
Spatio-Temporal Locality in Hash Tables

Matt A. Pugh
Supervised by Prof. Stratis Viglas

University of Edinburgh
10 Crichton St.

Scotland
matt.pugh@ed.ac.uk

ABSTRACT
The overall theme of this Ph.D. is looking at ways to use
emerging NVM (Non-Volatile Memory) technologies in real-
world data-science scenarios. It is hoped that the exploita-
tion of the characteristics of the technology will result in
performance improvements, defined as being either/or an
increase in computational throughput and energy-use reduc-
tion. Primarily, this has been through the inclusion of tem-
poral locality into HopH (Hopscotch Hashing) by [2]. The
problem of highly-skewed access patterns affecting lookup
time and required computation is shown through a simple
model. A simulator is then used to measure the expected
performance gains of incorporating temporal locality, given
different HT (Hash Table) configurations. This work was
originally motivated by NVM, as a way to mask the extra
latency anticipated, but the work is applicable to HTs in
DRAM (Dynamic Random-Access Memory) also. The sec-
ond area of interest in the Ph.D. is looking at exploiting
the characteristics of NVM for different families of machine
learning algorithms, though this paper focuses solely on the
former.

1. INTRODUCTION
At this stage, the primary focus has been at introducing

spatial and temporal locality into HopH – taking the concept
of minimising amortised average lookup time into HopH will
provide spatio-temporal locality with an amortised complex-
ity of O(1) for the typical HT operations; Get(), Insert(),
and Delete(). Details on the approaches undertaken are
provided in Section 3. This is motivated by skewed access
patterns, following Zipf’s law, and high-performance sys-
tems, such as RDBMS (Relational DataBase Management
System) join operators.

In its simplest form, a Hash Table (HT) T is an M -bucket
long associative array-like data structure that maps a key k
of any hashable type to value v. A given bucket Bi in T
can have S slots for key/value tuples. The occupancy (or

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017.
Munich, Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

load factor) of a HT is 0 ≥ L ≥ 11. The benefit of a HT is
that the associated value’s position i in memory is calculated
directly using a hash function h(k), i = h(k) mod M .

1.1 Self-Reorganising Data-Structures
A ST (Splay Tree) is a self-adjusting binary search tree

introduced by [6] that has the property that the most fre-
quently accessed node is near the head of the tree. STs have
the amortised time-complexity for Get() and Insert() op-
erations of O(logn), and the goal of their invention was to
minimise average time of lookups in worst-case scenario in
real-time terms. Their solution to achieving this is to min-
imise the number of node traversals by ensuring the most-
frequently-accessed nodes are as close to the head as pos-
sible, a property which is closely tied to temporal locality,
although not exactly the same thing. [6] acknowledge that
the computational cost of ongoing reordering is high, and
may be problematic given the target application workload.
This is clear when considering the rotation of sub-trees in
a Splay() operation – there is no spatial locality, or cache-
friendliness, guaranteed by the structure of the tree in mem-
ory, as such pointer-chasing in rotations is inevitable.

In databases, [3] describe cracking; a method of self or-
ganisation data by query workload. This process is tuned
for a RDBMS in which a column of interest ACRK is re-
tained as a copy, and is continuously reorganised based on
the queries touching it. This is analogous to data hotness
as we wish to view it, and can be considered a cache-tuning
problem, similar to a LRU (Least Recently Used) cache. As
ACRK is a column, they are able to effectively partition the
data itself to improve probing response times significantly.
Partitioning within a HopH context is less intuitive as there
are, at any position, H overlapping neighbourhoods.

2. MODEL AND SIMULATOR
The structure of a HT is entirely dependent on the order in

which keys were inserted into it. For example, the hottest
element of the neighbourhood, or even entire table, over
some given time period, may be in the last available bucket
in a neighbourhood, leading to multiple evaluations before
finding the tuple required.

