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Abstract. The ideal result in pattern mining is a small set of patterns
that identify the key structure of the data. In this paper we propose
NEMO, an efficient method for summarising discrete sequences in terms
sequential patterns over an ontology. That is, NEMO can detect patterns
between not only the surface level, but also between the categories the
events in the data are part of, and returns a small set of non-redundant
patterns that together describe the data well. We formalize the prob-
lem in terms of the Minimum Description Length (MDL) principle, and
propose an efficient and effective heuristic to mine good models directly
from data. Extensive empirical evaluation shows that NEMO performs
very well in practice, recovering the ground truth in synthetic data, and
finds meaningful conceptual and grammatical patterns in text data.

1 Introduction

Data often exhibits structure beyond what is apparent on the surface level, that
is, beyond the actual observed values. As a toy example, consider both ‘cat
meows’ and ‘dog barks’. Whereas these sentences show no syntactic pattern, if
we know that ‘cat’ and ‘dog’ are both nouns, and ‘meows’ and ‘barks’ are verbs,
they are clear examples of a pattern noun—verb. If we know that the former two
are ‘pets’, and the latter two are cases of ‘make noise’, a more specific pattern
would be pet—make noise. In this paper we consider the problem of summarizing
event sequences in terms of sequential patterns over an ontology, that is, to
discover a small set of non-redundant patterns that describe the data well.

Our empirical evaluation shows that our method indeed discovers relevant
patterns. Many of them are intuitive, such as he—Verb or the—Noun. More
complex patterns from the Lord of the Rings novels, for example, was he—
Verb- Conjunction—he, and matches indirect speech. Other patterns such as the—
Adjective—Noun—and, from the same novel, match enumerations.

In particular, we formalize the problem in terms of the Minimum Description
Length (MDL) principle [13,7]. While pattern based summarisation is already a
hard problem [16], we show that using an ontology only increases the complexity:
patterns are not only combinations of different entities, but also between different
possible generalizations. To approximate the ideal result, we propose the NEMO
algorithm, an efficient heuristic that can mine good models directly from data.
Through extensive empirical evaluation we show that NEMO can recover the
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ground truth from synthetic data, as well as discover meaningful patterns from
text data including speeches and novels.

2 Preliminaries

In this section, we introduce the notation used throughout the paper and further
give a brief primer on MDL.

2.1 Notation

Our approach works on discrete sequential data D € X' of length [ over an
alphabet Y. To address an item at position ¢, we will write D;. These items are
part of an ontology, a directed graph O = G(V, E) where V is a set of vertices
and F are directed edges between those vertices. The root node vy, is the most
general node. The most specific nodes without outgoing edges are called leafs.

To indicate a path or trail from node a to b we write T,,. There are thus
edges eq, .., e, such that e; starts at a and e,, ends at b. There is always a path
from a node to itself, T,,, and the number of edges on this trace is specified as
|Tm |- Whenever several paths are possible, we will use the cheapest. The cost of
the edges will be explained below. Coming back to v, we can say that Vv € V
T(ve ), €8 we can reach each node starting from the root.

Whenever we want to refer to an arbitrary item from the data D or a node
from the ontology O, we will refer to it as entity or word w € V. Consider that
an entity w that describes some part of the data D need not be part of the data
itself, since it can be the ancestor of several items in the data. Consider that a;
and ag could both be descendants from A, e.g. Taq, and Ta4,. Then it could be
the case that A € O, but A € D. By combining several entities, we can form a
sequential pattern P of [ events, i.e. P € V. To refer to the i*" entity in P,
we write w; € P. If we want to cover the data with a pattern, we need to know
where it matches the data. Whenever there is a path from w; € P to D;, a part
of the pattern matches an entity in the data. If we can match all parts of the
pattern in the right order, we have found a window DJi, j]. There are thus [
data entities Dy ...D; € D[i,j] such that 1 < 2... <, l=|P|land Vz € 1...]
Tp,w, where w, € P.

In particular, we consider serial episodes as patterns. That is, the occur-
rences of a pattern P are allowed to contain one or multiple gaps. As a con-
sequence, it can be the case that |P| < j — ¢. Further the definition from the
window is actually independent from P, so a window might contain none or up
to several patterns.

