
Efficient Migration of Very Large Distributed State for
Scalable Stream Processing

Bonaventura Del Monte
supervised by Prof. Volker Markl

DFKI GmbH
bonaventura.delmonte@dfki.de

ABSTRACT
Any scalable stream data processing engine must handle the
dynamic nature of data streams and it must quickly react to
every fluctuation in the data rate. Many systems successfully
address data rate spikes through resource elasticity and dynamic
load balancing. The main challenge is the presence of stateful op-
erators because their internal, mutable state must be scaled out
while assuring fault-tolerance and continuous stream processing.
Both rescaling, load balancing, and recovering demand state
movement among work units. Therefore, how to guarantee those
features in the presence of large distributed state with minimal
impact on the performance is still an open issue. We propose an
incremental migration mechanism for fine-grained state shards
through periodic incremental checkpoints and replica groups.
This enables moving large state with minimal impact on stream
processing. Finally, we present a low-latency hand-over protocol
that smoothly migrates tuples processing among work units.

1. INTRODUCTION
Existing scalable Stream Data Processing Engines (SPEs)

offer fast stateful processing of data streams with low latency
and high throughput despite fluctuations in the data rate. To
this end, stateful processing benefits from on-demand resource
elasticity, load balancing, and fault tolerance. Currently, both
research [5, 6, 17, 13] and industry [1, 4, 18] address scaling
up stateful operators while assuring fault tolerance in case of
partitioned or partially distributed large state. Here, large state
means hundreds of gigabytes.
A motivating example. Many streaming applications require
stateful processing. Examples of such applications are the data
analytics stacks behind popular multimedia services, online mar-
ketplaces, and mobile games. These stacks perform complex
event processing on live streams. Multimedia services and on-
line marketplaces recommend new contents or items to their
users through collaborative filtering [16]. Producers of mobile
games track in-game behaviour of players to promote the best
in-app purchase and to detect frauds. The size of the state in
these applications scales with the number of users and their
interactions with the application (e.g., rated items, purchases,
actions of a player) and can grow to terabyte sizes. State in the
size of terabytes introduces a multifaceted challenge. The SPE

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

must optimally manage cluster resources respecting the size of
the state. This does not only apply to intra-cluster instances
but also inter-cluster ones, e.g., migrating the SPE among op-
erational environments or to cheaper “pay-as-you-go” instances.
Besides, parallel analytic algorithms need global state. Parallel
instances of an operator work on their state partition and then
update global state, e.g., machine learning models. Therefore,
these analytics result in very large distributed state.
Research goal. Motivated by industrial needs, our goal is to
achieve stream processing with low latency and high throughput
when operators handle very large state. To this end, we focus on
management techniques that enable fault-tolerance, on-demand
resource scaling, and load balancing in the presence of very large
distributed state.
Problem statement. Handling operators with very large dis-
tributed state is cumbersome. Guaranteeing fault-tolerance,
resource elasticity, and dynamic load balancing for these op-
erators (i) require state transfer, (ii) must not undermine the
consistency of distributed state shards, and (iii) demand robust
query processing performance. State transfer introduces latency
proportional to its size. Exactly-once stream processing requires
consistent state, i.e., results must be as accurate as if no failure
happened or the SPE did not perform any rescaling or rebalanc-
ing operation on the state. Besides, a SPE must continuously
process stream tuples despite any of those operations.
Current approaches. To the best of our knowledge, there is
no system that fully features efficient state management when
distributed very large state is involved. Many authors investi-
gated this problem by constraining their scope to partitioned or
partially distributed state [5, 4, 18] and to smaller size [7, 6, 17].
Proposed solution. Our solution is a low-latency incremental
migration mechanism that moves fine-grained state shards by
using periodic incremental checkpoints and replica groups. An
incremental checkpoint is a periodic snapshot of a state shards
that involves only modified values. A replica group is a set of
computing instances holding a copy of a portion of the state.
Our migration mechanism moves large operator states with low
impact on the system performance and without stopping the
streaming topology. Although incremental migration reduces
the transfer overhead, we also provide a placement scheme for
primary state shards and replica groups that minimizes transfer
cost. Our solutions are as follows:

1. a communication-efficient replication protocol that keeps a
replica group consistent with the changes in the state of the
primary operator

2. an optimal primary state shards and replica groups placement
for decreasing migration cost

3. a hand-over protocol that migrates the processing between
two work units with minimal latency.

