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Abstract. Ontology verbalization techniques have been introduced to
automatically translate description logic (DL) axioms and derivations
to natural-language texts. This way, non-expert users can be offered
explanations for subsumptions derived by systems using ontologies for
knowledge-representation. We address the question of the readability and
understandability of explanations generated from longer chains of infer-
ence steps, as they occur with non-trivial ontologies. An experimental
design is presented to assess readers’ understanding, the readability and
the quality of the generated texts. The experiment tests verbalizations
of derivations of different lengths, and assesses the effect of a strategy
proposed to shorten explanations while retaining an adequate level of
informativeness.

1 Introduction

Ontologies serve to organize concepts, terminology and relationships in a domain
of interest, such as biology or medicine. Furthermore, logical consequences of this
knowledge can be derived using automated ontology reasoners. To make this
knowledge available to users that are not familiar with the employed formalisms
(for instance, ontology languages such as OWL), verbalization techniques have
been developed to automatically translate axioms and derivations to natural-
language statements and explanations.

Example 1. As the running example throughout this paper, consider the sub-
sumption

EsophagealPathology v DigestiveSystemPathology

that can be derived from the following axioms:

EsophagealPathology ≡ (PathologicalCondition u
∃LocativeAttribute.Esophagus)

Esophagus v GastrointestinalTractBodyPart

DigestiveSystemPathology ≡ (PathologicalCondition u
∃LocativeAttribute.GastrointestinalTractBodyPart)



The verbalization approach presented in this paper constructs a step-wise argu-
ment for this derivation in natural language, in this case:

An esophageal pathology is defined as a pathological condition that is located
in the esophagus. The esophagus is a part of the gastrointestinal tract, thus an
esophageal pathology is located in a part of the gastrointestinal tract. Further-
more, since an esophageal pathology is a pathological condition, an esophageal
pathology is a pathological condition that is located in a part of the gastrointesti-
nal tract. A digestive system pathology is defined as a pathological condition that
is located in a part of the gastrointestinal tract. Thus, an esophageal pathology
is a digestive system pathology.

Such an explanation combines the information from the relevant axioms in a
step-wise fashion and does not require readers to be familiar with the syntax of
ontology languages or description logics. However, depending on the granularity
at which knowledge is modeled in an ontology, the possible derivations, and con-
sequently the generated explanations for these derivations, can grow very long.
The state-of-the-art in ontology verbalization has so far concentrated on short
inference problems (one or two inference steps), but not addressed the problems
that arise when verbalizing more complex derivations (more than two inference
steps). Ontologies do not need to be very expressive for long and sufficiently
complex derivations to occur. All the derivations considered in the following
remain within the OWL2 EL profile.

This paper is organized as follows. Building on a short introduction to the
considered language fragment in Section 2, we present related work on verbaliza-
tion in Section 3. In Section 4 we present our own approach, which extends pre-
vious approaches by focusing on the aspect of conciseness of the generated expla-
nations. Section 5 presents an experiment that compares explanations generated
by our setup in two different variants, leading to the conclusions in Section 6.

2 Preliminaries

This work remains within the DL fragment EL with some extensions that are
common features of the OWL2 EL profile (which is based on the DL EL++). As
usual, class names are denoted with capital letters A,B,C, ..., role names with
small letters r,s, ..., individuals with small letters a,b... and the universal concept
with>. Complex class expressions are formed by using conjunction (C1uC2) and
existential restriction (∃r.C). Axioms that specify the subclass relationship be-
tween two class expressions C1 and C2, also known as subsumptions, are denoted
as C1vC2. Besides these pure EL constructors, we consider further constructors
that are common in the OWL2 EL profile. This includes the unsatisfiable concept
⊥, nominals {a} which are concepts consisting of a single individual a, domain
axioms dom(r,C) that are a shorthand for ∃r.>vC, equivalences between con-
cepts (mutual subclass relationship), denoted as C1≡C2, disjointness axioms
specifying that two class expressions C1 and C2 are disjoint, as disj(C1,C2),
and role inclusion axioms rvs. We further include role inclusions that use role
composition r1 ◦ ...◦rkvs (called property chains in OWL2 EL).
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A more comprehensive introduction to EL++ is provided by Baader et al. [2].
Despite its limited expressiveness, a number of practically relevant ontologies in
numerous application domains fall into this language fragment. This includes, for
instance, large biomedical ontologies such as SNOMED CT1, the Gene Ontology
(GO),2 and large portions of the NCI Thesaurus3 and the Galen ontology.4