Coming back to our example where A is an ancestor of a and given pattern
P =AB and data D =abcab, there are several possibilities to match the pattern.
To encounter this issue, we introduce the notion of a minimal window, which
does not contain any other window. A window DJi, j] is minimal if =3 D[k, m|
where kK > ¢ and m < j or kK < ¢ and m < j and both match P.
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We can now define the support for a pattern by simply counting the number
of all minimal windows in the data. The Support S(D, P) of a pattern P is
|{D[i, j])| window is minimal and matches P}|, i.e. cardinality of the set of all
minimal windows of P in the data D.

2.2 MDL

The Minimum Description Length (MDL) principle [13,7] is a practical version
of Kolmogorov complexity. Both can be summarised by the slogan ‘Induction
by Compression’. The MDL principle states that the best model M € M for a
dataset D is the model that provides the best lossless compression. Formally, we
optimize L(D,M) = L(M) + L(D | M), where L(M) is the complexity of the
model and L(D|M) is the complexity of the data given the model. To use MDL
in practice, we need to define our class of models M, how to describe a model
M in bits, and how to describe the data D in bits given a model.

3 Theory

Before we can formally define the problem we consider we have to specify both
L(M), the encoded cost of a model, and L(D | M), the encoded cost of the data
given a model. We do this in turn.

3.1 Encoding a Model

Before we can define how to encode a pattern, and therewith a model consisting
of patterns, we have to define how to reach an entity w in the ontology from a
starting node vy in O. From there onward, we have to identify which edges to
follow. As each edge has a normalized frequency assigned, we have a probability
distribution over the nodes we can reach from a given node. Shannon entropy [7]
states that the length of the optimal prefix-free code for a probability p is simply
—log(p), hence we can compute it easily. This means we formally have

fro(enm)
L(w | O,vs) = [Tye| +1 — log —="*—"—
(@O0 =Tul+1= 3 575 Fralend)

where the first part is the number of bits required to indicate whether we have
already arrived, or not, at our destination node. In total, this sums up to the
number of edges plus one. We then compute the logarithm of the normalized
frequency of the individual given frequencies (fr(e)). Knowing how to encode a
path in the ontology, we can define how to encode a pattern.

Encoding a Pattern. To encode a pattern, we first encode its length, and
then one by one the paths to the entities w € X starting from the root node
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Fig. 1. An Ontology, generalized and specified singletons on the left. On the right hand
side, there is a model and the representation of the data using the model.

of the ontology. As depicted in Fig. 1, the word need not be leaf and can be
generalized. The encoded length of a pattern X hence is

L(X|0) = Ln(IX) + ) L(w]| O,va) |

weX

where we first encode the length of the pattern using the MDL optimal Universal
code for integers [14]. This is defined as Ly(n > 1) = log™(n)+log(co), where log™
includes only positive terms and is defined as log™(n) = log(n)+log(log(n))+.. ..
To obtain a valid encoding, i.e. one that fulfills the Kraft inequality, ¢¢ is set to
2.865064.

Since we allow pattern occurrences to have gaps, to ensure lossless decoding
we have to encode when these happen. We do this with fill and gap codes per
pattern. A fill code means that we can simply decode the current entity of the
pattern, and advance to the next. A gap code means that we may not yet decode
the current entity of the pattern, and have to instead read which entity comes
next from the pattern stream (details below, an example is given in Fig. 1). To
obtain optimal codes, we again consider the probabilities that gaps and fills are
used. Hence, we define usage(X) as the times the pattern is actually used in the
data.