We point out that this thesis is at an early stage, hence, we do
not have any experimental validation yet.



2. RELATED WORK
Castro et al. address the problem of scaling up and recovering

stateful operators in a cloud environment through a set of primi-
tives for state management that enables scaling up and recovery
of stateful operators [5]. Their experiments include operators
with small states and they confirmed that larger state has a
higher recovery time. In a second work, the same authors pro-
pose a new abstraction over large mutable state, called stateful
dataflow graph, which manages partitioned or partial distributed
state [6]. Our aim is to fill the gap in this area by providing
a mechanism that both scales out and recovers a long-running
system with very large distributed state. ChronoStream is a
system that seamlessly migrates and executes tasks [17], whose
authors believe to have achieved costless migration thank to a
locality-sensitive data placement scheme, delta checkpointing,
and a lightweight transactional migration protocol. Although
their experiments look promising, we argue transactional migra-
tion may be avoided by using two different protocols (one for
state migration and one for the hand-over) and delta checkpoints
adds synchronization issues.
Ding et al. deal with finding the optimal task assignment that
minimizes the costs for state migration and satisfies load bal-
ancing constraints [7]. To this end, they introduce a live and
progressive migration mechanism with negligible and controllable
delay. They come to a different conclusion w.r.t. ChronoStream,
because they also argue that synchronization issues may affect
results correctness while performing a migration. The solution
of Ding et al. performs multiple mini-migrations progressively:
each mini-migration migrates a number of tasks smaller than
a given threshold [7]. On the other hand, their experiments do
not cover large state migration and it is unclear how the system
could perform in such task. Furthermore, both ChronoStream
and Ding et al. consider partitioned state.
Nasir et al. present partial key grouping as a solution to handle
load imbalance caused by skewness in the keys distribution of
input streams [14, 15]. The main idea is to keep track of the
number of items in each parallel instance of an operator and
route a new item to the instance with smaller load. Items with
the same key are routed to different parallel instances of the
same operator. An improvement to the solution is to determine
the “hottest” keys in the stream and assign more workers to
those keys. However, they assumed the operator state has the
associative property, thus merging intermediate partitioned sub-
states is possible with an extra aggregate operation. Splitting
the state of a given key, indeed, mitigates its growth on one
working unit, yet aggregating large state will require some po-
tentially expensive network transfers. Our aim is to propose a
load balancing approach that avoids such partial aggregations.
Gedik et al. propose transparent auto-parallelization for stream
processing through a migration mechanism [8]. However, we
argue that their approach does not consider distributed large
state and it is totally decoupled from fault-tolerance.
Many SPEs have effectively implemented state management
techniques (e.g., Apache Flink [1, 4], Apache Spark [18], SEEP
[6], Naiad [13]). In particular, Apache Flink features a technique
that asynchronously checkpoints the global states to minimize
the latency of a snapshot [3].

3. RESEARCH ISSUES
Our goal is to move large operator states with minimal im-

pact on the performance of query processing. Migrating large
states between operator instances in one shot is expensive due to
network transfer, especially if the system is already overloaded
during its regular operation. Our key idea is to incrementally
maintain a replica group for each fine-grained state unit over

different work units. Each replica is updated through incremen-
tal checkpoints generated on the primary operator. In addition,
intrinsic issues of migration pose new challenges, e.g., data con-
sistency, tuples rerouting, physical shards handling, and network
transfer cost. To better explain our key idea, we first define our
data and system models. Then we provide an analysis of our
research goals.