3 Related Work

A correspondence between formal expressions in ontologies and natural-language
has been proposed in the form of controlled languages (cf. [11]), for instance
OWL Simplified English (OSE, [16]), Attempto Controlled English (ACE, [8]),
Sydney OWL Syntax (SOS, [4]), CLOnE [6] and Rabbit [5]. Controlled languages
define a (usually very restricted) subset of natural language that unambiguously
corresponds to DL constructors and expressions. For example, the subsumption
C1 v C2 is represented in OSE as “A [C1] is a [C2]”, where [C1] and [C2] are
text strings to represent the concept descriptions for C1 and C2, respectively. For
example, “A city is a place”. Whereas controlled languages remain closely-tied to
the corresponding formalism, some approaches have focused on text quality and
support for different (natural) languages. This includes a tool developed by the
SWAT project [18], the OntoVerbal verbalizer [12] and NaturalOWL [1]. Whereas
these approaches verbalize axioms in a knowledge base, some approaches have
considered explanations generated from derivations. These include the Classic
system [13], the “tracing” facility of the ELK reasoner [9], and the approaches
of Borgida et al. [3] and Nguyen et al. [14]. Whereas the explanation facilities of
ELK and Classic do not use natural language, Borgida et al. use text patterns
for inference rules, but retain formula language for axioms. The approach of
Nguyen et al. [14] is similar to ours, since it employs rule-based proofs and
patterns to produce natural-language explanations, such as, for example:

(a) Every A is a B.
(b) Every B is a C.
→ (c) Every A is a C.

The generated explanation combines such patterns using the text pattern
“Statement (c) is implied because (a) ... and (b) ...”. Thus, the structure re-
mains quite close to how proofs are presented, but the formulae are replaced
by more commonly-understandable text patterns. To test the understandability
of these patterns, an experiment was conducted where the acceptance of these
patterns was tested. Different rules and corresponding text patterns were found
to vary greatly in whether they were accepted as correct by experiment par-
ticipants (cf. [15]). The understandability of the individual verbalized inference
rules was used to predict the understandability of verbalized two-rule inference
problems, and was indeed found to be correlated with the empirically measured
understandability [15].

1http://www.snomed.org/snomed-ct 2http://www.geneontology.org
3https://ncit.nci.nih.gov/ncitbrowser/ 4http://www.opengalen.org/
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4 Generating Verbalized Explanations for Derivations

The generation of explanations is based on two main components, a consequence-
based reasoning system for generating step-wise derivations and a natural-lan-
guage generation component to transform these formal derivations to text. In
the following, these two components are introduced briefly. Based on this, we
address the problem of the inconciseness of some of the generated explanations
by introducing techniques and heuristics that shorten the explanations. The pre-
sented approach has been implemented as a prototype system and is available
as a plugin5 for the ontology editor Protégé.6

4.1 Reasoning

Derivations are constructed using a rule-based inference system with a custom
set of inference rules. Using a custom system allows us to include inference rules
that are logically redundant, but which help to obtain shorter derivations, and
thus shorter explanations. The current implementation includes and modifies
rules proposed by Nguyen et al. [14] and the rules employed in the ELK sys-
tem [10] and incorporates a few additional inference rules. Fig. 1 shows some
of the inference rules relevant for the remainder of this paper (together with
verbalization patterns, as discussed further below). Note that the introduced
modifications and additions do not impact the formal properties of the original
rule systems, instead they introduce shortcuts (e.g. Rv≡) and n-ary versions

of originally binary rules (e.g. R+
u/R5). The full ruleset for the DL fragment

considered in this paper is shown in [17, Appendix A].
Since the current implementation of the consequence-based reasoning proce-

dure is not as performant on large ontologies as well-optimized tableau-based
reasoners, proof search is not performed on an entire ontology. Rather, in a pre-
processing step, a justification [7] (a minimal set of axioms required to prove a
derived axiom) is obtained using an off-the-shelf tableau-based reasoner (such
as FaCT++,7 HermiT,8 etc.). Then proof search is performed only on the set
of relevant axioms. Such pre-processing is also used by related work [14]. In the
example from the introduction, the following proof tree is obtained (with abbre-
viations EP: EsophagealPathology, DSP: DigestiveSystemPathology, GTP: Gas-
trointestinalTractBodyPart, PC: PathologicalCondition, loc: locativeAttribute):

