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ABSTRACT
Scalable algorithm design has become central in the era of
large-scale data analysis. My contribution to this line of re-
search is the design of new algorithms for scalable clustering
and data reduction, by exploiting inherent low-dimensional
structure in the input data to overcome the challenges of
significant amounts of missing entries. I demonstrate that,
by focusing on a property of the data that we call its funda-
mental resolution, we can improve the efficiency of clustering
methods on sparse, discrete-valued data sets.

1. INTRODUCTION AND BACKGROUND
The necessity for efficient algorithms in large-scale data

analysis has become clear in recent years, as unprecedented
scaling of information has sprung up in a variety of domains,
from bioinformatics to social networks to signal processing.
In many cases, it is no longer sufficient to use even quadratic-
time algorithms for such data, and much of recent research
has focused on developing efficient methods to analyze vast
amounts of information.

Here we focus on scalable clustering algorithms, a form of
unsupervised learning that is invaluable in exploratory data
analysis [16]. Many successes in the effort to design these
algorithms have focused on leveraging an inherent structure
in the data, and its structure may be best expressed in var-
ious ways. The data may be best described as lying in an
inherently low-dimensional Euclidean space, along a low-
dimensional manifold, or it may have certain self-repeating,
or fractal properties. All these structural properties have
been explored to some degree in order to design more effi-
cient clustering algorithms.[11, 2, 6, 7, 8, 17]

My work focuses on leveraging a property of large-scale,
discrete-valued data that I call its fundamental resolution,
a concept that can be explained by comparing the images
in Figure 1. More pixels produce a clearer image, but only
up to a point – we cannot distinguish the leftmost image
from that in the middle, even though more pixels are used to
render the image in the leftmost position. Similarly, in many
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Figure 1: Fundamental resolution of an image: the more pixels
we use, the clearer it gets, but only up to a point.

large, discrete-valued data sets, the fundamental resolution,
rather than the number of data points, determines the extent
to which we can distinguish points from one another before
the data becomes redundant. If we know a large data set
with many missing values has a fundamental resolution, we
can more easily single out data points that are noise and fill
in missing entries.

In the following, I present efficient algorithms for cluster-
ing large-scale, discrete-valued data sets with missing values
by leveraging the fundamental resolution of the data. Pre-
viously, my collaborators and I have demonstrated that the
underlying fundamental resolution of binary-valued genetic
mapping data can be used to quickly cluster large genetic
mapping data sets. I am now generalizing this clustering
approach to large-scale, discrete-valued data, such as that
found in the recommender systems domain. Genetic map-
ping and recommender systems present similar challenges
to clustering algorithms, due to the large degree of sparsity
and the sheer scale of the input data in these domains.

2. RELATED WORK
Much attention has been paid to the intuition that many

large-scale data sets lie in an inherently low-dimensional
space, which explains the popularity of matrix factoriza-
tion methods for large scale data analysis. Methods such
as principal component analysis rely on an SVD decompo-
sition in order to project a high-dimensional data set into
a lower dimensional space [10, 9]. Spectral clustering is an-
other such example, and has been modified in recent years
to improve in running time [11]. More recently, the CUR
decomposition [12] has gained popularity as a sparse matrix
factorization method that is both fast and in some cases
more interpretable than a decomposition based on eigenvec-
tors. With matrix factorization approaches, clustering the
projected data in the lower-dimensional space often results
in better clustering performance. However, my work focuses
on data that does not necessarily lie in a low-dimensional
Euclidean subspace – many dimensions in the input may be
relevant in data with a low fundamental resolution. In ad-
dition, there is no clear answer on how to deal with noise
and missing entries when factorizing a large data matrix,
whereas my work takes these issues into account.