3.1 System Model
Data Model. Let S be a stream of tuples, for each tuple

q∈S, we define kq as the value of the partitioning key and tq
as its monotonically generated time-stamp.
Stream processing. Our system is made of p work units run-
ning on z physical nodes (each of them can run a variable
number of work units). Our system executes jobs/queries ex-
pressed as a dataflow graph. Each operator of the graph runs
on maximum p parallel instances. An operator takes n streams
and outputs m streams. Every parallel instance receives tuples
(sent from upstream operators) w.r.t. a distribution function
that computes the assignments through kq.
State model. The global state of all the operators in the
streaming topology is a distributed logically partitionable data
store (e.g., a distributed K-V store). Partitions of this data
store contain a single state entry, e.g., window content of an
operator, user-defined counters. Each logical partition is made
of physical shards. Every parallel instance of an operator holds
its own shard. Besides, each shard is made of fine grained data
items. Each key of the input stream owns few data item in
every logical partition of the state and each shard holds a range
of keys. Each range of keys can be further partitioned and
optionally split. Distributed state demands some consistency
guarantee in case (i) a key needs to be stored in multiple shards,
and (ii) tuple processing might trigger changes in more than one
shard. The distribution function determines the content of the
shards kept by stateful instances. Thus, each parallel instance
of an operator does not only process tuples with specific keys
but it also holds the data items of state for those keys.

3.2 Incremental Checkpoints
A prerequisite for our set of protocols is an incremental check-

point protocol based on the approach of Carbone et al. [3]. In-
stead of taking a snapshot of the whole state, we asynchronously
checkpoint the modified state values between the previous check-
point and the current one. An asynchronous checkpoint executed
at time time t will not contain updates happened later than t.

3.3 Replication Protocol
We design a replication protocol to keep the global state of

a streaming topology replicated and consistent. This protocol
replicates every primary state of each operator instance on a
given number of work unit, i.e., each sub-range of keys has its
own replica group. The purpose of a replica group is to keep a
copy of different sub-ranges of keys for each operator. A primary
operators sends incremental checkpoints for a given range of
keys to its replica through the network.

3.4 Hand-Over Protocol
The hand-over protocol moves the processing of a given keys

range (ks,ke) between two parallel instance of a target stateful
operator. The system triggers this protocol when it detects
the need of either rescaling an operator, balancing the load
over parallel instances of an operator, or recovering an operator.
Main ideas behind this protocol are the usage of replica groups,
incremental checkpoints and the embedding of the protocol itself
in the dataflow paradigm. Moving the processing of any key
involves tuple rerouting and migration of the state for that key.
This operation is lightweight if the destination instance is in



the replica group of the moved key. Indeed, the replica group
misses at most the last incremental checkpoint. Let upstream
be all the operators that send some input tuples to a target
downstream operator, the steps of the protocol are:
1. The system decides to migrate that tuples marked with keys

in range (ks,ke), from downstream instance os to ot, which
is in the replica group of (ks,ke)

2. Upstream injects a key move event in the data flow for keys
ks,...,ke involving operators os and ot

3. Upstream sends its outgoing tuples marked with keys ks,...,ke
to ot, which processes them creating new states s′e,...,s

′
t

4. os generates an incremental checkpoint that contains its
current states se,...,st for keys ks,...,ke and sends it to ot

5. As soon as ot gets the incremental checkpoint, it updates its
current states se,...,st with the received checkpoint

6. Then ot asynchronously merges them with s′e,...,s
′
t. If new

tuples arrive in ot, it generates new states and subsequently
merges them.

As a result, the handover protocol guarantees eventual consis-
tency on every migrated primary state after merging. Moreover,
we assume that user-defined state has update and merge policies;
the former updates state by processing a stream tuple, whereas
the latter merges two partial states for the same key. If merging
of partial state is not semantically possible, then the target
instance buffers incoming tuples and updates the state upon its
full receiving.

3.5 Optimal Placement of Replica Groups
Each keys replica group is composed of q physical nodes,

as we aim to minimize continuous migration cost, the replica
group has to be optimally placed over the streaming topology.
Indeed, transferring an incremental checkpoint from a node a
to b could potentially have a different cost than shipping the
same checkpoint to node c. This problem can be mapped as
a bipartite graph matching problem whose classic solution is
well-know as the Hungarian or Kuhn-Munkres algorithm [11,
12]. Nevertheless, our scenario is not static as we need to deal
with resource scaling and failing nodes. Therefore, a dynamic
approach to the assignment problem [10] is the best fit for our
needs, since we look for an optimal assignment of the state items
to an elastic set of physical nodes. Our optimization problem is
formulated as follows: given l sub-ranges of keys and z physical
nodes, find a placement for each sub-range of keys over q out of
z nodes that minimizes the migration cost. We evaluate the cost
of shipping an incremental checkpoint between two nodes by
considering their workloads and the number of network switches
involved.

