
The essence of functional programming on
semantic data

Martin Leinberger1, Ralf Lämmel2, Steffen Staab1,3

1Institute for Web Science and Technologies, University of Koblenz-Landau, Germany
2 The Software Languages Team, University of Koblenz-Landau, Germany

3 Web and Internet Science Research Group, University of Southampton, England

Programming with knowledge represented in description logics (DL) is error-
prone. Untyped access, e.g., provided by the OWL API [1], does not leverage
static typing which allows for proving the absence of runtime-errors. Mapping
approaches, e.g., described by [2] cannot fully capture the conceptualization of
semantic data. In [3], we present λDL, a typed λ-calculus with constructs for
operating on semantic data. This is achieved by the integration of description
logics into the λ-calculus for both typing and data access.

We rely on ALCOI as a basic description logic. We assume the possibility
of checking whether axioms follow logically from a knowledge base as well as
class expression queries. Furthermore, we only allow named individuals as query
results to avoid infinitely large result sets.

Key design principles of λDL are to treat (1) concept expressions as types in
the programming language (2) subtype inference by forwarding typing judgments
to the knowledge system as axioms during type checking, (3) typing of queries
to ensure satisfiability and proper result processing, (4) class expression queries
as well as (5) open-world querying in which we treat axioms only as true if they
are true in all models of the knowledge system.

Runtime semantics are modeled as a small-step operational semantics. As
usual, runtime errors are modeled through stuck states during evaluation. Using
the key design principles, we show that a straightforward extension of a basic
λ-calculus, is sufficient to achieve a type-safe integration. The only exception
comprises of accessing empty query results.

While the presented approach shows how a basic integration supporting sub-
typing and queries can be achieved, future work focuses on an extended query
language, in particular, a subset of SPARQL, as well as type inference for all
types of λDL and polymorphism.

References

1. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web, 2(1):11–21, 2011.

2. A. Kalyanpur, D. J. Pastor, S. Battle, and J. A. Padget. Automatic Mapping of
OWL Ontologies into Java. In Proc. SEKE 2004, pages 98–103, 2004.

3. M. Leinberger, R. Lämmel, and S. Staab. The essence of functional programming
on semantic data. In Proc. ESOP 2017, LNCS. Springer.