Other forms of lower-dimensional inherent structure have
also been explored to speed up the clustering of large-scale
data. A data set’s fractal dimension has been exploited for
clustering [8], but this method is not scalable to large data
sets. An approach based on exploiting a low fractal dimen-
sion and entropy of a data set has been successfully applied
to quickly search massive biological data sets.[17] However,
here we focus here on efficient clustering, not efficient search.

Older, popular methods such as the well-known DBSCAN[6],
algorithm seek to preserve the shape of data, but rely on
the input lying in a metric space. In addition, these meth-
ods typically require at least quadratic time when the input
data lies in three or more dimensions[7], and again do not
account for missing values. Popular nonlinear dimensional-
ity reduction methods, such as Laplacian eigenmaps[2], also
don’t account for missing data and noise, and many such
approaches do not scale well.

3. EXPLOITING THE FUNDAMENTAL RES-
OLUTION OF GENETIC MAP DATA

Genetic map data for a homozygous mapping population
can be represented as a binary matrix X, composed of rows
xu, where each entry xui can take on one of two values a
or b, or it can be missing. [4] In this application domain,
errors occur when an entry was erroneously recorded during
sequencing – that is, it was flipped from a to b or from b to
a – and errors typically occur at a fixed rate ε. The goal of
genetic mapping is to produce a map of the genome, which
shows the correct clustering and ordering of the input xu.
Such maps have applications in health, agriculture, and the
study of biodiversity.

Producing a genetic map typically requires three stages:
1) Clustering the vectors xu into linkage groups, 2) Ordering
the vectors within each linkage group, and 3) Determining
the correct genetic distance between the ordered vectors. In
previous work ([13], [14]), we showed that by exploiting the
fundamental resolution of genetic map data, we can quickly
and accurately cluster the input vectors and reduce them
from a large-scale, noisy, and incomplete data set into a
small set of bins that more accurately represent the genome.

3.1 Scalable Clustering
We have shown that, using the well-known LOD score

similarity that is ubiquitous in genetics, we can design a
fast and accurate algorithm to cluster input data for genetic
mapping [13]. The LOD score is a logarithm of odds, com-
paring the likelihood of two vectors being in the same cluster
to the likelihood that they were generated by chance:

LOD(xu, xv) = log10

P(data|xu and xv in same linkage group)

P(data| pure chance)

Because we have binary data, the denominator in the LOD
fraction is simply ( 1

2
)η, where η is the number of entries

that are non-missing in both xu and xv. For example, if
xu =

[
a b b − b

]
and xv =

[
a a − − a

]
,

then the denominator is ( 1
2
)3, because the first, second, and

last entries are non-missing entries in both xu and xv. The
numerator is a function of the estimated recombination frac-
tion of the genetic data, and is explained in more detail in
our previous work [13]. The LOD score does not obey the tri-
angle inequality, which together with the presence of errors
(flipped entries) and missing values, eliminates the possibil-
ity of accurately clustering the data with existing efficient
algorithms.

BubbleCluster
Dataset Input Size F -score Time

Barley 64K 0.9993 15 sec
Switchgrass 113K 0.9745 8.9 min
Switchgrass 548K 0.9894 1.9 hrs

Wheat 1.582M N/A 1.22 hrs

Table 1: Clustering performance on Barley, Switchgrass, and
Wheat from the Joint Genome Institute using BubbleCluster.
State-of-the-art mapping tools are unable to cluster data sets at
this scale. (Table originally appeared in [13])

Our algorithm BubbleCluster, which resembles the DB-
SCAN method [6], utilizes the LOD score to efficiently clus-
ter the data. First, we build a sketch of the clustering by
linking together points that exceed a high LOD threshold,
which only occurs for vectors with many matching binary
values. Then, points with more missing values are linked to
the point in the skeleton attaining the highest LOD score.
The fundamental resolution limits the number of unique in-
put vectors and thus as the data size grows, it is more likely
that enough high-quality points exist to build the skeleton
and accurately place the remaining points.