To obtain the fill code, consider that we can only use a fills code for all but the
first word in the pattern, yielding fills(X) = usage(X)x (|X|—1). With gaps(X),
we denote the total number of gaps in how we use P to describe the data. We
thus define the codes for gaps and fills based on the particular probabilities,

er(X) = —log ity and  ey(X) = —log iy
Encoding a Model. A model, M = S U P, which is a set of patterns P and
singletons S. Due to their different nature, we will treat singletons and patterns
in the model differently.
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We will start to encode which words from our ontology are actually used as
singletons in the data, and refer to this number by |Op|. We encode this number
again using the MDL optimal universal integer code, adding one in case the data
is empty. To further know which words we actually use in the data, we will use
a so-called data-to-model code [16]. We represent using this code all possibilities
to distribute |Op| words over |O| buckets, and then refer to the one representing
the actual word set, thus Ly (|O],|Opl|) = log (I‘Oopl\)' Additionally, we need to
determine the support for each of the singletons to be able to use their codes. At
this point, we will also use the data-to-model code. However, what we are now
encoding are the possibilities to distribute the patterns over the data, and refer to
the one actually representing the distribution. Ly (|D]|—1,|W|—1) = log (“v?,‘lill)
where we treat the words as distinguishable and we define each of the |D| bins
to be non-empty. Finally, we also define L(0,0) = 0.

We thus obtain as constant length for the singleton model L(Mg | O) =
Ly(|Op| + 1)+ Ly (|0],10p|) + Lu(|D] — 1,|0Op| — 1). Given some data and an
ontology constructed from this data, however, this ontology will not be changed
during the mining process. Realizing that this encoding factor is instead con-
stant, we will omit the details here.

Next, we encode the patterns in the model. We first make use of the previously
introduced encoding of a pattern. We then add the number of gaps and obtain

L(P|0)= > L(X|O)+ Lu(gaps(X)
XeP

Additionally, we need to know the support for the pattern to determine its
code. We will proceed here analogously to the singletons, and encode how many
patterns there are in total, how often they are used and then use the previously
defined data-to-model code to transmit which distribution represents the data.

Further, by encoding the gaps for each pattern, we can compute their fills.
We thus define the length of our model for the patterns by

L(Mp | O)=L(P|O)+ Ly(|P| + 1) + Ln(usage(P) + 1) + Ly (usage(P), |P]) .

The length of our final model is then simply combining the model of the sin-
gletons and the patterns, L(M | O) = L(Mg | O) + L(Mp | O). We have now
found a succinct way to represent the patterns and thus our model. Let us now
consider how to use these patterns to determine the length of the data.

3.2 Length of the Data given a Model

Given a model, we now need to specify how to encode the data D in bits given
a model M. To do so without loss, we need three code streams. The first, the
pattern stream Cp, contains codes corresponding to patterns and singletons. As
a pattern may generalize the observed data, we need the specification stream
Cs to reconstruct the actual entities. Last, but not least, as occurrences of
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patterns may include gaps, we need the gap stream Cg to identify when we may
decode the next entity of a pattern. An example of the three streams is given in
Fig. 1. We call a lossless, complete representation of the data given the model
an alignment. The length of this alignment is obtained by adding up all the
codewords needed to represent the data.

The length of the pattern stream therewith is simply the length of the con-
catenation of codes used to describe the data,

L(Cp | M,0) = Y usage(X)L(c(X) | M) .
XeM
Analogue, the length of the specification stream is simply the length of all spec-
ifications from the entities in the patterns to the entities in the data,

L(Cs | Cp,M,0) = Y L(w; | O,vs € Cp) .

wi;ED

Here v, is the starting point which we get from the pattern stream, and w; is the
entity given in the data. Finally, for the gap stream we again simply concatenate
all the gap and fill codes corresponding,

L(Cq | M,0)= Y fills(X)cp(X) + gaps(X)cy(X)
XeP||X|>1

The length of the alignment, and thus the length of the data given the model,
is then the length of all three streams together: L(D | M,0) = L(Cp | M,0) +
L(Cq | M,0)+ L(Cs | Cp, M, 0O) . Hence, we also know the length of our data
given the alignment, the patterns and the ontology.

3.3 Formal Problem Statement

Our aim is to know the total length of our data D when encoded using some
model M and ontology O. This is formalized as L(D, M,0) = L(M | O)+ L(D |
M, O), taking into account the length of the model and the length of the data
represented using the model. Resuming, the problem is formalized as finding the
model for which we get the shortest description. More formal,

Minimal Ontology-based Coding Problem Given a sequential dataset D
over an alphabet X and an ontology O (where X C O), find the smallest model
M e M and best cover for D such that L(D, M, O) is minimal.

