ASP for Minimal Entailment in a Rational Extension of $SROEL$ (Extended Abstract)*

Laura Giordano and Daniele Theseider Dupré

DISIT, Università del Piemonte Orientale, Italy

This work exploits Answer Set Programming (ASP) for reasoning in a rational extension of $SROEL(\sqcap, \times)$ [5], the low complexity description logic which underlies the OWL EL ontology language. It is based on a preferential approach to defeasible reasoning in description logics (DLs) [2, 3], which has been developed along the lines of the preferential semantics introduced by Kraus, Lehmann and Magidor [4, 6].

Following [3], we have considered an extension of $SROEL(\sqcap, \times)$ with a typicality operator T, which allows the definition of defeasible inclusions $T(C) \subseteq D$ ("the typical C elements are Ds"). In this extension, $SROEL(\sqcap, \times)^R T$, instance checking under rational entailment has polynomial complexity. We observe that the notion of minimal canonical model introduced in [3] as a semantic characterization of the rational closure for ALC is not adequate to capture many knowledge bases (KBs) in $SROEL(\sqcap, \times)^R T$. In particular, when nominals or the universal role are used, a KB may have no canonical model at all. The T-minimal model semantics is introduced as an alternative to the minimal canonical model semantics. It weakens the canonical model condition in [3], by requiring that only for the concepts C such that $T(C)$ occurs in the KB (or in the query), an instance of C has to exist in the model, when C is satisfiable wrt the KB. For the KBs having minimal canonical models with the same rank assignment to concepts as in the rational closure, we show that T-minimal models capture the same defeasible inferences as minimal canonical models.

We prove that, for arbitrary $SROEL(\sqcap, \times)^R T$ KBs, instance checking under T-minimal entailment is Π^p_2-complete. Based on a Small Model result, where models correspond to answer sets of a suitable ASP encoding, we exploit Answer Set Preferences and the asprin framework [1] for reasoning under T-minimal entailment.

References

* This extended abstract is based on the paper ”ASP for minimal entailment in a rational extension of SROEL”, published in TPLP, 16(5-6):738–754, 2016. The research has been partially supported by INDAM - GNCS Project 2016 Defeasible Reasoning in Description Logics.