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Abstract. Having used OWL-S for some time, both in the form of the
‘Virtual Machine’ [12] and our own experimental implementation [7], the
Cashew project has drawn a number of conclusions about its existing
process model which we assert as follow:
1. OWL-S is not service composition;
2. OWL-S defines orchestration but not choreography;
3. OWL-S is incompatible with choreography;
4. OWL-S is insufficiently composable;
5. OWL-S needs compositional semantics.

This position paper will details, and attempt to justify, these assertions
and sketch the Cashew approach to their solution.

OWL-S may be said to concern the use of ‘semantics’, in the sense of the
Semantic Web [2], to describe services, in the sense of Web Services [16]. This
involves the use of ontologies to describe the concepts dealt with by services, but
also extends to the static (i.e. structural) description of service composition.

On the other hand, ‘semantics’, as usually understood by computer scientists
- where formal semantics are given to computation, a dynamic, rather than a
static, paradigm - has only begun to be applied1. We shall call this latter form of
semantics ‘behavioural semantics’. During its early incarnation in DAML-S, the
basis of the OWL-S process model received two forms of behavioural semantics:
one oriented towards process calculus style [1], and one in Petri net style [10].
Missing, however, was a concern for the principal of compositionality - that the
semantics for a composition should derive directly from the individual semantics

of the component parts (and not a recomputation of these).
The need for compositionality in semantics for the Semantic Web in general

is already acknowledged [13] [14]. The reason compositionality is such an im-
portant property of semantics is that this allows a semantic model to be built
by composition alongside the definition of syntax, for instance in an interactive
editor, as well as being the enabling property of semantics for modular analysis.

⋆ This work is supported by the DIP project, an Integrated Project (no. FP6 - 507483)
supported by the European Union’s IST programme.

1 While reasoning might involve dynamics, for instance in logic programming or in
theorem proving, formal semantics are only given to the logic, not the computation.
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The first major result of the Cashew project has been to define a compo-
sitional semantics for OWL-S2 [11]. Rather than define a formal behavioural
semantics directly for OWL-S process models, we chose to go through two inter-
mediate levels. The first is an equivalent language to the process model ontology,
but with more scope for composition (hence, in fact, making compositionality a
more difficult principal to provide for). In particular, it is necessary in OWL-S to
define all of the incoming dataflow for the performance of a ‘process’ at the point
the performance is declared (as part of a composite process). In our intermediate
workflow language, connections in the dataflow become a first-class constructs
so that these can be introduced (composed) separately. This is a more natural
model for interactive editing. We shall see that this workflow language becomes
one of the bases for our formal language Cashew-S for service composition.

The second intermediate in our semantic translation is Cashew-Nuts, a true
process language. This is a process calculus defined by extension of CCS [9]
with multi-party synchronisations with an implicit notion of priority. As in CCS
its primary behavioural semantics are given in the form of labelled transition
systems via structured operational semantics. Compositionality through strong
bisimulation — but also a ‘temporal observation congruence’, which allows ab-
straction from internal states and communications — has been established.

Having discussed the last two assertions, and our existing work, we now move
on to make our position statement as embodied in the first three assertions. The
WSMO group have proposed that the behavioural models for each semantic web
service should consist of both an ‘orchestration’ and a ‘choreography’, that is to
say an internal and external view of its composition [15]3. Assertion 2 is by now
well accepted and has been discussed by other authors.

What seems not to have been documented is how a lack of fit with the
general view of services, asserted as 1, affects the ability to adopt choreography
into the OWL-S world. In the ‘Web Services Architecture’, services in general
offer multiple operations [16]. The interpretation given to the processes defined in
OWL-S is that each atomic process is an operation. Similarly, the orchestration
forms only one operation. Consequently we could say that OWL-S process models
really define ‘operation composition’ and do not operate at the service level.

The problem here is that (one of) the aim(s) of (WSMO’s) choreography is
to establish a ‘protocol’ by which a client’s session with a service can invoke its
operations. In the commonly used bookshop example, it might be necessary to
log in before a purchase can be made. Even though an OWL-S orchestration
could involve both the ‘log in’ and ‘purchase’ operation, it would not be made
clear that these belonged to the same session (one orchestration could operate
across more than one session, for instance in mediating between two accounts).

2 Note that it makes no sense to ask whether OWL-S is compositional or not — this
is a semantic property that applies to a given semantics for OWL-S.

3 In this, the use of the term choreography, which is not novel or original to WSMO,
is slightly different to other definitions, such as W3C’s, where a multi-party conver-
sation, to achieve some particular task, is implied.
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IRS-III [3], being one of the two reference implementations for WSMO, tack-
les this aim by splitting two separate notions of choreography. A deployed service
choreography describes interactions with all permitted clients from the service’s
point of view. The diagram on the following page illustrates many of the features
we should like to express in these choreographies. It shows not only that purchase
is only possible in a ‘logged-in’ state, but that logging out is also only possible
in this state and rules out purchase until another log-in. Meanwhile searches are
possible regardless of log-in, and also demonstrate optional inputs — a client
can search on a title, an author or (but not necessarily) both.

On the other hand, client choreographies, formalised in [4], are like W3C
choreographies in expressing a conversation that achieves a particular task. The
difference is that only a single client is involved, and the interaction is expressed
from that client’s point of view. That client may ultimately be an orchestration,
so that the messages are produced and consumed are routed to and from multiple
other parties, but this is arranged separately from the client choreography in
order that the choreography can be reused. The means for this reuse is the
creation of abstract goals, expressed in an ontology, which are mapped as being
realised by client choreographies.

In this way the coordination between low-level operations, and the depen-
dencies between them (as expressed in the deployed service’s choreography),
is isolated from the workflow. IRS-III can be viewed as a broker allowing an
abstract orchestration of goals to be built, to achieve some high-level task. At
run-time IRS locates client choreographies by which the goals can be realised.

In the current implementation, client choreographies are directly expressed
in abstract state machines [5], and a fragment of OWL-S has been used as the
basis of orchestration of goals [8]. The intention of the Cashew project is to
show how a high-level ontology can be created for orchestrations, generalising
on OWL-S, as well as the choreographies of deployed services and their clients.
Furthermore, we shall show how the basic ideas of using UML Activity Diagrams
to illustrate workflows, for instance implemented in [6], can be extended, how
client choreographies can also be illustrated in Activity Diagrams, and service
choreographies can be illustrated in State Machine Diagrams, as shown on the
following page.

Most importantly, we shall show how our compositional OWL-S semantics
can be built upon to give an operational semantics to all these models, and how
these semantics can be grounded in abstract state machines for compatibility
with WSMO. In this way we shall create a full implementation for orchestration
within the IRS and, furthermore, have a formal model on which conformance
properties can be checked.
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