
Extending OWL with Maximal Subroperties: An 
Approach to Define Qualified Cardinality Restrictions 

and Reflexive Properties 

Stanislav Pokraev and Rogier Brussee 

Telematica Instituut, P. O. Box 589,  
7500 AN, Enschede, The Netherlands  

{firstname.lastname}@telin.nl  

Abstract. This paper proposes a simple, single extension of OWL, namely 
maximalSubPropertyOf that allows to “localize” a given property to a fixed 
domain and range. As an application we show that both qualified cardinality re-
striction and reflexive properties can be defined using this construction in con-
junction with existing OWL functionality.  

1 Introduction 

 
When we model, we need a way to say that one or more individuals of a class can be 
related to one or more individuals of the same or some other class. For example, we 
might need to state that an individual of class Component can be part of an individual 
of class Machine or that an individual of class Person can be part of zero or more 
individuals of class Organization. We usually do this by defining a property  
isPartOf and then creating two subproperties, e.g.  isComponentPartOfMachine 
(with domain Component, range Machine and cardinality 1) and  
isPersonPartOfOrganization (with domain Person, range Organization and no 
defined cardinality). In this way, whenever we state that some of the subproperties 
hold for two individuals of the respective classes, we can infer that the property  
isPartOf also holds for the same individuals. However, anytime we state that a  
Component c isPartOf a Machine m we implicitly mean that c  
isComponentPartOfMachine m, and likewise if Person p isPartOf an Organization 
o we implicitly mean that p isPersonPartOfOrganization o. However, it is impos-
sible to express such implications in the current version of OWL.  

In this paper we propose a simple, single extension of OWL, namelly maximalSub-
PropertyOf, that allows expressing this. For example, it would be more convenient 
and more precise to say that isComponentPartOfMachine is the maximal subproperty 
of isPartOf with domain Person and range Machine, and isPersonPartOfOrganiza-
tion is the maximal subproperty of isPartOf with domain Person and range Organi-
zation. This way, we can simply use isPartOf to state relations between individuals, 
and later on query using the more specific subproperties isComponentPartOfMachine 



and isPersonPartOfOrganization or vice versa. In addition, maximal subproperties 
can be used to address the lack of the qualified cardinality restrictions and reflexive 
properties in the current version of OWL. 

2 Maximal Subproperty 

We propose a simple, single extension of OWL, namely maximalSubPropertyOf. The 
formal semantics of maximalSubPropertyOf is defined as follows: 

 
 
∃maximalSubPropertyOf(Q, P) ∧ ∃domain(Q, D) ∧ ∃range(Q, R)  → 
(∀x.D(x) ∧ ∀y.R(y) ∧ ∃P(x, y) →  ∃Q(x, y) 
 
 

where Q with domain D and range R is the maximal subproperty of the property P. 
The maximal subproperty of P is the unique subproperty which is maximal among all 
subproperties of P with the given domain D and range R, i.e. the domain and range of a 
maximalSubPropertyOf is part of its definition. A more natural name for this con-
struction is the restriction of a property to the given domain D and range R, as the 
maximal subproperty of P is the same as the property P between D and R, and unde-
fined outside. This point of view can be seen from the following example. Consider 
the sine function as a property on the real numbers. Then the restriction of sine to a 
function on [-π/2, π/2] with values in [-1, 1] is the maximal subproperty of sine with 
domain [-π/2, π/2] and range [-1, 1]. Note that on this domain the sine function is 
bijective, i.e. a functional and inverse functional. However given the use of restric-
tion as a class constructor in OWL this term would be confusing. 
 

Lemma: 
Suppose that  

 
Q maximalSubPropertyOf P;  
  domain D;  
  range R. 

 
Then the following statements are equivalent 

 
(1) x Q y. 
(2) x a D.  y a R.  x P y. 

 
Proof 
(1 => 2) trivial. 
(2 =>1) is precisely the maximality of the maximalSubPropertyOf.  

 
It follows from the lemma that in the absence of further statements involving Q, de-

cidability is as difficult as classifying individuals.  
 