Discovering the optimal model for given data D and ontology O is hard. Given
an ontology O and a maximum pattern length of n, there are |O|™ 4 |O|*~! +
|O|"2+-..+|O|? + |O] different patterns. Considering arbitrarily large subsets
of these patterns, and the different ways they can be ordered, ideally we would
have to evaluate |O] x 1!+ |02 x 2! 4+ +]0|"~! x (n — 1)! +|O|™ x n! different
models. There are exponentially many alignments for a given model [16], and as
the quality of an alignment depends on the code lengths, which again depend
on the alignment there is no structure we can exploit to efficiently discover the
optimal alignment, nor the optimal model.

Hence, we resort to heuristics.
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4 Algorithm

In this section, we present the necessary algorithms to compute the models and
alignments formalized in the previous section. We will start by explaining how to
cover a stream and then present our algorithm mining good code-tables. Finally
we explain how we evaluate a refined model.

4.1 Covering a Stream

Given a model, we need to compute L(D | M,0), i.e. we need to find an op-
timal alignment. We follow the general idea of Tatti and Vreeken [16], and go
backwards through the data and compute for each pattern starting at the cur-
rent position which one is the best. We then obtain the optimal alignment by
considering the pattern with highest gain as first one and then iterating over the
next best pattern.

This yields the optimal alignment given the current codes, which may be
different from those that the globally optimal alignment would assign; whenever
referred to as optimal alignment, we actually mean locally optimal alignment. As
a basis, we first define a gain function that we optimize. We use the previously
introduced window as Di, j] from position ¢ till j in the data and define its
length as

U
<

L(Dl[i, j], P) = c(dy) + | X — 1fills(X) + (7 — i — [ X| x gaps(X))
d,

2

x>~
Il

We simplified the notation here, ¢/(dy) actually means

' c(w) at dy ifwégX

¢(d) = (xre(X)) + L(w| O,vs cwe X) at dp  ifweX

In other words, we combine the pattern that spans the given window, its spec-
ification as well as all other words contained in the gaps with their singleton
codes. This includes as well how many gaps and fills we need. To define a gain,
the baseline of the data is Lo(W (-, 1,|D)) = >_,, cp L(w; | ve € O)), where
every position is encoded as singleton. For a given window D]i, j] and pattern
X we define the gain as gain(D[i, j], X) = Lo(,4,j) — L(X, 1, 7).

Given a set of non-overlapping windows, we can calculate the gain for the
whole data by simply summing up over the different parts. The gain of the same
pattern might however differ for different positions or windows in the data, since
the specification and gaps might be different. Further the length of the specifi-
cation can be replaced by &—‘W(X ), giving preference to different properties of
the pattern. We will denote this gain as gain™ (D], j], X). In the following, we
will always write gain® (D], j], X), independent of the use of heuristics.

Additionally, we need function next(D[i, j]) which returns the next (optimal)
disjoint window from the current one. We also define gain*(nexzt(D[i, j])) recur-
sively in the sense that we refer not only to the gain of the window referred
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Algorithm 1: Discovering the optimal alignment

Data: ordered set of windows W

Result: alignment A for given weights

curopt < 0

opt < p1,p2,...D|D|

for i =|D| to 1 do

for D[i,j] € W do
if gain™(D[i, j]) + gain™ (next(D[i, j])) > curopt then

Opt]- — W;
curopt < gain®(DIi, j]) + gain™ (next(D]i, j]))
next(D]t, j|) < opt,

0w N O A W

9 A <+ alignment build using curopt and nezt()
10 return A

to by next(Dli,j]), called D[, 7], but also to all best next windows. Thus,
gain® (next(D[i, j])) = gain™ (next(D[i, j])) + gain™*(next(next(D]i, j]))) ... .

Starting with the best pattern in the beginning of the data, we iterate over
nezt() to obtain our alignment. To do so, however, we first need to run Algo-
rithm 1 first to instantiate next and to know the optimal pattern in the beginning.

We give an example in Fig. 2. We start at the end of the stream, move
forwards and determine for each position the window up to this position with
the highest gain. Best patterns for each starting position in Fig. 2 are marked by
a star. The best option need not be a window that actually starts in this position,
but might start at a previous location. Yet, a previous/following pattern might
yield a higher gain. This case is marked in Fig. 2 with a gray star.

