A Hardware-Oblivious Optimizer for Data Stream
Processing

Constantin Pohl
supervised by Prof. Dr. Kai-Uwe Sattler
Technische Universitat limenau
limenau, Germany

constantin.pohl@tu-ilmenau.de

ABSTRACT

High throughput and low latency are key requirements for
data stream processing. This is achieved typically through
different optimizations on software and hardware level, like
multithreading and distributed computing. While any con-
cept can be applied to particular systems, their impact on
performance and their configuration can differ greatly de-
pending on underlying hardware.

Our goal is an optimizer for a stream processing engine
(SPE) that can improve performance based on given hard-
ware and query operators, supporting UDF's. In this paper,
we consider different forms of parallelism and show mea-
surements exemplarily with our SPE PipeFabric. We use a
multicore and a manycore processor with Intel’s AVX/ AVX-
512 instruction set, leading to performance improvements
through vectorization when some adaptations like micro-
batching are taken into account. In addition, the increased
number of cores on a manycore CPU allows an intense ex-
ploitation of multithreading effects.

Keywords

Data Stream Processing, AVX, Xeon Phi, SIMD, Vectoriza-
tion, Parallelism

1. INTRODUCTION

Technological advancement leads to more and more op-
portunities to increase application performance. For stream
processing, data arrives continuously at different rates and
from different sources. A stream processing engine (SPE)
has to execute queries fast enough that no data is lost and
results are gathered before the information is already out-
dated. A solution to achieve this is a combination of software
optimizations paired with modern hardware for maximizing
parallelism. It is difficult to find an optimal parametrization
though, e.g. for the number of threads or load balancing
between them. It gets even worse when different hardware

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.

Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

properties come into play, like memory hierarchies or CPU
core count.

For this paper, we consider different aspects and para-
digms of parallelization that are applicable on data stream
processing. In addition, first measurements on SIMD and
multithreading realized on an Intel Core i7 and Intel Xeon
Phi Knights Landing (KNL) with our SPE PipeFabric are
shown. Our final goal is a full optimizer on a SPE capable
of dealing with unknown UDFs in queries as well as with ar-
bitrary hardware the system uses. Two consequential tasks
arise from this.

e Exploitation of opportunities given by modern hard-
ware, like wider CPU registers on Intel’s AVX-512 in-
struction set, manycore processors with 60+ cores on
a chip or increased memory size.

e Analysis of performance impacts by possible UDFs and
operations, like computational effort or possible paral-
lelization degree in case of data dependencies.

The rest of this paper is organized as follows: Next Sec-
tion [2| is a short recapitulation about stream processing,
possible parallelism and opportunities given by hardware.
Section [3| summarizes related work done on SIMD paral-
lelism, hardware-oblivious operations and stream partition-
ing in context of data stream processing. Our results are
presented in Section [] followed by Section [5] with future
work. Section [6] with conclusions tops off this work.

2. PREREQUISITES

This section shortly summarizes requirements on stream
processing and parallelization opportunities in addition to
information on used hardware, like supported instruction
sets.

2.1 Data Stream Processing

As already mentioned, high throughput and low latency
are main requirements for stream processing. A data stream
delivers continuously one tuple of data after another, possi-
bly never ending. Queries on data streams have to consider
that tuples can arrive at alternating rates and they get out-
dated after a while, because storing all of them is impossible.
Operating with windows of certain sizes are a common so-
lution for this property.

As a consequence, a query has to be processed fast enough
to produce no outdated results as well as keeping up with
eventually fast tuple arrival rates. Handling multiple tuples

at once through partitioning of data or operators exploiting
parallelism possibilities is therefore a must.

2.2 Parallelism Paradigms

There are mainly three forms of parallelism on stream
processing that can be exploited.

Partitioning. Partitioning can be used to increase speedup
through splitting data on different instances of the same op-
erator. Therefore every instance executed in parallel has to
add its function on a fraction of data, increasing throughput
of a query. However, additional costs for assigning data to
instances and merging results afterwards arise, influencing
the optimal partitioning degree.

Task-Parallelization. Operators of a query can execute
in parallel if data dependencies allow such parallelism. A
pipelining schema provides possibilities to achieve this, re-
alized by scheduling mechanisms.

Vectorization. A single instruction can be applied on mul-
tiple data elements, called SIMD. For stream processing,
some preparatory work is necessary to use this form of par-
allelism, like storing a number of tuples before processing
them at once with SIMD support. On the one hand, it in-
creases the throughput of a query while on the other hand
batching up tuples worsens latency.