4. RESEARCH PLAN
In this thesis, we intend to investigate above research issues

w.r.t. our goal: transparently providing fault-tolerance, resource
elasticity, and load balancing in the presence of very large dis-
tributed state. Our focus is to investigate the trade-offs behind
our proposed solution. First, the hand-over protocol presents
several challenges, e.g., the granularity of the keys ranges, the
concurrent execution of the protocol, and the triggering policy
of the protocol (through either consensus, common knowledge
or centralized entity). Secondly, we plan to investigate the
usage of log-less replication (similarly to Bizur [9]) by using
shared registers [2]. Besides, log-less replication implies no log
compaction overhead. As network is the main bottleneck, we
plan to research orthogonal optimizations to reduce network
overhead, e.g, remote direct memory access, data compression,
and approximation. Lastly, the placement scheme of replica
groups may require further investigation as our initial definition
of migration might neglect significant hidden cost.

4.1 Achievement Plan
We have a clear idea about the achievement of our goal, which

we define in the following sections.
Fault-tolerance. Our replication protocol guarantees that each
replica group holds a copy of some ranges of keys for different
operators. Since each key is replicated in q+1 physical units,
the system can sustain up to q failing instances of an operator
by resuming the computation on one unit in its replica group.
The system may need to replay some tuple unless the group has
the latest state checkpoint and the failing unit did not process
any newer tuple.
Load balancing. Relying on a load balancing policy (e.g.,
shard size or ingested tuples count above a given threshold), the
system triggers the hand-over protocol. Then, the hand-over
protocol seamlessly moves the processing of some keys ranges
from a primary work unit to another in their replica groups.
Determining the placement of ranges of keys for the primary
state is another orthogonal challenge that we plan to overcome.
Resource elasticity. Regardless of the chosen elasticity policy,
we need to efficiently rescale the state of every range of keys
along with its replicas minimizing the transfer cost. Rescaling
possibly involves deleting some replicas, whereas state transfer
can be still done incrementally by using above protocols. As
we consider primary state and replica as one entity, we reassign
them to parallel instances as described in Section 3.5. This
procedure could benefit from current IaaS platforms where
multiple VMs or containers share physical hardware. Indeed, we
may provision new resources on either an already used physical
node or a new node. The last scenario is more challenging as
the system must migrate entire shards of the state to the new
node.

4.2 The system in action
In Figure 1, we show a toy example of our system while it

seamlessly performs resource scaling, state recovery, and load
balancing. The figure shows a simple dataflow graph made of
one source (parallelism=2) and one operator (parallelism=4).
For the sake of simplicity, we marked tuples and state for the
same keys range with the same colour. Each primary state for
every keys range has only one replica group. In Figure 1.A,
the first instance is failing while the third one is overloaded.
In Figure 1.B, the hand-over protocol seamlessly moves the
processing and the state of both yellow and violet keys ranges.
As the state of the yellow key range was on a failing node, our
system must reply lost tuples. Meanwhile, the fourth instance
processes violet tuples and creates a new partial state. The
hand-over protocol merges this partial state with the current
replica and the last incremental checkpoint. Simultaneously, our
system provisions a new instance and migrates the red state
as it detects an overloaded second instance. In Figure 1.C,
the system is finally stable. The violet state is migrated and
replicated on the fourth and second instance, respectively. The
yellow state is restored on the second instance and replicated
on the new instance. The red state is replicated on the new
instance.

4.3 Evaluation Plan
We assess the capabilities of our system through the following

set of Key Performance Indicators (KPIs):

1. the execution of our protocols must have negligible effect on
query processing performance

2. the system must guarantee exactly-once stream processing
and state consistency

3. performing a load balancing or a resources scaling operation
must improve resource utilization of the physical infrastruc-
ture and prevent bottlenecks (e.g., operator back-pressure)



SRC2

P4

P3

SRC2

P4

P3

SRC2

P4

P3

SRC1

P2

P1

SRC1

P2

NEW

SRC1

P2

NEW
P1

OP3

normal 
instance

failing 
instance

overloaded 
instance

stream 
tuple

primary 
state replica incremental

checkpoint
incremental 
migration

lost tuple to 
replay

new 
instance

A B C

Figure 1: Our protocols in action: tuples and state for the same keys range are marked with the same colour. Primary state for every
keys range is incrementally replicated only once. Sensible steps of the hand-over protocol are circled.