Additionally, for each pattern, we also determine next() to be the best pat-
tern for the position where the patterns ends. In Fig. 2, to obtain the optimal
alignment, we just use all patterns marked with a black star. When reaching the
beginning of the data, we have determined the optimal nezt() for each pattern,
and we also know the first pattern with the highest gain. Traversing the patterns
calling next() for the first, best pattern yields our alignment.

4.2 Mining Good Models

Given an alignment, we can define new code lengths based on the frequencies in
the given alignment. Different code lengths, however, influence again the align-
ment itself. We thus alternate these two steps, computing the alignment and
updating the codes, until convergence. At this point, the question of conver-
gence may arise. Since a frequently used pattern will receive a shorter code, it
is even more likely to be picked in the next round. As a consequence, it is even
more likely to be picked, and so on. For rarely used patterns, the reverse holds.

This results in an improvement of the code length at each iteration. Hence,
the code length decreases monotonically and is bounded, since it can not be
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arbitrarily short. Additionally, since there are only finitely many alignments,
the algorithm converges and halts.

Refining a Model. This includes discovering new patterns, which is a com-
plex task, as also illustrated in Fig. 3. A pattern can be either generalized or
specified, e.g. we can change it vertically, or we can combine several patterns
into a bigger one, which corresponds to a horizontal change. We will deal with
this problem how to find new patterns later and for now assume that we have
an oracle that returns promising refinements for our model.

We will first define how to evaluate patterns found. Only adding patterns will
increasingly harm our model, hence we will discuss pruning it next. Since we will
in both cases rely heavily on the computation of the alignment to quantify the
use of a pattern, we will afterwards discuss how we can speed up the computation
in this case, before we finally discuss how the model can be refined in detail.

Scoring Refinements Given some promising patterns to enhance our model,
how do we decide whether we add them or not? Since we optimize L(D, M), we
can actually use this as a heuristic.

We test how each pattern X affects the length of the encoded data. Straight-
forwardly, we can build the alignment for the model without the pattern, M
and M U X and compare the two lengths. After generating a set of promising
candidates, we thus add them one by one to the model and compare whether
they improve L(D, M). If they do, we add them to the model.

Possibly, only the combination of two patterns enhances the model, but each
on its own does not. To take this into account, we can as well add all pattern at
once, and check them one by one if L(D, M) > L(D, M\X) is better or equal,
where equal most likely indicates that the pattern is not used.
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In L(D, M) we also consider L(M). Patterns that are part of the model and
where useful in the beginning might however be replaced by other more complex
patterns, and start to harm the size of model. We thus also need to consider
pruning, not only enhancing the model.

Pruning a model The model grows as it is refined. Additionally, patterns
might be used less, or not at all, as they are replaced. As a consequence, we
have to prune our model and exclude patterns that harm the encoded length of
model and data, L(D, M). Yet not all of the patterns might be refined, and are
thus worth testing. We will thus only consider patterns which encoding length
and thus usage changed in the model. If the model improves without them, we
delete the pattern from the model and add it to the set of rejected patterns.

Speeding Up When computing the effect of adding or pruning a single
pattern in the model, we do not have to recompute the whole alignment. Since
large parts of the alignment will not change at all, we will briefly state how to
optimize runtime for this task.

Given an old alignment and a pattern X, we first compute the set of Windows
that relate to X, denoted by related(X, M, W). This means either the windows
where X is used, or, in case of a specialized/generalized pattern, where other
instances of this pattern are used. In case of composed patterns, the set also
contains Windows that contain parts of X. We then walk through this set of
windows. In case we encounter windows containing X itself, we want to prune,
and just delete the corresponding window. In the other case, given it is possible
to insert a window with X, we just add it. In both case we propagate the changes
and update all optimal values and return the optimal alignment build by iterating
over curopt and next(), as before.