We focus on partitioning and vectorization, because task-
parallelism is mainly a scheduling problem that is not of
further interest at this point.

2.2.1 Partitioning

A speedup through partitioning is achieved mainly with
multithreading. Each partition that contains operators pro-
cessing incoming tuples uses a thread, which leads to chal-
lenges on synchronization or load balancing, especially on
manycores, as shown by Yu et al. [6] for concurrency con-
trol mechanisms. Partitioning is a key for high performance
when using a manycore processor, which provides support
for 200+ threads at the cost of low clock speed. To investi-
gate the right partitioning degree between reduced load on
each partition and increased overhead from threads as well
as an appropriate function for forwarding tuples to parti-
tions additional observations have to be made. Statistics
are a common solution, but can be far away from optimal
performance in worst cases.

2.2.2 Vectorization

To use vectorization, certain requirements must be ful-
filled. Without batching up tuples it is impossible to ap-
ply a vector function on a certain attribute. This leads to
the next challenge, the cache-friendly formation of a batch.
Without careful reordering, any vectorization speedup is lost
through expensive scattered memory accesses. A possible
solution for this is provided by gather and scatter instruc-
tions that index through masking certain memory addresses
for faster access. Additional requirements on vectorization
arise through the used operator function and data depen-
dencies between tuples. The function must be supported by
used instruction set, while dependencies are solved through
rearrangements or even fundamental changes on the func-
tion of the operator.

Figure[[]shows the processing model of a query with batch-
ing. Tuples arrive one at a time on the data stream, being

Data Stream
[: ' B ‘

Tuple T Batch B
<A;..A> <T1.A;..ThA>

<T1.A,..ThA>

Figure 1: Processing Model

gathered first on a batching operator with attribute group-
ing in memory realized by vectors until batch size is reached
and then forwarded to the next operator.

2.3 Hardware Opportunities

There are mainly two different ways to increase compu-
tational speed on hardware, distributed and parallel com-
puting. Distributed computing uses usually many high-end
processors connected to each other, sharing computational
work between them. The disadvantage comes with commu-
nication costs. With requirements of low latency, we focus
on parallel computing. Manycore processors like the Xeon
Phi series from Intel use simpler cores, but many of them in-
side their CPU. This eliminates most of the communication
costs, improving latency while providing wide parallelization
opportunities compared to a single multicore processor.

The latest Xeon Phi KNL uses up to 72 cores with 4
threads each, available through hyperthreading. In addi-
tion, the AVX-512 instruction set can be used for 512bit
wide operations (SIMD). This leads to great possibilities on
partitioning and vectorization to reduce latency of a query.
There are more interesting improvements on KNL like clus-
tering modes, huge page support or high-bandwidth memory
on chip (MCDRAM) which we will address in future work.

3. RELATED WORK

For parallelism through vectorization and partitioning on
data streams, a lot of research has been done already, espe-
cially since manycore processors are getting more and more
common. To achieve performance benefits, those manycore
CPUs rely massively on SIMD parallelism and multithread-
ing for speeding up execution time.

For data stream processing, the functionality of operations
like joins or aggregations to give an example, are basically
the same. However, for realization the stream processing
properties have to be taken into account.

Polychroniou et al. [4] take a shot on different database
operators, implementing and testing vectorized approaches
for each one. Results show a performance gain up to a mag-
nitude higher than attempts without SIMD optimization. In
addition to this, their summary of related work gives a good
review about research done with SIMD on general database
operations.

For stream partitioning, the degree in terms of numbers of
partitions as well as the strategy like the used split function
for data tuples are the main focus of research. Gedik et al.
|2] visited elastic scaling on stream processing where paral-
lelization degree on partitioning is dynamically adjusted on

runtime, even for stateful operations. They reviewed typi-
cal problems when auto-parallelization is used like in most
of other approaches.

For an optimizer that is hardware-oblivious, additional
points must be considered. Hardware-oblivious means, that
the optimizer is able to maximize performance on any hard-
ware used, e.g a multicore or a manycore processor. Heimel
et al. [3] implemented an extension for MonetDB called
Ocelot, which is a proof of concept for hardware-oblivious
database operators. They show that such operators can
compete with hand-tuned operators that are fitted exactly
for used processing units, like CPUs and GPUs. Teubner et
al. [5] attended to the same topic before, looking deeper into
hardware-conscious and hardware-oblivious hash joins.

