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ABSTRACT
To which extent can graph pattern mining enrich business
intelligence? This question was the seed whose sprout be-
came my PhD research. To find an answer, I investigated
graph-based data integration, the calculation of business
measures from graphs and suitable data mining techniques
based thereon. The latter should identify correlations be-
tween occurrences of specific graph patterns and values of
business measures. Finally, interesting patterns should be
presented to decision makers. With real world applications
in mind, I additionally considered the requirements of big
data scenarios at all stages. In this paper, I summarize my
recent contributions and give an outlook on the work re-
quired to finally answer the motivating question.

1. INTRODUCTION
To make good decisions, enterprises have a permanent de-

sire to understand the reasons for certain values of business
measures. In a classical business intelligence development
lifecycle a domain expert is choosing potential impact fac-
tors and the analytical model is tailored to evaluate mea-
sures by these factors. However, this approach often leads
to oversimplified models and, thus, unexpected patterns may
remain hidden. Hence, the use of graph models for business
intelligence is a promising approach for two reasons: First,
some patterns are too complex to be represented using tu-
ples. In particular, this applies to patterns where most of
the information is about relationships.

Second, graphs can loosen the coupling of experts’ bias
and analytical results because data represented by rich graph
models like the property graph model [20] allows not only
to evaluate instance data but also metadata occurrence, i.e.,
schema-related information is part of the result and must no
be specified in a query. For example, to reveal patterns be-
tween objects of classes A and B, ideally analysts just want
to ask ”Which patterns typically connect As and Bs?” and
expect an answer like ”Mostly via a sequence of Cs and Ds,
but sometimes only via Es”. In contrast, using a structured
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model like common data warehouse models, they need to ask
several questions like ”Are As and Bs frequently connected
via Ds?” and get simple ”Yes” or ”No” answers.

Summarized, wrapping the schemas of data sources into a
graph super-model enables more generic queries and mining
of self-descriptive patterns. In my PhD research, I developed
the BIIIG approach (Business Intelligence with Integrated
Instance Graphs) to enable such flexible graph-based anal-
yses of business data. Figure 1 provides an overview of the
approach. In the remainder of this paper, I will give a brief
overview of my past and future work.

2. CONTRIBUTIONS
In the following, I will provide an overview of the contri-

butions made during my past PhD research.

2.1 Graph Representation of Business Objects
Business data of a company implicitly describes a graph

but is typically stored in one or more business information
systems based on relational databases. Thus, I first had
to consider the process of turning data organized in tables
into graphs. In [16], I proposed a semi-automated solution
to this problem and implemented a prototype based on a
productive graph database [19]. The approach was evalu-
ated using real and synthetic data. In the following, I will
briefly discuss my approach to graph-based data transfor-
mation and integration but, due to limited space, only for
relational databases.

In the initial step (step 1 of Figure 1) metadata of one
or more data sources is acquired, stored in a graph model
(unified metadata graph) and enriched by a domain expert.
In this graph, every vertex represents a class of domain ob-
jects (class-like tables) and every edge an association be-
tween classes (foreign keys or m:n tables). Both, vertices
and edges, further contain information about their source
system, semantic type, keys and attributes.

In the second step (step 2 of Figure 1), vertices and edges
of the metadata graph are interpreted to generate SQL state-
ments. These are used to query instances (data objects and
relationships) from the source databases. Afterwards, all
data objects are transformed into vertices and all relation-
ships into edges of a so-called integrated instance graph. I
decided to use the property graph model [20], i.e., a di-
rected labeled multigraph with named attributes (proper-
ties). For both, vertices and edges, labels represent their
semantic type and all attributes are stored using properties.
Another popular model to represent such graphs is the re-
source description framework (RDF) [10]. However, RDF is



Figure 1: Overview of the BIIIG approach [16]

more general and provides no dedicated structures for logical
relationships, labels and properties. In consequence every
attributed relationship must be represented by a subgraph
[7] and the total number of edges would be much higher.

Besides model transformation, the second step may also
include data integration. Every vertex has a globally unique
source identifier composed from identifiers for source sys-
tem, class and record. Thus, the approach supports rela-
tionships across data sources. Such relationships may exist
for two reasons: First, data objects of different systems may
reference each other, for example, a ticket of a customer is-
sue tracking system may reference an invoice stored in an
accounting system. Second, certain master data is held re-
dundantly and copies refer to a global business key (e.g.,
customer number). For the latter case, I proposed vertex
fusion, a strategy to automatically merge the resulting ver-
tices and to redirect their relationships.