We can then compute the gain by simply comparing the length using the
previously assigned patterns, say X, the newly assigned X’ and further consider
all patterns that where additionally changed as Y and their replacements Y,

gain(D[i, ], X') = L(X,i,j) = L(X",#,§") + > gain(D[k,1,Y")
Y'eA

where we recursively use gain() which returns the difference of using Y’ in place
of Y. If the replacement is a specification, the sum might be zero, since no other
pattens are affected. If we refine horizontally, in contrast, it is very likely that
we affect other patterns. The total gain over the whole alignment for X',

gain(X', D) = Z gain(Dli, j], X')

4,5 where X/

is then just the sum of the single parts where we replaced something by X. We
do not need to take into account the other parts of the alignment that we did
not change since they would rule out each other anyway.

Finding New Patterns An example is given in Fig. 3, where the refinement
of ay is shown. In each iteration, we refine the pattern only by one step, either
vertically or horizontally. For each pattern, we form a tree containing all possible
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Algorithm 2: NEMO

Data: Data D, Ontology O

Result: Model M

M <+ singletons(O, D)

A + align(D, M)

R+ 10

while L(D,M') < L(D, M) do

M+~ M

Prew < generate(M, A, R)

for X € Py, ordered by gain(X, D) do
L if L(D,M) > L(D,M U X) then

© 00N O C AW N

| M+ MUX

10 (M, R) + prune(M,D, A, R)
11 (M, A) + align(M, D)

12 return M

refinements/generalizations and their frequencies, where we expand the most
frequent ones first. Before we start, we prune all combinations from our trees
that were already rejected. Each time a new pattern is requested, we return the
most promising combination that we have not yet investigated, where ties are
broken arbitrarily. Given an updated alignment, we also update the frequencies
and further prune accordingly.

4.3 NemO

We now present NEMO? for summarizing event sequences with serial episodes
over an ontology. The previously defined algorithm are combined as formalized in
Algorithm 2. Given the data D and an ontology O, we first compute a singleton
model (line 1), and an alignment for this singleton model M (line 2). We then
alternate refining (i.e. adding patterns and pruning, lines 6-10) model M, and
re-computing the alignment for the refined model (line 11), until L(D, M) does
not decrease anymore (line 4).

4.4 Computational Complexity

Given the algorithm, we now briefly analyze the runtime of NEMO. To find
new patterns we combine each pattern in the model with all nodes from the
ontology, yielding O(|M||O]). To find optimal windows for each pattern we go
once through the data, thus O(D). To obtain an alignment we further add all
found windows W, O(|W|). To prune, we recompute the alignment once for each
pattern, hence O(|M]||D|). Iteratively computing an alignment and updating
codes in 7 iterations takes O(i|M| + |W|). We repeat the whole procedure for n

3 1lit. no one, relating as joke to the long phase this project did not have a name.



44 K. Grosse and J. Vreeken

iterations. The total complexity is thus O(n x (|]M||O||D||W|+ |M||D|+ (i| M|+
|W]))), and hence very high. In practice, however, we observe the number of
iterations is typically small and the time until termination only some minutes.

5 Related Work

In this section, we will discuss other approaches that are related to NEMO. A
common way to find a patterns from data is frequent pattern mining [15,10,2].
Some of these approaches use ontologies, however focus on scalability by taking
advantage of a Map-Reduce environment [2]. Others aim at very efficient ways to
represent the ontology, in order to localize parent nodes quicker [9]. A somewhat
different idea is to use several ontologies and generalize only one of them at
a time [12]. By only allowing one generalization level for all patterns in one
ontology, the search space is further restricted and the algorithms faster. Since
the results sets are typically large, some approaches improve quality of the mined
pattern sets by using heuristics or area under the curve [8,5,6]. In contrast to
all these approaches, however, our method does not compute frequent patterns,
but patterns that summarize the data best.

We use MDL to identify the best summarisation. KRIMP was the first ap-
proach to use MDL to mine small sets of patterns from transaction data [17],
and was later extended to sequential data [1]. Tatti and Vreeken proposed SQs
to summarise sequential data using serial episodes, allowing for gaps in occur-
rences, which increases the ability to deal with noise. Recently, Bhattacharyya
and Vreeken proposed SQUISH, which additionally allows for interleaving pat-
terns [4]. Wu et al.[18] presented a language specific algorithm. Neither can,
however, take external information in the form of an ontology into account to
summarise the data in generalised terms.