We now consider some applications.  



Qualified Cardinality Restriction 

OWL allows the definition of cardinality restrictions which are used to constrain the 
number of values of a particular property. Suppose we want to define a building with 
at least 4 fire escape stairs:  

 
Building a owl:Class . 
FireEscapeStairs a owl:Class . 
hasFireEscapeStairs a owl:ObjectProperty ; 
  rdfs:domain Building ; 
  rdfs:range FireEscapeStairs . 
BuildingMin4Fire a Building ,  
  [a owl:Restriction;  
     owl:onProperty hasFireEscapeStairs; owl:minCardinality 4  
  ] . 
 
Now, suppose we want to refine our model and say that at least two of the fire es-

cape stairs should be external fire escape stairs. To do that we need a mechanism to 
state that the property hasFireEscapeStairs must have owl:minCardinality 2 
when its value has type FireEscapeStairs and owl:minCardinality 2 when its 
value has type ExternalFireEscapeStairs. In the OWL community this is known as 
qualified cardinality restriction and unfortunately, is unexpressable by the current 
version of OWL. The need for qualified cardinality restriction is motivated by Alan 
Rector in [3]. 

One possible workaround (proposed by Guus Schreiber in [1]) is to define a prop-
erty hasExternalFireEscapeStairs with a range ExternalFireEscapeStairs as a 
subproperty of hasFireEscapeStairs and restrict the number of its values to at least 
2: 

 
Building a owl:Class . 
FireEscapeStairs a owl:Class . 
ExternalFireEscapeStairs rdfs:subClassOf FireEscapeStairs . 
hasFireEscapeStairs a owl:ObjectProperty ; 
  rdfs:domain Building ;  
  rdfs:range FireEscapeStairs . 
hasExternalFireEscapeStairs rdfs:subPropertyOf hasFireEscapeStairs ; 
  rdfs:range ExternalFireEscapeStairs . 
BuildingMin4FireMin2External a  
  [a owl:Restriction;  
   owl:onProperty hasFireEscapeStairs; owl:minCardinality 4], 
  [a owl:Restriction;  
   owl:onProperty hasExternalFireEscapeStairs; owl:minCardinality 2]. 
 
However, this workaround has a serious reasoning limitation. Suppose we define 

an instance of a Building only using the hasFireEscapeStairs property: 
 
stairs1 a FireEspaceStairs ; 
stairs2 a FireEscpaeStairs ; 
stairs3 a ExternalFireEscpaeStairs ; 
stairs4 a ExternalFireEscopeStairs ; 
 
aBuilding a Building ; 
  hasFireEscapeStairs stairs1 ; 
  hasFireEscapeStairs stairs2 ; 



  hasFireEscapeStairs stairs3 ; 
  hasFireEscapeStairs stairs4 . 
  
The instance cannot be classified as BuildingMin4FireMin2External because 

aBuilding does not have at least two properties hasExternalFireEscapeStairs with 
values of type ExternalFireEscapeStairs.  
 
Now, let us redefine the property hasExternalFireEscapeStairs using  
maximalSubPropertyOf: 

 
hasExternalFireEscapeStairs a 
  owlx:maximalSubPropertyOf hasFireEscapeStairs ; 
  rdfs:domain Building ; 
  rdfs:range ExternalFireEscapeStairs . 
 
This way, the individual aBuilding can be classified as a  

BuildingMin4FireMin2External because the definition and the facts 
 
stairs3 a ExternalFireEscpaeStairs ; 
stairs4 a ExternalFireEscopeStairs ; 
aBuilding a Building ; 
  hasFireEscapeStairs stairs3 ; 
  hasFireEscapeStairs stairs4 . 

 

imply 
 

  aBuilding hasExternalFireEscapeStairs stairs3 . 
  aBuilding hasExternalFireEscapeStairs stairs4 . 