EP≡PCu∃loc.ER≡−
EPvPC

EP≡PCu∃loc.ER≡−
EPv∃loc.E EvGTP

R∃/R15
EPv∃loc.GTP

R+
u/R5 EPvPCu∃loc.GTP DSP≡PCu∃loc.GTP

Rv≡
EPvDSP

5https://verbalizer.github.io/ 6http://protege.stanford.edu/
7http://owl.man.ac.uk/factplusplus/ 8http://www.hermit-reasoner.com/
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C1≡C2
R1

C1vC2

—: According to its definition, v(C1vC2).

C1vC2u ...uCn
R−u /R2 2≤ i≤n

C1vCi

—: Hence, v(C1vCi).

(1) C1vC2 ... (n) C1vCn+1
R+
u/R5 C1vC2u ...uCn+1

(1) ... (n): Since v(C1vC2) and ... and v(C1vCn+1), v(C1vC2u ...uCn+1).
(i), (j),...: Furthermore, since v(C1vCi) and v(C1vCj) and ...,

v(C1vC2u ...uCn+1).
— : Therefore v(C1vC2u ...uCn+1).

(1) C1vC2 (2) C2vC3
Rv /R12

C1vC3

(1)&(2): Since v(C1vC2) and v(C2vC3) it follows that v(C1vC3).
(1): v(C1vC2), therefore being v(C3).
(2): Given that v(C2vC3), v(C1vC3).
— : Thus, we have established that v(C1vC3).

(1) C1v∃r.C2 (2) C2vC3
R∃/R15

C1v∃r.C3

(1)&(2): v(C1v∃r.C2) which [is] v(C3). Therefore, v(C1v∃r.C3).
(1): v(C1v∃r.C2), thus v(C1v∃r.C3).
(2): v(C2vC3), thus v(C1v∃r.C3).
— : Therefore, v(C1v∃r.C3).

(1) C1vC2 (2) C2≡C3
Rv≡

C1vC3

(1)&(2): v(C2) is defined as v(C3). Thus, v(C1vC3).
— : Thus, v(C1vC3) according to the definition of v(C2).

C1≡C2u ...uCnR≡− 2≤i≤n
C1vCi

— : v(C1) is defined as v(Ciu ...uCn).

Fig. 1. Selected inference rules with verbalization patterns. Verbalization of formulas
is denoted as v(...). Rules where premises are numbered have alternative different
verbalization patterns (indicated by the corresponding numbers), which are selected
according to which premises need to be mentioned at the position where the rule is
applied within a proof. Numbered rule names refer to corresponding/similar inference
rules in Nguyen et al. [14], R−u , R+

u , Rv , and R∃ refer to corresponding/similar rules
in ELK.

5



4.2 Verbalization

First, the inference steps are ordered in a linear sequence for being output as
text. For this, a post-order traversal of the proof tree (as seen from the root of
the tree, which contains the conclusion of the derivation) is performed. For each
inference rule it is specified in which order its children (i.e., premises) are being
output, which corresponds to the order in which the rules are indicated in Fig. 1.
Then, the text patterns in Fig. 1 are applied to transform the derivation into
text. For each rule, the exact pattern that is applied depends on whether one or
several of its premises have been presented immediately before in the generated
text (for example, as a conclusion of a previous step), in which case they should
not be repeated.

In the running example, the first step to be output is the application of
R≡−(top left in the proof tree), with its template producing by default: “An
esophageal pathology is defined as a pathological condition that is located in
the esophagus”. The second application of R≡− (top center in the proof tree)
produces no output, for being detected as identical to the previous output. The
next rule application to be output is R∃/R15. Since the first premise is counted
as being “covered” by the previous output, only the second premise (marked
as (2)) is output, together with the conclusion, i.e. the second pattern is cho-
sen: “The esophagus is a part of the gastrointestinal tract, thus an esophageal
pathology is located in a part of the gastrointestinal tract.” As can be seen in
this example, some intermediate conclusions remain implicit (e.g. EPvPC and
EPv∃loc.E as conclusions of R≡−), a strategy we discuss below.