Bertens et al. [3] proposed DITTO, which extends SQs to multivariate se-
quences. The models that DITTO discovers can contain patterns that are either
identify structure in both single, as well as over multiple sequences. If we were
to annotate every entity in the input data with all entities on the path to the
root node of the ontology, we could theoretically use DITTO to discover gener-
alised patterns; without knowing it explicitly, and the huge redundancy in the
data, however, the patterns it would discover would rather be an attempt to
reconstruct the ontology than a good summarisation of the input data.

6 Experiments

In this section, we describe experiments on both synthetic and language data
and show that NEMO yields promising results. We implemented NEMO in Java,
and make the implementation available for research purposes? All experiments
were ran on a Linux server with Intel Xeon E5-2643v2 processors with 64GB
ram.

4 http://eda.mmci.uni-saarland.de/nemo/
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Data Model
#patterns  support |2 = C U not L%  iterations
0 0 17 0 0 0 1 19.6% 2
5 5 17 0 3 0 0 19.7% 2
5 10 17 2 4 1 0 20.3% 3
10 5 17 0 4 0 0 19.8% 2
10 10 17 5 5 0 0 21.1% 3

Table 1. Experiments on synthetic data, the ontology contains 57 elements. We plant
either five or ten patterns either five or ten times and vary the size of the data. =
indicates a full match, C a subset match, U a concatenation of two patterns and not a
pattern that was not planted. L% is the length ratio of the data compressed with the
refined model compared to the original model, thus higher is better. Iterations until
convergence are also given.

We start with the synthetic data, where we generate data using ten finite
automatons (one for each planted pattern) to vary entities and thus require
generalization to identify them. As real world data, we run NEMO on the three
Lord of the Rings books, Romeo and Juliet, Moby Dick and the addresses data
set. In these experiments, we rely on wordnet® [11] and further tag our data
using the Stanford POS-Tagger® to obtain the necessary ontology.

6.1 Synthetic data

We report our results on synthetic data of length 2500 in Table 1. The com-
putation time for each of this experiments is typically less than a minute. We
observe that on the data generated without patterns, NEMO discovers that us-
ing a model with a generalised singleton allows for better compression; this is
an artifact of the generation process. We observe that patterns with a stable
structure that only vary entities are almost always found. In the case of long
patterns, combined by 4 or more entities, the algorithm sometimes finds both
parts, but does not join them. We observe that for planted patterns that vary
in length, the algorithm struggles to find them and often captures only a part.

We rerun this experiments for length 1000 and 5000 and observe similar re-
sults. We do, however, observe that the shorter length increases the performance
of the algorithm, there are more perfect matches. This is intuitive, since there is
a better ratio between structure and noise.

6.2 Text Data

We now describe the experiments on language data. Before we discuss the pat-
terns found, we will quickly comment on the runtime and the convergence of

® http://wordnet.princeton.edu/, accessed March 2016.
S http://nlp.stanford.edu/software/tagger.shtml, v3.6.0 from September 2015.
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Data Ontology Model
Name ID| |veO| |leaves| |S| |P] L% time it
Romeo and Juliet 6281 2075 1448 8 19 9.3% <1
Addresses: Obama 34740 4843 3553 8 47 11.6% <1
Addresses: Bush 46151 5716 4274 9 35 109% <1

Lord of the Rings, 3 136667 8510 6672 10 50 11% 9
Lord of the Rings, 2 154410 9186 7225 10 104 11.7% 7
Lord of the Rings, 1 178 580 9804 7795 10 62 11.5% 5
Moby Dick 216908 19435 16044 8 98 9.9% 12

Table 2. Experiments on real data. |D| is the umber of entities in the data, S the set
of singletons, P the set of all composed patterns. The gain when compressing with the
refined model and not the empty model is L%; thus higher is better. Runtime is given
in minutes and it refers to the number of iterations needed till convergence.

R R O N NN

the algorithm. In general, we observe that the first iteration yields the largest
decrease of encoded length. In general, 2 to at most 6 iterations are needed till
convergence. We further observe that in contrast to the synthetic data, we im-
prove the encoded length only by on average 10%. Convergence, gain in encoding
and number of found patterns relate in a non-trivial way to the complexity of
the data.