2.2 Business Transaction Graphs
Data warehouse models use a schema (e.g., star schema)

that needs to be defined in advance to link facts and dimen-
sions. Data mining techniques based thereon can evaluate
the co-occurrence of certain dimensional values (e.g., fea-
ture vectors). The major aim of the BIIIG approach was
to enable an additional evaluation of the relationship struc-
ture among interrelated facts as well as between facts and
dimensions. Analyzing such structural patters is promis-
ing, for example, to reveal interaction patterns between cus-
tomers and certain employees that lead to high sales profit.
Here, the first challenge was to find a suitable abstraction
to enable such analyses. For this reason, I introduced the
concept of business transaction graphs [16] as the base for
measure aggregation (Section 2.3) and graph pattern mining
(Section 2.5). A business transaction graph represents, for
example, a single execution of a business process like trading
or manufacturing goods.

I proposed a domain-specific algorithm to automatically
extract a collection of such graphs from the integrated in-
stance graph (step 3 in Figure 1). Figure 2 shows four exam-
ple business transaction graphs of a sales process. For sake of
ease, edge types are omitted. The algorithm is based on the
observation that transactional data (e.g., Email, Quotation,
SalesOrder) only link each other in the case of a causal
connection. Here, causally connected means object B (e.g.,
an invoice) would not exist without the prior existence of
object A (e.g., a quotation). Thus, the algorithm first iden-
tifies connected components of transactional data and, af-
terwards, adds all master data (e.g., Customer, Employee,
Product) that is directly connected to one of the compo-

nent’s vertices. In consequence, every transactional vertex
belongs to exactly one graph while master data instances
may be part of many graphs. The algorithm’s only require-
ment is the categorization of vertices to represent either mas-
ter or transactional data. This categorization is done by a
domain expert at the class level and taken over by their
instances.

Due to the bad availability of datasets from real business
information systems, I designed and implemented FoodBro-
ker [17], a data generator based on business process simula-
tion. The generated data’s schema is inspired by real busi-
ness information systems. Further on, every master data
object has a quality criterion and will, if participating, in-
fluence the process execution positively or negatively. For
example, the more poor master data objects interact in a
process the higher is the chance for a bad process outcome
like financial loss. Thus, data generated by FoodBroker is
suitable to evaluate the BIIIG approach.

2.3 Business Measure Aggregation
To analyze graph collections, first, measures need to be

calculated on the graph-level. For this reason, I proposed the
graph aggregation operation [14, 16]. Aggregation derives a
scalar value from an input graph’s vertices and edges includ-
ing labels and properties, e.g., to count contained vertices
of a certain type or to sum all values of a specified property.
The actual calculation is specified by a user-defined func-
tion γ that is executed for every graph of a collection. For
example, the attributes isClosed and soCount attached to
the graphs of Figure 2 represent the results of two different
aggregation functions γisClosed and γsoCount. While γsoCount
counts vertices of type SalesOrder, γisClosed will check, if
the graph contains a closed sales quotation, i.e., if the sales
process is finished. The result of an aggregation function
can be used to filter a graph collection. In our example, only
graphs with γisClosed = true were selected to apply γsoCount.
Since vertices of type SalesOrder only exist in the case of a
confirmed (won) Quotation, this aggregation result can be
used to categorize graphs into won (γsoCount > 0) and lost
(γsoCount = 0) ones.

2.4 Scalable Frequent Subgraph Mining
To find correlations between certain business measures

values and graph patterns, pattern frequencies need to be
computed. This primitive operation is the well known prob-
lem of frequent subgraph mining [5]. Since the problem is
NP-complete and graph collections in business applications
can be very large I required a massive parallel solution to
minimize total response times. There are three distributed



approaches to (exact and complete) frequent subgraph min-
ing based on MapReduce [4, 11, 12]. However, none of these
approaches is capable to mine directed multigraphs.

Thus, I discussed an extension of the popular gSpan algo-
rithm [22] to support directed multigraphs in [15] and pro-
posed DIMSpan [18], the first approach to frequent subgraph
mining based on distributed in-memory dataflow systems
like Apache Spark [23] or Apache Flink [2]. In comparison
to the existing MapReduce based approaches, DIMSpan not
only requires fewer disk access but also shuffles less data
over the network and can reduce the total number of ex-
pensive isomorphism resolutions to a minimum. In exper-
imental evaluations I have shown that a lightweight data
structure as well as effective and fast compression techniques
based thereon are key techniques for good scalability in big
data scenarios. Figure 3 shows example evaluation results of
DIMSpan. The chart on the left hand side shows a perfect
scalability for increasing input data volume, since compu-
tation time for a portion of 100K graphs is decreasing for
a growing number of graphs at different minimum support
thresholds smin. The chart on the right hand side shows
good speedup for an increasing cluster size.