4.3 Techniques and Heuristics for Improving Text Quality

The aim of conciseness of the verbalized derivations is pursued at three levels.
At the level of the generated proofs, inference rules are used that correspond
to two or more applications of simpler rules and provide a kind of shortcut.
In the running example, one application of Rv≡ (the last step) replaces the
application of R1 and Rv /R12.

Secondly, some inference rules are considered to be trivial and their applica-
tion is simply omitted altogether in the text output. Among the rules in Fig. 1,
R−u/R2 represents such an inference rule. Furthermore, for some of the extra
inference rules, the conclusion is not being output (again, for being considered
obvious). As illustrated above, this is the case for R≡−.

Finally, at the level of individual statements, the text patterns are designed
such that unnecessary repetitions are avoided. For example, the “middle term”
in Rv /R12 only needs to be mentioned once (in contrast to the pattern used
by [14] and shown in Section 3). Furthermore, the verbalization mechanism uses
annotations to replace class and role names with more readable names, where
provided. This was used in the running example to supply the concept origi-
nally named NAMEDGITractBodyPart with a more readable label “part of the
gastrointestinal tract”.
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When using more “complex” inference rules and hiding inference rule appli-
cations (referred to as “shortening” in the following), the question is whether
the understandability of the resulting explanations is retained. This prompted
an investigation presented in the following section.

5 Experiment

To test the understandability and text quality of generated explanations for
derivations in ontologies, a questionnaire-based experiment was devised. This
experiment allowed for a comparison between explanations in their unshortened
form and their shortened form according to the presented heuristics. Since no
such experiment has been conducted before, we explored with a small number
of participants whether its design is suited as an instrument for assessing differ-
ences between shortened and unshortened explanations. We consider the results
informative as a preparation for larger studies and also for the further develop-
ment of the presented verbalization techniques.

Procedure Participants were randomly assigned to two groups. Eight explana-
tions were shown to each participant. The first group received four explana-
tions in their unshortened version and four in their shortened version. The sec-
ond group received the corresponding shortened and unshortened alternatives of
these explanations. The shortened version of an explanation uses logically redun-
dant rules (Rv≡ and R≡− in the running example), whereas the unshortened
version uses only the most basic rules. In the unshortened case, verbalizations of
R−u/R2 are omitted. For comparison, Fig. 2 shows both versions for the running
example used in the experiment.

As an objective test for participants’ careful reading and understanding, par-
ticipants were asked to indicate for each explanation whether it is logically cor-
rect. Two out of the eight explanations were manipulated to be erroneous by
replacing one occurrence of a classname by a different one which was not part of
the initial axioms. This manipulation was designed to ensure that participants
read the text properly, but not to test their formal reasoning skills.9 Note also
that the two last sentences of Fig. 2 (b) are generated from one rule application
of Rv≡. The employed pattern was different from the one presented in Fig. 1, in
that it lacks the part “defined as” to make clear that it refers to an equivalence
and not a subsumption. This deficiency was detected during the experiment and
corrected in the verbalization system.

Understandability and readability of the explanations were assessed using a
questionnaire to be answered on a 7-point scale. Participants were asked for rat-
ings pertaining to key aspects of the text quality of the presented explanations;
namely understanding/comprehension, conciseness and appreciation. The topic
domains for which the explanations were generated were chosen to be relatively

9It is well known that untrained participants in reasoning experiments do not always
apply classical logical reasoning. For example, consider the Wason selection task [19].
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An esophageal pathology is defined as a pathological condition that is located in the esophagus.
Hence, an esophageal pathology is a pathological condition.
Additionally, an esophageal pathology is located in the esophagus.
The esophagus is a part of the gastrointestinal tract, thus an esophageal pathology is located in a
part of the gastrointestinal tract.
Furthermore, since an esophageal pathology is a pathological condition, an esophageal pathology is
a pathological condition that is located in a part of the gastrointestinal tract.
According to the definition of a digestive system pathology, a pathological condition that is located
in a part of the gastrointestinal tract is a digestive system pathology.
Thus, we have established that an esophageal pathology is a digestive system pathology.