4. EXPERIMENTS

With our experiments, we want to show the grade of im-
pact on vectorization and multithreading for data stream
processing. We therefore use two different processors, an
Intel Core i7-2600 multicore CPU as well as an Intel Xeon
Phi KNL 7210. As already mentioned before, KNL sup-
ports AVX-512 with 512bit register size and 256 threads, in
contrast to i7s AVX with 256bit and 8 threads.

4.1 Preliminary Measurements

First measurements in Table [l show needed runtime for
corresponding CPUs when vectorization is enabled or dis-
abled. Therefore an array with 64*1024*1024 elements is
traversed, applying an addition operator (using 32bit preci-
sion) or square root operator (using 64bit precision) on each
of the elements.

With vectorization, the speedup gain ideally corresponds
directly with the number of elements processed at once, e.g.
when using 32bit integers and the register size is 512bit, 16
elements are processed with one operator execution, leading
to an expected 1/16th of runtime. However, this is not the
case, because these elements needed to be accessed in mem-
ory (ideally in cache). With increased complexity (in terms
of CPU cycles) this accessing costs are reduced compared to
operators costs, as it can be seen in Table [[] with simple ad-
dition and complex square root. When computing the root,
vectorization effectively doubles the execution speed on i7
processor and even more on KNL. On KNL, the registers
can hold up to 8 64bit floating point numbers, resulting in
around eight times faster execution on square root. On ad-
dition, however, even with prefetching mechanism it is not
possible to pull data fast enough into the registers, because
a simple addition just uses one CPU cycle. Therefore the
full speedup cannot be achieved.

Results on square root on i7 processor can be explained
through underlying hardware. Ideally, with AVX, 256bit
registers and 64bit numbers, the speedup should result in

| Processor [Vectorization [Addition [Square Root ‘

i7-2600 disabled 42ms 187ms
enabled 30ms 92ms

KNL 7210 disabled 98ms 998ms
enabled 40ms 129ms

Table 1: Vectorization Runtime
Traversing array of 64*1024*1024 elements

10° T T
— i7-2600 one thread

-~ i7-2600 eight threads
— KNL 7210 one thread

108}

KNL 7210 256 threads

Runtime [us]

102 i i i - i :
10° 10* 10° 109 107 10* 10°

#Tuples produced

Figure 2: Query with Multithreading

around four times faster execution, however, it is only dou-
bled. Further research points to how 256bit register are
realized on i7-2600 (Sandy Bridge) - as processor of the first
generation of AVX instruction set, it still uses two 128bit
registers combined to achieve 256bit width. On performance
there is only a small benefit of using 256bit loads and stores
compared to 128bit, leading to only doubled speedup.

4.2 SPE Tests

Our SPE PipeFabric is a framework for data stream pro-
cessing, written in C++. The data streams as source of
tuples can be constructed for example through network pro-
tocols. A query consists out of different stream processing
operators that combined are forming a dataflow graph. It
supports selections, projections, aggregates, groupings, joins
and table operations, as well as complex event processing.
The focus of the framework lies on low latency, realized
through efficient C++ template programming.

For the tests, the data stream produces tuples through
a generator. Increasing the number of attributes or using
different data types just add a constant delay for each tu-
ple, increasing runtime without changing the curves signif-
icantly. Therefore only a single integer as an attribute is
counted up. In Figure |2 the needed time to produce a cer-
tain amount of tuples (up to 10°) is measured (note the
logarithmic scale of y-axis). With low number of produced
tuples, the overhead through thread generation worsens ex-
ecution time. This changes very quick, providing an intense
speedup. When generation is singlethreaded, KNL performs
worse than i7-2600 caused by slower clock speed. But when
cores are fully utilized, running maximum number of threads
through OpenMP, KNL can outperform the multicore CPU
easily.

Figure [3| shows speedup achieved on i7-2600 and KNL
on queries with vectorization. Therefore tuples are batched
first with different batch sizes on each run, followed by an
aggregation operator which applies a simple addition or a
complex square root on single attributes. These aggrega-
tions are performed with and without vectorization, the dif-
ference on runtime results directly into speedup, e.g. when
runtime is halved, the speedup is 100%.

600 S— .
— i7-2600 add
-~ i7-2600 sqrt
— KNL 7210 add

-~ KNL 7210 sqrt e’
a00| o

500 -

300 : H i) i ‘

]

Q.