3   Reflexive properties 

The maximalSubPropertyOf allows defining reflexive properties.  A reflexive 
property defined on a domain D is a property that holds between each individual of D 
and itself, i.e.: 

 
reflexive(R)  ∧  ∃domain(R, D) ∧  ∃range(R, D)  → (∀x.D(x) →  ∃R(x, x))  

 
Examples of reflexive properties are “is equal to”, “is subset of”, "is less than or 
equal to" and “is greater than or equal to”.  

 
If we consider R as a subset of D × D (i.e. we consider the interpretation), then R is 

reflexive if and only if the diagonal in D × D is contained in R. This geometric interpre-
tation shows a natural way to define a reflexive property using  
maximalSubPropertyOf. The diagonal of owl:Thing × owl:Thing  corresponds to 
owl:sameAs. To get the diagonal in D × D, we merely have to restrict the property 
owl:sameAs to D:  

 
sameAsOnD owlx:maximalSubPropertyOf owl:sameAs; 
  rdfs:domain D ; 
  rdfs:range  D . 



aReflexiveProperty a owl:ObjectProperty; 
  rdfs:domain D ; 
  rdfs:range D . 
sameAsOnD rdfs:subPropertyOf aReflexiveProperty . 

   
A reflexive and transitive property P on class C is a property such that the composi-
tion of zero or more properties P is a subproperty of P, where a composition of zero 
properties P equals the restriction of owl:sameAs to the domain C (i.e., the composi-
tion identity on C). This point of view is very convenient when dealing with part-
whole relations. This was recognized by the W3C best practices workgroup and de-
scribed in an extensive workaround[2]. However, this is merely an approximation of 
reflexivity as they point out themselves. We present an example to illustrate the prob-
lem:  
 
Suppose we want to describe that a printer is located in the corner of a room: 

 
Space a owl:Class . 
Building rdfs:subClassOf Space 
Room rdfs:subClassOf Space . 
Corner rdfs:subClassOf Space . 
Printer a owl:Class . 

 
isLocatedIn a owl:ObjectProperty ; 
  rdfs:range Space . 
isPartOf a owl:TransitiveProperty ;  

rdfs:domain Space ; 
rdfs:range Space . 

 

We create instances of rooms, corners and printers.  
 

aBuilding a Building. 
aRoom a Room . 
aCorner a Corner . 
aPrinter a Printer . 
 
aRoom isPartOf aBuilding. 
aCorner isPartOf aRoom . 
aPrinter isLocatedIn aCorner . 
 

Now suppose we want to know whether aPrinter is in aRoom and if yes, where ex-
actly in the room it is located. Therefore, we pose a query  
 
isLocatedIn(aPrinter, ?x) AND isPartOf(?x, aRoom) 

 

The result we obtain is  
 
?x = aCorner 

 
Now, suppose that we were less accurate in describing the location of our printer and 
instead of  

 
aPrinter isLocatedIn aCorner . 

 

we stated  
 



aPrinter isLocatedIn aRoom .  
 

The same query now returns no results because there is no statement (neither explicit 
nor inferred)  

 
aRoom isPartOf aRoom . 
 

i.e. the isPartOf(?x, aRoom) will never evaluate true. 
 
We can add isPartOf property for all individuals of type Space, but clearly a more 
elegant solution is to make isPartOf a reflexive property.  

4   Acknowledgements 

This research is a part of the Freeband Communication projects A-Muse  
(http://a-muse.freeband.nl) and awareness (http://awareness.freeband.nl). Freeband 
Communication (http://www.freeband.nl) is sponsored by the Dutch government 
under contract BSIK 03025.   

5  References 

[1] Guus Schreiber. Qualified cardinality restrictions (QCRs): constraing the number 
of property values of a particular type, first draft, 25 May 2004. Available at 
http://www.cs.vu.nl/~guus/public/qcr.html 

[2] Simple part-whole relations in OWL Ontologies, W3C Editor's Draft 11 Aug 
2005. Available at 
 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/ 

[3] Alan Rector. Case for Reinstatement of Qualified Cardinality Restrictions. Avail-
able at: http://lists.w3.org/Archives/Public/public-webont-
comments/2003Apr/0040.html 