2.1 Model
Assume a constructed Hash Table T , of which we have a

set of all keys K in T . Let X be the sequence of accesses,

1Assuming no chained-structures resulting in L > 1 load
factor

T[0] - T[H-1]

T[0] - T[H-1]

k1 k2 k3 k4

i= 0 1 ...

#reads=

...

H-1

k4 k3 k1 k2

i= 0 1 ...

#reads=

...

H-1

C C C δC C

H-2

H-2

R
ed

is
tri

bu
te

()

Figure 1: This figure illustrates buckets (coloured blocks)
in neighbourhoods (colours) over some contiguous range of
buckets within the table T . For a given neighbourhood, ac-
cess patterns may naturally fall as the above distribution,
where C is the cache-line size and each blue block represents
a constant number of accesses to the associated key ki. Sup-
pose a request is made for the hottest item k4, there will be
3 + δ cache-invalidations before hitting the hottest data k4
if T [h(k4)] is not already cached. Reordering the data such
that k4 is in position 0, minimising cache-invalidations, is the
optimal distribution. Note that the distribution of colours
in T does not change.

such that every element x ∈ X exists in K. We define a
simple cost model Φ(T,X) that gives a unit cost of a bucket
traversal as β, and a slot traversal and key comparison as
σ unit cost, where α and γ are the number of respective
operations.

Φ(T,X) = αβ + γσ (1)

It is simple to use this model with a sufficient access-skew
in X to show good potential gains in the worst case of the
configuration of T . Consider a RO (Read-Only) T where
some key k has hashed into bucket Bi, but the only available
slot in the otherwise fully-occupied neighbourhood νi is at
Bi+H−1, slot S. Assume that X is completely skewed, such
that there is only one k present, repeated A times. In this
case, the cost of accesses is:

Φ(T,X) = AH(β) +ASH(σ)

In this example, it is clear to see that minimising the
values of α = AH and/or γ = ASH are the only areas of
movement upon which we can optimise, if we assign some
real-world values, where S = 3, H = 64, σ = 15, β = 15, A =
1× 109, we obtain a cost of:

Φ(T,X) ' 3.84× 1012

When we assume that X ′ the hottest element k′ in the
first slot of the first bucket in a neighbourhood, the cost is
naturally far lower:

Φ(T,X ′) = A(β + σ) ' 3.0× 1010

This is the lowest possible cost incurred for T and X ′, and
is therefore referred to as the oracle. With this reordering,

99.22% of cycles would be saved versus T with X. This ap-
proach has the problem that manually attempting to cover
a number of configurations of T to find the expected benefit
of rearrangement would be tedious. To deal with this, we
employ a simulator.

2.2 Simulator
The developed simulator provides the estimated perfor-

mance benefit of performing reordering for varying table
sizes, load factors and skews. This is done using a num-
ber of discrete probability distributions to obtain different
configurations of T , in order to explore the problem space
we are interested in:

1. The number of slots that each bucket will have popu-
lated in the simulator’s construction is sampled from
a Multinomial distribution, for bucket Bi this is ςi.

2. N = bS×M×Lc samples are drawn from a Zipfian dis-
tribution Z(α). These are the random hotness values
that are then inserted into each bucket Bi ∈ T over ςi
slots in each bucket. This approach gives a load factor
L and skew α over the data. T is then randomly per-
muted to distribute the remaining (for L < 1) empty
buckets throughout the table.

3. As the number of buckets occupied within a neigh-
bourhood νi is not a constant, either bξc or dξe buck-
ets per neighbourhood are allocated with probability
πβ = dξe − bξc, where ξ is the expected number of el-
ements in a neighbourhood, given in [5]. πβ must be
within the [0, 1] interval, and is interpreted as the prob-
ability that the neighbourhood contains the upper-
bound of entries. At each neighbourhood root, neigh-
bourhood occupancy is sampled from a Binomial dis-
tribution with probability πβ .