3

- .
[

2 200} ek 2
()

~100 L L L L L L i L L

Batchsize [#Tuples]

Figure 3: Query with SIMD

Taking a further look on Figurereveals that speedup in-
creases with batch size. This is relatively obvious, because
with more tuples that can be processed at once by increased
throughput, runtime of the query gets lower. However, this
comes with the cost of latency, because results are delayed
until a batch is full. An additional observation between
addition and square root as aggregation operator can be
made. With addition function, the performance gain is rel-
atively low. This is because accessing the batch in cache
takes longer than applying vectorized addition on it, even
with prefetching mechanism. With square root, the opera-
tion takes significantly longer (in CPU cycles), so it is not
limited that much by memory access on cache anymore.

S. RESEARCH PLAN

Vectorization and partitioning are the main two strategies
which provide the most performance gain when set up ac-
cordingly to stream and query properties. Regarding vector-
ization, a batching mechanism is needed to exploit the full
parallelism of wider CPU registers. With increased batch
size, results of the query are delayed leading to increased
latency but higher throughput. For partitioning, too many
or too few partitions apart from optimum can even worsen
the query execution time, same with uneven load balanc-
ing between partitions as shown by Fang et al. [1]. It is
all a matter of right parametrization, depending on query,
operators and underlying hardware.

This leads to our future work, where we will analyze im-
pact on performance for certain strategies to finally come to
an hardware-oblivious optimizer for queries on data stream
processing, capable of dealing with UDFs as well as with
different hardware sets. In difference to hardware-conscious
optimizers which deliver only good precision for optimiza-
tions on certain hardware, our optimizer should generally
being able to adapt its strategy on any given modern hard-
ware.

However, it is a tradeoff between speedup and latency,
greatly influenced by hardware used. We focus on par-
allelization on multicore and manycore CPUs, especially
the latter one, because it is the most promising architec-
ture for performance increasements with given requirements.

With technical advancement additional chances are given,
e.g. memory on package with high bandwidth, called MC-
DRAM on the latest manycore Xeon Phi KNL processor.
When UDF support is realized, it is necessary to investigate
key parameters for optimization, e.g. complexity of used
function and data dependency.

6. CONCLUSION

For data stream processing, high throughput in terms of
being able to process as many data as possible at the same
time as well as low latency with fast responses on queries are
main requirements. Exploiting parallelism is the answer,
which is possible at different levels and degrees. In this
paper, we show influence of parallelism on instruction level
with vectorization as well as multithreading with our SPE
PipeFabric and compare first results between multicore and
manycore CPU.

SIMD effects improve performance when data is stored
in a cache-friendly way within contiguous memory. For
stream processing, each tuple cannot be processed one after
another, therefore a batching mechanism is needed. This
batching has to take care of storing data carefully for SIMD
processing. Increased register width of Intel’s Xeon Phi
KNL with AVX-512 support leads to significant performance
gains when not blocked by slow memory accesses. On the
one hand, the computational workload must be high enough
to surpass memory or cache accesses. This is not the case
when additions on an aggregation operator are performed,
as we showed in our experiments. On the other hand, with
increased complexity SIMD operations are difficult to realize
and must be supported by used instruction set.

Multithreading is another important factor when it comes
to a manycore processor. Slow clock speed leads to poor
singlethreaded performance compared to a multicore pro-
cessor. This disadvantage is negated when enough cores can
be utilized and parallelism is maximized. However, commu-
nication between threads, memory accesses and scheduling
from threads to cores are no trivial tasks for optimizing per-
formance, therefore more measurements are needed to prove
results.

7. REFERENCES

[1] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and
J. Zhu. Parallel Stream Processing Against Workload
Skewness and Variance. CoRR, 2016.

[2] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu.
Elastic Scaling for Data Stream Processing. IEEE’1/,
pages 1447-1463, 2014.

[3] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious Parallelism for
In-memory Column-stores. VLDB, pages 709-720, 2013.

[4] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD Vectorization for In-Memory
Databases. SIGMOD, pages 1493-1508, 2015.

[5] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu.
Main-memory Hash Joins on Multi-core CPUs: Tuning
to the Underlying Hardware. ICDE, pages 362373,
2013.

[6] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker. Staring into the Abyss: An Evaluation
of Concurrency Control with One Thousand Cores.
VLDB, pages 209-220, 2014.

	Introduction
	Prerequisites
	Data Stream Processing
	Parallelism Paradigms
	Partitioning
	Vectorization

	Hardware Opportunities

	Related Work
	Experiments
	Preliminary Measurements
	SPE Tests

	Research Plan
	Conclusion
	References