(a) Unshortened Explanation

An esophageal pathology is defined as a pathological condition that is located in the esophagus.
The esophagus is a part of the gastrointestinal tract, thus an esophageal pathology is located in a
part of the gastrointestinal tract.
Furthermore, since an esophageal pathology is a pathological condition, an esophageal pathology is
a pathological condition that is located in a part of the gastrointestinal tract.
A digestive system pathology is a pathological condition that is located in a part of the gastroin-
testinal tract. Thus, an esophageal pathology is a digestive system pathology.

(b) Shortened explanation

Fig. 2. Explanation for “An esophageal pathology is a digestive system pathology.”
employed in the experiment in unshortened and shortened form.

abstract and unfamiliar to most participants. Therefore, when judging readabil-
ity one has to take into account that the domain itself may be challenging, an
aspect for which questions were included under appreciation. The items are:

Understandability
– I can follow the reasoning steps presented in the explanation. (Question 1)

Conciseness
– I find that some steps in the explanation are so obvious that they should be

skipped. (Question 2)
– The explanation conveys less information than I need to fully understand it.

(Question 3)
– I find that the explanation should be made more concise. (Question 4)

Appreciation
– The text of the explanation is well-formed (according to writing conventions)

(Question 5)
– The sentences are arranged such that they fit together well. (Question 6)
– I find the text easy to read. (Question 7)
– I am familiar with the technical terms in this text. (Question 8)
– The technical terms make it difficult for me to follow the text. (Question 9)
– The topic of the text makes it difficult for me to read the text. (Question 10)

At the beginning of the experiment, participants were informed that they
will be asked to provide judgments for automatically generated explanations.
An example was shown together with the correct answer and an explanation
(reproduced in [17, Appendix B]). Then participants were asked for demographic
data and prior experience with the following fields of science: computer science,
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artificial intelligence, mathematics/formal logic, philosophy, linguistics, physics,
biology, medicine, chemistry. Participants received the eight explanations in ran-
dom order, each with the same set of questions. The presentation of each expla-
nation was preceded by a presentation of the axioms that were assumed to hold
(in verbalized form) and the conclusion derived from them (also verbalized). A
screenshot showing the running example together with the associated question-
naire is reproduced in [17, Appendix B]. After the experiment, participants were
offered a free-text field for any comments on the explanations and were thanked
for their participation. The questionnaire was administered using LimeSurvey.10

Participants Seven current and former members of Ulm University took part
in the experiment. None of them was involved in the development of the pre-
sented verbalization techniques and the experiment. Participants included one
female and six males and were aged between 20 and 34. Four indicated to be
fluent in English, two indicated good English proficiency and one intermediate
proficiency. All participants reported experience in computer science, four in Ar-
tificial Intelligence, and three in mathematics/formal logics.

Materials To generate a pool of verbalized derivations, the verbalization tool
was run on the ontologies in the TONES repository.11 To enable the retrieval of
subcorpora of verbalizations according to a set of criteria (e.g. number of infer-
ence steps, employed rules), explanations and their properties were stored in a
MySQL12 database. The TONES ontology repository was chosen for including
a good level of diversity regarding the included ontologies’ domains and com-
plexities. Since TONES includes ontologies of different levels of expressivity, only
derivations that fell into the language fragment handled by the verbalization tool
were generated. Still, a sufficiently large and diverse corpus of explanations in
various domains (anatomy, chemistry, geology, physics, but also the “pizza” tu-
torial domain13) was obtained. Most importantly, this set represents “ordinary”
ontologies that were not designed with verbalization in mind, but which are likely
to be encountered by potential users of the verbalization tool. To restrict the
scope of the experiment in a sensible way, the pool of considered explanations
was further narrowed down according to the following criteria:
– The explanations are of medium length (3–5 inference steps when shortened).
– The verbalizations make use of additional rules or the skipping of rules in the

presentation, as discussed in this paper, such that the effect of shortening
can be studied.