4. Finding the locations within the neighbourhood for oc-
cupancy should not be done linearly, and must be at
least partly stochastic to emulate the chronological in-
sertions over multiple neighbourhoods. Approaching
this in a linear manner would construct T such that
all insertions happened to populate the table in exactly
linear order; this behaviour is not realistic. Instead,
we randomly draw samples from a Poisson distribu-
tion that has a mean λ = 2, in order that the mass of
the distribution is towards the beginning of the neigh-
bourhood, but may be further on.

2.2.1 Output & Discussion
Table 1 shows the output obtained thus far from the sim-

ulator, this shows that even on a coarse reordering policy,
we begin to approx a factor of 2 improvement in terms of
work performed. Performing fine reordering over the same
configuration invariably leads to better results than coarse.
A key caveat is that this metric concerns itself only with
the hottest element in the table, extensions are underway to
take a more wholistic view of potential performance gains.
The fact that as L→ 1, gains appear to disappear is entirely
expected. This is due to the fact that as a table becomes
full, it is to be expected that most neighbourhoods will only
have one bucket in T , therefore reordering is not possible.

Table 1: Simulator results showing the oracle measurements
for the simulator, in terms of percentage of instructions
avoided.

Size M Load L Skew α Coarse (%) Fine (%)

1.00E+03 0.7 1.1 30.59 92.1
1.00E+03 0.7 2.1 31.49 99.53
1.00E+03 0.7 3.1 1.13 3.53
1.00E+03 0.8 1.1 27.86 83.61
1.00E+03 0.8 2.1 44.04 96.3
1.00E+03 0.8 3.1 0.58 2.08
1.00E+03 0.9 1.1 47.5 95.7
1.00E+03 0.9 2.1 48.43 99.04
1.00E+03 0.9 3.1 0.83 1.71
1.00E+03 1 1.1 0.99 2.64
1.00E+03 1 2.1 9.36 14.9
1.00E+03 1 3.1 0.59 1.1
1.00E+05 0.7 1.1 29.86 82.3
1.00E+05 0.7 2.1 35.39 98.92
1.00E+05 0.7 3.1 35.74 95.81
1.00E+05 0.8 1.1 32.82 93.67
1.00E+05 0.8 2.1 33.68 99.64
1.00E+05 0.8 3.1 32.64 95.69
1.00E+05 0.9 1.1 32.97 99.33
1.00E+05 0.9 2.1 35.43 97.79
1.00E+05 0.9 3.1 31.42 97.17
1.00E+05 1 1.1 0.01 0.02
1.00E+05 1 2.1 0.65 1.96
1.00E+05 1 3.1 0.01 0.01
1.00E+07 0.7 1.1 34.16 97.81
1.00E+07 0.7 2.1 34.14 99.2
1.00E+07 0.7 3.1 33.8 97.37
1.00E+07 0.8 1.1 33.03 98.04
1.00E+07 0.8 2.1 32.52 96.91
1.00E+07 0.8 3.1 31.81 94.19
1.00E+07 0.9 1.1 31.87 95.88
1.00E+07 0.9 2.1 26.05 77.39
1.00E+07 0.9 3.1 33.89 99.79
1.00E+07 1 1.1 0 0
1.00E+07 1 2.1 0 0
1.00E+07 1 3.1 0 0

3. METHODS
HopH is used as the basis for the solution. The argument

of reordering based on the hotness of the data itself given by
[1] is highly aligned with the goals for this work. This work
differs as the specific objective is achieving spatio-temporal
locality, in order to minimise average lookup times. The
value of S is selected such that a bucket Bi fits within a
cache-line size C = 64B. In order that the size of the bucket
|Bi| ≤ C, we choose S, where the size of a tuple |τ | =
8 + 8 = 16B, and µ is the size of any required meta-data,

to be S =
⌊
C−µ
|τ |

⌋
. Different access patterns are simulated

by drawing samples from a Zipfian distribution Z, whose
parameter α affects the skew of the samples obtained.

3.1 Reordering Strategies
This section describes a number of re-ordering strategies

for the placement of data in a neighbourhood. These meth-
ods look at coarse, down to fine tuple-level, and heuristic
reordering operations.