Before we discuss some mined patterns in detail, we will quickly report on
the ontologies. The average depth of the ontology constructed for text data is
2.2 to 2.65, where the first layer is always composed by 17 nodes, corresponding
to the 17 categories of the tagger. The number of leaves is strongly dependent
on the complexity of the data, and varies between 4 000 and 20 000.

Important Singletons. As the empty model describes every entity in the
data with a path from the root node in the ontology, NEMO can identify inter-
esting generalised singletons. Examples include Foreign word, Interjection”, in
Addresses, that and another being travel® in Lord of the Rings, and as in Moby
Dick.

Lord of the Rings. Looking closer at the non-singletons discovered in the
Lord of the Rings books, we find grammatically correct patterns, such as they
Verb or he Verb (as opposed to for example the speeches of the presidents, where
I Verb or we Verb prevail). However, also more complex patterns are found. We
present the following examples from the first book of the Lord of the Rings,
where examples of matches sentences are given emphasized. Take into account
that when analyzing the data, we ignore punctuation.

— he Verb Conjunction he: He said that he [did not think Bilbo was dead.];
He suspects, but he [does not know — not yet.]

7 Exclamations such as oh! ah! ouch! and similar.
8 Generalized from come, speed or walk in wordnet, however also directly used. This
word is found in all three novels, and thus an accurate description of their content.
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— the Adjective Noun and: /... and] the young Hobbits, and [Boromir.];
[They dreaded] the dark hours, and [kept watch in pairs by night ...]

— Determiner _ _ Conjunction _ _ and: [Like a dream] the vision shifted
and went back, and [he saw the trees again.], [...] the language was that of
Elven-song and [spoke of things little known on Middle-earth.]

Not shown here, but also in the model are patterns matching simple grammatical
structures, such as the Adjective Noun, to Verb or he/it/they Verb, as well as
indirect speech and enumerations.

Additionally, we observe that _ is a guaranteed gap. We observe that such
patterns containing _ allow to capture properties which are not obvious to hu-
mans, since they may differ a lot in meaning and seemingly in structure.

Moby Dick. Last, we consider the novel Moby Dick by Herman Melville.
Example patterns we discover include

— Pronoun Verb _ _ _ Noun: [And yesterday] I talked the same to Starbuck
[there, ...[:[...,] I took my heavy bearskin jacket/, ...]

— the Adjective Noun of: /... one of] the old settlers of [Nantucket]; [... and
fumbling in] the huge pockets of [his ..]

Many patterns start with Pronoun and then contain varying other parts. They
differ in length between six and eight. Further, nine patterns start with he, rang-
ing in length from three to six, also mutating in content. Additionally, there are
18 patterns beginning with either a or the and then also differing in parts. Two
examples for these patterns are presented above. Finally, we have 12 patterns
which are composed of two parts, all representing intuitive English structure,
such as he Verb, a Adjective, the noun, in determiner, and so on.

7 Conclusion

We considered the problem of summarizing event sequences with serial episodes
over an ontology. We formalized the problem in terms of the Minimum Descrip-
tion Length principle, and proposed NEMO, an efficient algorithm to mine good
summaries directly from data.

Through extensive empirical evaluation we confirmed that NEMO yields
promising results in practice. On synthetic data, it recovers the ground truth
and on text data we observe meaningful patterns that are beyond the surface.
Of course the quality of the data influences the results we are able to achieve.
Since tagging is an open research question, and current taggers might wrongly
tag a word, further work in this area will alleviate this. Also the ontology used
influences the results. Promising directions in future work include leveraging all
parent nodes provided by wordnet, evaluating different ontologies for a single
text, up to mining good ontologies directly from data.

Although the computation complexity of the summarisation problem is very
high, NEMO discovers good models in only minutes. It will be interesting to
see how to leverage ideas from LASH [2] to scale up NEMO to large collections
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of text. Finally, it will be interesting to incorporate ideas from SQUISH [4], as
NEMO will gain modelling power with choicisode and interleaving patterns.
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