causal 
agent is correlated with the presence/absence of an 
observed potential effect.  In Eliminate Difference, 
the presence/absence of the potential causal agent A 
is implied, based upon the knowledge that A is the 
difference in the presence of AB and of B. 
 
arg(!
!!scheme('Eliminate!Difference'),!
!!premise(have_phenotype(G1,!P)),!
!!premise(have_genotype(G1,!AB)),!
!!premise(knot(have_phenotype(G2,!P))),!
!!premise(have_genotype(G2,!B)),!!
!!conclusion(cause(A,!P)))!!
:=!
group(G1),!!group(G2),!not(G1=G2),!
difference(AB,B,A),!
have_phenotype(G1,P),!
have_genotype(G1,AB),!
knot(have_phenotype(G2,P)),!
have_genotype(G2,B).!
 
Paraphrase:  For all G1, G2, P, AB, B, A 
Premises: 

•! Group G1 has phenotype P 
•! Group G2 does not have phenotype P 
•! Group G1 has genotype AB 
•! Group G2 has genotype B 
•! Genotype A is the difference between AB 

and B. 
Conclusion: A causes P.  
 
Figure 5. Eliminate Difference. 
 
 
    The preceding argumentation schemes can be 
challenged by means of at least two critical 
questions: 

•! Is there an alternative causal agent? 
•! Is there a plausible causal mechanism 

explaining how the putative causal agent 
can lead to the observed effect? 

Arguments constructed from the next two schemes 
are used to respond to the second of those questions. 
    The scheme shown in Figure 6 describes a causal 
chain that explains how in one group (G1) a genotype 
(M1) caused a certain phenotype (P1) by means of a 
protein abnormality (Prot) caused by M1 and which 
is associated with P1. Then, as the argument goes, 
since in another group (G2) its genotype (M2) is 
similar to M1, and its phenotype (P2) is similar to P1, 
and M2 causes the same protein abnormality (Prot) in 
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G2, and Prot is also associated with P2 in G2, then (it 
is plausible that) M2 caused P2.  
 
arg(!
!!scheme('Consistent!Explanation'),!
!!premise(have_genotype(G1,!M1)),!
!!premise(have_protein(G1,!Prot)),!
!!premise(have_phenotype(G1,!P1)),!
!!premise(cause(M1,!Prot)),!
!!premise(assoc(Prot,!P1)),!
!!premise(cause(M1,!P1)),!
!!premise(have_genotype(G2,!M2)),!
!!premise(have_protein(G2,!Prot)),!
!!premise(have_phenotype(G2,!P2)),!
!!premise(similar(M1,!M2)),!
!!premise(similar(P1,!P2)),!
!!premise(cause(M2,!Prot)),!
!!premise(assoc(Prot,!P2)),!
!!conclusion(cause(M2,!P2)))!
:=!
group(G1),!!group(G2),!not(G1=G2),!
similar(M1,!M2),!similar(P1,!P2),!
have_genotype(G1,!M1),!
have_protein(G1,!Prot),!
have_phenotype(G1,!P1),!
cause(M1,!Prot),!
assoc(Prot,!P1),!
cause(M1,!P1),!
have_genotype(G2,!M2),!
have_protein(G2,!Prot),!
have_phenotype(G2,!P2),!
cause(M2,!Prot),!
assoc(Prot,!P2).!
 
Paraphrase: For all G1, G2, M1, M2, Protein, P1, P2 
Premises: 

•! Group G1 has genotype M1 
•! Group G1 has protein Prot 
•! Group G1 has phenotype P1 
•! M1 causes Prot 
•! Prot is associated with P1 
•! M1 causes P1 
•! Group G2 has genotype M2, where M2 is 

similar to M1 
•! Group G2 has protein Prot 
•! Group G2 has phenotype P2, where P2 is 

similar to P1 
•! M2 causes Prot 
•! Prot is associated with P2 

Conclusion:  M2 causes P2. 
 
Figure 6. Consistent Explanation. 
 

    The scheme shown in Figure 7 combine aspects of 
Method of Difference (Figure 3) and Consistent 
Explanation (Figure 6). 
!
arg(!
!!scheme('Difference!Consistent!Explanation'),!
!!premise(have_genotype(G1,!M)),!
!!premise(have_protein(G1,!Prot)),!
!!premise(have_phenotype(G1,!P)),!
!!premise(cause(M1,!Prot)),!
!!premise(assoc(Prot,!P)),!
!!premise(knot(have_genotype(G2,!M))),!
!!premise(knot(have_protein(G2,!Prot))),!
!!premise(knot(have_phenotype(G2,!P))),!
!!conclusion(cause(M,!P)))!
:=!
group(G1),!group(G2),!not(G1=G2),!
have_genotype(G1,!M),!
have_protein(G1,!Prot),!
have_phenotype(G1,!P),!
cause(M1,!Prot),!
assoc(Prot,!P),!
knot(have_genotype(G2,!M)),!
knot(have_protein(G2,!Prot)),!
knot(have_phenotype(G2,!P)). 
 