2.5 Category Characteristic Patterns
Since we are able to categorize graphs based on aggre-

gated measures and can compute pattern frequencies, we
can also mine correlations between categories and certain
patterns. In [14] I proposed an analytical workflow to iden-
tify such category characteristic patterns. Figure 2 shows
four example graphs where the top 3 represent finished exe-
cutions of a sales process (γisClosed = true) categorized into
won (γsoCount > 0) and lost ones (γsoCount = 0). Blue and red
color are used to highlight example patterns. The pattern
in blue color represents ’a phone call made by Alice’ and
the one in red color ’an email sent by Bob’. To enable the
extraction of patterns combining labels and values of cer-
tain properties I additionally use a specific transformation
between categorization and mining.

In contrast to basic frequent subgraph mining, I require
patterns not just to be frequent but to be characteristic for
a measure category. For example, the blue pattern is in-
teresting, as it occurs in all of the won cases but not in the
lost one. By contrast, the red pattern occurs in all graphs of
both categories and, thus, is considered to be trivial. There-
fore, I use an interestingness measure comparing a pattern’s
frequency in different categories. The measure is a func-
tion that evaluates the relative support of a pattern within
a category in relation to its average relative support in all
categories. Based on this measure, the analyst sets an in-
terestingness threshold to prune patterns by minimum in-
terestingness. Additionally, there is a candidate threshold
to specify the minimum support of a pattern inside a cate-
gory to be considered as a candidate. This parameter is used
to save computations in exchange for result completeness.

2.6 Framework Integration
The implementation of the initial prototype [19] only cov-

ered data integration and simple analytical queries. To find
a suitable platform for complex workflows including mea-
sure calculation and pattern mining, I performed an in-
depth comparison of graph databases [7] and examined the
suitability of different graph processing technologies [14]. I
found out that none of the existing systems could satisfy my

Figure 2: Example Business Transaction Graphs [14]

requirements, especially they miss support for graph collec-
tions and graph properties. Thus, I joined the development
of Gradoop [9], a scalable framework supporting complex
workflows [15] of multiple operations on both graphs and
graph collections.

The aggregation and vertex fusion operators proposed in
[16] became part of Gradoop’s extended property graph
model. Additionally, DIMSpan [18] as well as the algo-
rithms to extract business transaction graphs [16] and the
one to identify category characteristic patterns [14] were im-
plemented to fit a dedicated interface for plug-in algorithms
and are part of Gradoop’s open source repository1. Be-
sides operators related to the BIIIG approach, the frame-
work provides further valuable analytical operators such as
graph grouping [8] and graph pattern matching [6].

3. PROBLEMS AND FUTURE WORK
In first evaluations of mining characteristic patterns from

FoodBroker data I found out that the expected result was
returned but the number of patterns quickly became very
large and may overwhelm analysts. However, I was already
able to identify two particular ”data science” problems and
their potential solutions: First, the method described in Sec-
tion 2.5 eliminates trivial patterns for each category but not
combinations of trivial and characteristic patterns. Thus,
I’ll investigate ranking results using a fast analytical method
of graph p-value calculation [13]. Based thereon most sig-
nificant patterns should be presented first.

1www.gradoop.com



Second, patterns should contain different levels of dimen-
sional attributes. To provide a simple example, on the one
hand an analyst won’t be interested in the pattern bread
and butter, if there are more specific patterns like wholegrain
bread and butter. On the other hand, if bread and butter is
not returned, the more general pattern of bakery products
and butter could be. Thus, I will extend the DIMSpan algo-
rithm to mine dimensional attributes across multiple levels.
This approach has already been studied for itemsets [3] but
not for graphs.

Finally, I will evaluate BIIIG in a real world scenario in
cooperation with a large-scale enterprise. The evaluation
will be based on Gradoop and cover all steps of my ap-
proach. The company will not only provide real business
data but also valuate analytical results and scalability.

4. SUMMARY
In my past PhD research, I contributed to the fields of

graph data management and graph data mining. In contrast
to other graph-based approaches to business intelligence [1,
21], BIIIG covers all steps from data integration to analyti-
cal results and requires no advance definition of an analytical
schema. To the best of my knowledge, I proposed the first
approach to integrate data from multiple source into a single
instance graph and the first one using metadata-driven au-
tomation. Further on, I was the first who discussed the usage
of graph collections to analyze the structure of interrelated
business objects and to enable novel data mining techniques
based thereon. Additionally, I presented the first horizon-
tally scalable approach to transactional frequent subgraph
mining using a distributed in-memory dataflow system and
the first supporting directed multigraphs. To finish my PhD
research, I will improve applicability by returning cross-level
results and ranking them by significance.
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