– The axioms from which the verbalizations are generated are plausible accord-
ing to common sense. Some of the included ontologies were found to contain
unusual or erroneous formalizations of their domain. For example, some on-
tologies include axioms for a concept – which in the real world is known
to have instances – such that the concept becomes unsatisfiable (probably

10https://www.limesurvey.org/de/ 11https://zenodo.org/record/32717
12https://www.mysql.com/de/
13http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/

ProtegeOWLTutorialP4_v1_3.pdf
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long explanation
short explanation

Fig. 3. Scores on the ten questions averaged across the four shortened and unshortened
explanations on a 7-point scale from 1: strongly agree to 7: strongly disagree. Unfilled
circles represent the average scores of a single participant. Filled black circles represent
the average across all participants, the black horizontal bar represents the median.
Whiskers indicate the the entire range of the individual means. The boundaries of
boxes indicate the upper and lower quartile.

unintendedly) and therefore the concept can be shown to be a subconcept
of any concept. Some ontologies also contain equivalences with apparently
unintended consequences.

– Verbalizations that rely on equivalences between several concepts with the
same classname in different ontologies (with different URLs) were excluded.
Such equivalences result in statements such as “since a person is a person...”.

– Explanations with excessively long concept names were also excluded. How-
ever, since long concept names are quite common in the investigated ontolo-
gies, compound concept names of up to three words were accepted.

In order to provide a realistic selection of explanations for the experiment (in-
stead of hand-picking some “nice” explanations), and thus a realistic evaluation
of the verbalization tool, the presented explanations were selected at random
from the pool that fulfilled the criteria stipulated above. By default, the verbal-
ization tool provides a simple highlighting of concept descriptions by displaying
them in a different color (blue) than the surrounding text (black). Without such
highlighting, the reading of the often long sentences containing long compound
concept names is made unnecessarily tedious.

Results The two manipulated explanations were always correctly detected to be
wrong by the participants except in one case. The non-manipulated explanations
were mostly judged as correct, as predicted. One participant noticed the problem
with the verbalization of Rv≡.

Figure 3 shows the subjects’ averaged scores on Questions 1-10 for long and
short explanations. The understandability of the explanations was judged favor-
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ably by the participants (Question 1), but not always found to be ideal. Partic-
ipants’ opinions on conciseness (Questions 2-4) turned out to be mixed and not
too strong. Text quality (Questions 5-10) was also judged favorably. The answers
of the participants to most questions are concentrated within relatively precise
ranges and do not occupy the endpoints of the scale. Inter-rater reliability was as-
sessed using Kendall’s coefficient of concordance (corrected for ties) for the seven
subjects’ averaged scores on Questions 1-10 for long and short explanations (as
shown in Fig. 3) and was found to be good (W =0.617, χ2(19)=82.1, p<0.001).
Concordance for individual answers measured separately for both experimen-
tal groups (with three and four participants each) was also good (W =0.759,
χ2(79)=180, p<0.001 and W =0.561, χ2(79)=177, p<0.001).

This is a favorable outcome with respect to the question whether this exper-
imental setup can be used as an instrument to detect differences in the scores
related to the experimental manipulation, i.e. the shortening of the explanations,
provided a larger number of participants to ascertain sufficient statistical power.
For example, if a larger number of participants leads to a statistically signifi-
cant difference in responses to Question 4 (the question whether the explanation
should be made more concise), this would provide evidence for a positive effect
of shortening on perceived conciseness of the explanations.

6 Conclusions

This work has, for the first time, investigated the generation of verbalized ex-
planations for non-trivial derivations consisting of several inference steps. In the
evaluation, verbalizations for up to seven inference steps (e.g. the running exam-
ple in its unshortened form) were considered. To make such explanations more
concise, we propose the use of an extended set of inference rules and the hiding
of inference steps in the presentation. The presented experimental design can be
used to test whether such adjustments impact the understandability and quality
of the generated explanations. Our small-sample study provides a first indication
of how these measures turn out, which will be helpful for conducting a larger
follow-up study. Whereas the TONES repository was considered an instrumen-
tal choice for generating explanation material in a first step, more up-to-date
corpora of ontologies should be considered in future studies. Furthermore, the
experiment provided some first evidence supporting the understandability of
such explanations in general, in spite of the considerable length of the deriva-
tions and the technical jargon used in the considered domains. In how far this is
also the case for users with less background in technical domains than the par-
ticipants of this study (in this case, all had a background in computer science)
is to be investigated as part of future work.
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