Paraphrase: For all G1, G2, M, Protein, P 
Premises: 

•! Group G1 has genotype M 
•! Group G1 has protein Prot 
•! Group G1 has phenotype P 
•! M causes Prot 
•! Prot is associated with P 
•! Group G2 does not have phenotype P 
•! Group G2 does not have genotype M 
•! Group G2 does not have protein Prot 

Conclusion:  M causes P 
 
Figure 7. Difference Consistent Explanation 
 
 
     The above seven argumentation schemes were not 
the only schemes that we found, but are presented 
here as they seem to be the most useful to researchers 
working in other domains in the natural sciences. The 
implemented rules have been tested using a manually 
created knowledge base.  The next section describes 
how such a knowledge base would be created in an 
argumentation mining system. 
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3 System Architecture 
It is assumed that, before argumentation scheme 
recognition using the rules given in the previous 
section begins, current biomedical/biological natural 
language processing tools would be applied to a 
source text to create a knowledge base. Named entity 
recognition tools such as ABNER (Settles 2005) or 
MutationFinder (Caporaso et al. 2007) could be used 
to recognize expressions referring to semantic class 
names such as genes, mutations, proteins, and 
phenotypes.   Domain-specific relations in the rules, 
have_phenotype, have_genotype, and have_protein, 
could be extracted from the text using relation 
extraction tools such as OpenMutationMinder 
(Naderi and Witte 2012). Relations cause and assoc 
(association) could be extracted by domain-specific 
tools as well as non-domain-specific discourse 
coherence relation extraction tools. Also, a certain 
amount of domain knowledge would be required, i.e., 
for the relations similar and difference, which could 
be acquired from a domain ontology or domain 
experts.       
    For an example showing an excerpt from the 
CRAFT article, a representation of the knowledge 
needed to recognize the Argument by Analogy given 
in that paragraph, and the argument that is 
recognized, see the Appendix. 
 
4   Discussion 
Previous argumentation mining research has not 
addressed the natural sciences. However, 
argumentation is an important feature of scientific 
discourse.  Previous investigations of scientific 
discourse addressed automatic classification of text 
segments without requiring semantic interpretation of 
a text, e.g., classifying segments’ discourse 
coherence relations [Prasad et al., 2011], 
epistemological status (hypothesis, background 
knowledge, new knowledge claim, etc.) [Teufel, 
2010], or component of a scientific investigation 
(hypothesis, method, result, etc.) [Liakata, 2012].    
     In contrast, this paper demonstrated a semantic 
approach to automatic recognition of premises, 
conclusion, and argumentation scheme of arguments 
in scientific text.  In this approach, argumentation 
schemes are implemented as logic programs.  The 
logic programs would be used with a knowledge base 
that could be constructed from a text in a large part 
automatically using existing language processing 
tools. The logic programs can be used, not only to 
recognize fully explicit arguments in the text, but also 
arguments with implicit conclusions. This is 
important because often the conclusions are implicit 
and may function as implicit premises of subsequent 
arguments in the text.  Although the argumentation 

schemes presented here have been implemented 
using domain-specific predicates, they are 
specializations of more general schemes applicable to 
other qualitative causal domains in the natural 
sciences.  Thus we expect that researchers can adapt 
them to other domains and begin argumentation 
mining in those domains using a similar approach.  
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Appendix.   
 
Excerpt from [van de Leemput et al., 2007] 
(CRAFT175900787): 
 
Literature searches revealed that among disease lines 
mapped to 6qE1, the spontaneous mutant opt mouse 
displays a strikingly similar presentation to that 
described here [1]. The underlying genetic lesion 
causing the opt phenotype is a homozygous in-frame 
deletion of exons 43 and 44 of the gene Itpr1 
(Itpr1opt/opt), encoding inositol 1,4,5-triphosphate 
receptor 1 (Itpr1). Sequencing of all exons and 
intron–exon boundaries of Itpr1 in affected mice 
from the current study revealed a single mutation 
within Itpr1: a novel in-frame deletion of 18 bp 
within exon 36 (Itpr1Δ18/Δ18). 
 
Semantic relations extracted from excerpt: 
 
group(opt). 
have_phenotype(opt, opt_pheno). 
have_genotype(opt, ‘Itpr1opt/opt’). 
have_genotype(affected_knockout_mice,  

‘ Itpr1Δ18/Δ18’ ). 
cause(‘Itpr1opt/opt’,  opt_pheno). 
similar(opt_pheno, ataxia). 
 
Semantic relations extracted from text preceding 
the excerpt: 
 
group(affected_knockout_mice). 
have_phenotype(affected_knockout_mice, ataxia). 
 
 
Domain knowledge: 
 
similar(‘Itpr1opt/opt’,  ‘ Itpr1Δ18/Δ18’ ). 
 
Recognized argument: 
 
Scheme: Analogy 
Premises: 

have_phenotype(opt, opt_pheno). 
have_genotype(opt, ‘Itpr1opt/opt’). 
have_phenotype(affected_knockout_mice,  

ataxia). 
have_genotype(affected_knockout_mice,  

‘ Itpr1Δ18/Δ18’ ). 
cause(‘Itpr1opt/opt’, opt_pheno). 
similar(opt_pheno, ataxia). 
similar(‘Itpr1opt/opt’,  ‘ Itpr1Δ18/Δ18’ ). 

Conclusion:  
cause(‘ Itpr1Δ18/Δ18’, ataxia). 
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