To meet above KPIs, we intend to design a suite of benchmarks
that thoroughly stresses our proposed system. We plan to define
a set of metrics (e.g., tuple processing throughput and latency,
migrated state items, checkpoint size) and measure them in our
system on different real-world workloads, with distinct scaling
and balancing policies, and different replica factors. Finally, we
expect to compare our results with baseline systems.

4.4 Future directions
We envision a system able to continuously process stream

tuples despite data rate spikes and failures. This system can
also seamlessly migrate itself among cluster, e.g., from one
IaaS-provider to a cheaper vendor, between two operational
environments. Incremental state migration will be a building
block of such operations. Other orthogonal research areas may
be: (i) investigating the usage of new storage hardware, e.g,
NVRAM and SSD, (ii) considering non-keyed state and query-
able state, (iii) providing elastic job maintenance, (iv) exploring
data compression techniques to reduce state size, and (v) in-
vestigating incremental state migration (and resource elasticity)
in case of Hybrid Transactional-Analytical Processing (HTAP)
workloads.
Acknowledgments: We would like to thank our advisor Prof.
Volker Markl, as well as Prof. Tilmann Rabl for his valuable
guidance, as well as Dr. Asterios Katsifodimos, Dr. Sebastian
Breß, and Dr. Alireza Rezaei Mahdiraji for their support. This
work has been partially supported by the European Commission
through PROTEUS (ref. 687691).

5. REFERENCES
[1] A. Alexandrov, R. Bergmann, et al. The stratosphere

platform for big data analytics. The VLDB Journal, 2014.
[2] H. Attiya, A. Bar-Noy, et al. Sharing memory robustly in

message-passing systems. In ACM PODC. 1990.
[3] P. Carbone, G. Fóra, et al. Lightweight asynchronous

snapshots for distributed dataflows. CoRR,
abs/1506.08603, 2015.

[4] P. Carbone, A. Katsifodimos, et al. Apache flinkTM:
Stream and batch processing in a single engine. IEEE
Data Eng. Bull., 30(40), 2015.

[5] R. Castro Fernandez, M. Migliavacca, et al. Integrating
scale out and fault tolerance in stream processing using
operator state management. In ACM SIGMOD. 2013.

[6] —. Making state explicit for imperative big data
processing. In USENIX ATC. 2014.

[7] J. Ding, T. Fu, et al. Optimal operator state migration for
elastic data stream processing. CoRR, abs/1501.03619,
2015.

[8] B. Gedik, S. Schneider, et al. Elastic scaling for data
stream processing. IEEE Trans. Parallel Distrib. Syst.,
2014.

[9] E. Hoch, Y. Ben-Yehuda, et al. Bizur: A key-value
consensus algorithm for scalable file-systems. CoRR,
abs/1702.04242, 2017.

[10] G. A. Korsah, A. T. Stentz , et al. The dynamic
hungarian algorithm for the assignment problem with
changing costs. Tech. Rep. CMU-RI-TR-07-27, 2007.

[11] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 1955.

[12] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society of
Industrial and Applied Mathematics, 1957.

[13] D. Murray, F. McSherry, et al. Naiad: A timely dataflow
system. In ACM SOSP. 2013.

[14] M. Nasir, G. Morales, et al. The power of both choices:
Practical load balancing for distributed stream processing
engines. CoRR, abs/1504.00788, 2015.

[15] —. When two choices are not enough: Balancing at scale
in distributed stream processing. CoRR, abs/1510.05714,
2015.

[16] R. Sumbaly, J. Kreps, et al. The big data ecosystem at
linkedin. In ACM SIGMOD. 2013.

[17] Y. Wu and K. Tan. Chronostream: Elastic stateful stream
computation in the cloud. In IEEE ICDE. 2015.

[18] M. Zaharia, T. Das, et al. Discretized streams:
Fault-tolerant streaming computation at scale. In ACM
SOSP. 2013.