BubbleCluster allows for efficient clustering of genetic map
input data into linkage groups. As Table 1 shows, our
method achieved both high precision and recall (expressed
as the F -score) on real genetic data. It was also the first
method to successfully cluster genetic map data at large
scales, including the grand challenge hexaploid bread wheat
genome [3], and outperformed state-of-the-art mapping tools
in terms of clustering performance on simulated data [13].

To further aide the efficiency and accuracy of the ge-
netic mapping process, we introduced a fast data reduction
method that quickly converts the large-scale, noisy, and in-
complete input data into a small-scale, more accurate and
more complete set of points which more clearly represent
the genetic map. I will next describe this data reduction
method, based on the fundamental resolution of the genetic
mapping input data.

3.2 Efficient Data Reduction
Genetic map data has a fundamental resolution that is

linear in the dimensionality of the input vectors. We can
leverage this property of the data to efficiently reduce it to
a much smaller and more accurate set of vectors we call bins,
that represent positions along the genetic map as illustrated
in Figure 2. The data reduction process uses a recursive
bisection method to quickly reduce the input vectors within
each linkage group to bins [14].

The binary nature of the data limits the number of possi-
ble unique input points to 2n, where n is the dimensionality
of the data. However, the fundamental resolution of the data
limits this number much further – the fundamental resolu-
tion of a genetic map is equivalent to the number of possible
unique positions on the map. With a homozygous map-
ping population (binary data), this number is O(kn), where
k is the number of linkage groups (clusters) [14]. There-
fore, when the number of input points is much larger than
the fundamental resolution, many points must be identical,
helping us filter out errors. Furthermore, the large data set
size allows us to fill in missing data if we can cluster together
points that belong to the same unique map position.

If we know two points belong in the same position on the
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Figure 2: The fundamental resolution of genetic map data allows
us to reduce the large-scale, incomplete and noisy input to a more
complete set of representative vectors that more clearly describe
positions along the genetic map.
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Figure 3: As the data size grows, more map position vectors
(bins) are recovered perfectly, while lower missing rates allow our
algorithm to recover the bins with less data.

genetic map, we can infer which values are errors and what
the missing data should be. In Figure 2, for example, x3 and
x6 belong to the same position, so we can fill in the missing
data in both x3 and x6 based on each other’s values. A
similar idea applies to errors – the more points belong to
the same position, the more clear it becomes which values
are errors, as long as ε is fairly low.

We designed an algorithm that uses recursive bisection to
quickly clusters together points in the same genetic map po-
sition. At each step, we use a maximum a posteriori (MAP)
estimate of ε in order to find the best dimension along which
to split the point set. The algorithm returns both an esti-
mated error rate and a set of bins that represent unique
positions on the genetic map. We showed that the number
of bins and the error rate is consistent with existing real-
world maps of wheat and barley[14].

We also simulated genetic map data with realistic error
rates and a variety of missing data rates. Our algorithm
scaled linearly with data set size for all tested missing rates
and error rates in synthetic data. As Figure 3 shows, the bin
recall, or fraction of bins we can recover perfectly, improves
at each missing rate with more data. Note that although
an error rate of 0.5% seems low, it is actually much higher
than encountered in practice.

4. GENERALIZING TO DISCRETE-VALUED
DATA WITH MISSING VALUES

Next, I will describe the last portion of my thesis work,
clustering large discrete-valued data sets with missing val-
ues. One example of such data is found in the Recommender
Systems (RS) domain, and much of the experimentation of
these clustering methods will be on RS data.
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Figure 4: Fundamental resolution in Recommender Systems data
equates to finding the vectors that best represent user sub-groups
with low disagreement rates.

My hypothesis is that a fundamental resolution exists in
many discrete-valued data sets, and can be exploited to ef-
ficiently cluster these data at large scales. In the RS do-
main, we often have a discrete-valued input matrix with
many missing values as shown in Figure 4, where an en-
try Xui represents the rating that user u gave to item i,
with ratings typically taking values on a discrete scale. The
methods for clustering and reducing the binary genetic map
data can be adapted to this more general setting.