3.1.1 Fine - Intra-Bucket (FIntrB)
This method simply sorts the tuples within a bucket Bi

(that must be of the same neighbourhood) by hotness. This
is performed using a priority queue, inserting the tuples
and ordering by their number of accesses, before reinsert-
ing them into Bi. As we know that |Bi| ≤ C, there are no
further bucket traversals required, and any potential gains
are purely in terms of operations performed within Bi for a
Contains() or Get() and, as such, will be minimal.

3.1.2 Coarse Inter-Bucket (CIB)
We can express the overall hotness of a bucket Bi by

the summation of accesses to all tuples contained within
it. With this method, we do not care about the order of the
tuples within slots, but simply that the most-frequently-hit
bucket is closest to the neighbourhood root. A clear com-
promise of this strategy is that it does not care about the
distribution of accesses within Bi; in the example where
S = 3 and Bi has one element with many accesses, but
two without, and Bj has a uniform distribution whose total
(summed) access is more than Bi, Bj will be promoted first.

3.1.3 Fine Inter-Bucket (FIB)
By far the most expensive operation, this seeks to redis-

tribute the neighbourhood at a tuple-level using a priority
queue to order tuples by hotness, before reinserting them
into all buckets within the neighbourhood. The positions of
buckets within the neighbourhood do not change. In terms
of memory use, this strategy is the most demanding. Poten-
tially, if every possible bucket in a neighbourhood νi belongs
to that neighbourhood, there will be many elements to copy
and reinsert overH buckets. Although the memory traversal
will be sequential, this will involve H−1 cache-invalidations.
The trade-off for this cost is that we are guaranteed to have
all tuples in correct order, with none of the compromises of
FIB (Fine Inter-Bucket) or CIB (Coarse Inter-Bucket).

3.1.4 Heuristic
The simplest approach is a direct-swap heuristic, which

simply compares the current tuple τi with the first tuple of
the neighbourhood, τr, if the τi is the hotter of the two. This
approach should not have a high computational overhead,
as in traversing the neighbourhood to find τi, we already
stored a reference to τr upon first encountering it. If τi is
hotter than τr, swap them and their distribution entries.

3.1.5 Approximate Sorting
This approach exploits the spatial locality afforded by

HopH; we are guaranteed that all H buckets within neigh-
bourhood νi are in the same, homogeneous region of mem-
ory. Once these pages are in the cache-hierarchy, latencies
in accessing them are reduced and, depending on the cache
layer, very efficient. As the Get() or Contains() opera-
tion traverses νi, a Bubblesort-like operation can be applied
based on hotness.

3.2 Epochs & Squashing
In order to be adaptive over time, there must be a series of

rules that govern how the hotness of data changes over times
and accesses. For approaches where there is an absolute trig-
ger for reordering, an epoch is defined at a neighbourhood
level, and is its state before a reordering method is invoked.

For non-triggered reordering methods, there must be a con-
tinual state of adaptation for the associated meta-data.

Once tuples in νi have been rearranged, and the numeric
values of tuple accesses have been reduced in some manner,
the hottest element in νi should remain so (preservation of
hotness). For epoch-based approaches, this means the skew
and shape of the distribution should be roughly equal after
an epoch, but smaller in magnitude. For non-epoch-based
approaches, the distribution should be more fluid, dynami-
cally changing all values in νi regularly. Those tuples in νi
that have not had many accesses should have historic ac-
cess counts reduced, until sufficient epochs have passed that
they no longer have any hotness in epoch-based reordering
(cooling).

3.3 Deletions
Handling deletions in HotH (Hotscotch Hashing) should

follow two principles further to a baseline HopH deletion:

1. For per-slot level meta-data, the distribution entry
(number of reads) for the tuple to be deleted should
also be deleted from any per-bucket counter if present,
before being erased itself.

2. If any slot that is not the first slot of a bucket contains
the tuple to be deleted, subsequent slots should be
shift towards the first slot, to minimise unnecessary
traversal gaps in the bucket structure.

After this, should the bucket be empty after tuple dele-
tion, the standard HopH process is followed.

3.4 Invocation
Finding the balance between the severity of the reordering

strategy employed, and how and when to trigger it are key
points in this work. We explore a number of invocation
strategies, and the various forms of meta-data required to
permit them.

3.4.1 Trigger-based
The simplest method of invocation is that of setting a min-

imum number of accesses to a bucket or neighbourhood, de-
pendant upon the reordering strategy used, where a counter
ρ = 0 is meta-data within the bucket structure. Upon every
Get() or Contains() call, ρ is incremented and evaluated.
Once ρ exceeds some instantiation-defined value σ, the re-
ordering is invoked.

3.4.2 Probabilistic-based
Instead of storing any meta-data at a bucket/neighbour-

hood level, we can simply state that with some probability
πr = P(Perform Redistribution), we will perform a reorder-
ing. A key point in using this method is to avoid paying
the cost of the given reordering strategy often; however the
generation and evaluation of PRN (Pseudo Random Num-
ber)s is itself a non-zero cost. Conclusions drawn from ex-
perimentation using a number of PRNG (Pseudo Random
Number Generator)s show that the xorshift a good candi-
date. Further work is looking into simpler masking / shifting
of an integer value, as statistically-sound randomness isn’t
mandatory.

4. EXPERIMENTS

1. The base experiment looks at the Avg.CPU (Aver-
age CPU Cycles) metric of creating tables based on
the same input data, and performing the same set of
queries, in the same order, amongst different table con-
figurations and comparing their results. Input data is
randomly generated, and HopH is used as a baseline.

2. A SHJ (Symmetric Hash Join) is constructed of two
tables. A HotH configuration is compared with one
backed by HopH, to measure the difference the adap-
tive approach we propose makes to realistic scenario.
Experiments evaluating SHJ performance will use ex-
isting data-sets, over different relation sizes.

5. DISCUSSION
Implementations of all methods described have been com-

plete, with results expected soon. As the overarching theme
of this thesis is NVM, work will be conducted to exploit its
characteristics to aid HotH. An approach by [4] provides a
way for leaf nodes being stored in a DRAM/NVM hybrid
B+Tree, where the system prefers Contains() operations
to Get(), as keys are stored in quick DRAM and values in
NVM. Following a similar methodology for hybrid NVM /
DRAM should provide a fast key lookup for Contains(), as
we can now fit many keys within C, but also gives slower
reordering due to the extra cost of moving around NVM
vs. DRAM. Unlike the problem solved by [4], we must still
ensure spatial and temporal locality. Intuitively, this could
mean analog structures of M elements in DRAM and NVM
with a translation function t(i, s)→ j that takes the bucket
and slot numbers i, s respectively, and maps it to a position
(offset) j in the NVM table.

6. ACKNOWLEDGMENTS
This work was supported in part by the EPSRC Centre

for Doctoral Training in Data Science, funded by the UK
Engineering and Physical Sciences Research Council (grant
EP/L016427/1) and the University of Edinburgh.

7. REFERENCES
[1] S. Albers and M. Karpinski. Randomized splay trees:

Theoretical and experimental results. Information
Processing Letters, 81(4):213–221, 2002.

[2] M. Herlihy. Hopscotch Hashing. pages 0–15.

[3] S. Idreos, M. Kersten, and S. Manegold. Database
Cracking. CIDR ’07: 3rd Biennial Conference on
Innovative Data Systems Research, pages 68–78, 2007.

[4] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory.
Proceedings of the 2016 International Conference on
Management of Data - SIGMOD ’16, pages 371–386,
2016.

[5] R. Pagh and F. F. Rodler. Cuckoo Hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[6] D. D. Sleator and R. E. Tarjan. Self-adjusting Binary
Search Trees. Journal of the ACM, 32(3):652–686, 1985.