The fundamental resolution in RS data can be expressed
as the number of unique user sub-groups that rate items very
similarly. Recently, Christakopoulou et al.[5]have shown
that utilizing user clusters to improve prediction of rating
values and recommend better items is an extremely effective
approach. An efficient, accurate clustering method for RS
data has the potential to enhance such approaches to rating
prediction as well as the top-n recommendation problem [1].

4.1 The LiRA Similarity Score for Recommender
Systems

We have developed a statistical score analogous to the
LOD score for RS data called LiRa, based on a likelihood ra-
tio. We assume that RS data has a fundamental resolution,
and thus users (rows of the input matrix) can be clustered
into groups with vectors representing the rating trends of
each group. LiRa compares the likelihood of observing the
values in two user vectors xu and xv assuming the users are
in the same cluster, to the likelihood of observing the same
data by chance, based on differences in their rating values:

LiRa(xu, xv) = log10

p(differences in xu and xv | same cluster )

p(differences in xu and xv | pure chance)
(1)

LiRa generalizes the LOD score by assuming that differ-
ences in two discrete-valued vectors from the same cluster
follow a particular multinomial distribution, which is used
to compute the numerator. The LiRa score is useful in the
RS setting because it leverages more data to make a more
accurate judgment of similarity.

We have shown that using the LiRa score to find nearest
neighbors in a k-nearest neighbors approach outperforms
the popular and widely used Pearson and Cosine similarity
scores in terms of rating prediction error [15]. I am cur-
rently expanding on the clustering model used to compute
the likelihood of users belonging to the same cluster in the
LiRa score, which will be useful for efficient data reduction
in the discrete-value setting.



4.2 Generalizing Efficient Data Reduction to
the Discrete-Valued Domain

As noted previously, my goal is to generalize my previous
work on efficient clustering and data reduction in genetic
map data to the more general setting of large-scale, discrete-
valued data with missing values and noise. The LiRa score
from section 4.1 is the first step in this direction, and can
be used to produce an initial clustering of the input using a
thresholding scheme similar to the BubbleCluster algorithm.
The threshold LiRa score within which points will belong to
the same cluster will rely on the clustering model used to
represent the data. For RS data, a working model is already
presented in previous work [15].

After an initial fast clustering, I hope to generalize the
data reduction stage to discrete-valued data also. Here, fu-
ture work involves more precisely defining the point at which
the fundamental resolution has been reached. In RS data,
the idea is to cluster together users who have very similar
rating patterns. One possibility is to only cluster together
users if the distribution of their rating differences follows a
clustering model. For example, in Cluster 1 in Figure 4,
only one pair of ratings for the same item differs signifi-
cantly: x13 = 1 and x33 = 5, giving a rating difference of 4.
The remaining ratings are all close together. The recursive
bisection method for data reduction in genetic mapping can
be modified to this more general case, by dividing user clus-
ters with large differences in rating values, based on MAP
estimates of the proportion of each rating difference.

I am currently formalizing the notion of fundamental res-
olution in the general case, and experimenting with the best
clustering model for RS data. As the final piece to my thesis,
I hope to demonstrate that the efficient clustering and data
reduction methods can be applied to more general data sets,
and will be useful in the RS domain for rating prediction.

5. CONCLUSION
I have shown that the concept of fundamental resolution

can be exploited to design efficient and accurate clustering
algorithms in the genetic mapping domain, and I am ex-
tending this concept to the more general setting of discrete-
valued data. The methods presented here are useful for ap-
plications with large-scale, discrete input data with many
missing values, such as that found in the Recommender Sys-
tems domain. Future directions beyond my thesis work in-
clude exploring the connection between fractal dimension
and fundamental resolution, as well as defining new cluster-
ing models for data sets with a low fundamental resolution.
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