
Distributed Similarity Joins on Big Textual Data:
Toward a Robust Cost-Based Framework

Fabian Fier
Supervised by Johann-Christoph Freytag

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

fier@informatik.hu-berlin.de

ABSTRACT
Motivated by increasing dataset sizes, various MapReduce-
based similarity join algorithms have emerged. In our past
work (to appear), we compared nine of the most prominent
algorithms experimentally. Surprisingly, we found that their
runtimes become inhibitively long for only moderately large
datasets. There are two main reasons. First, data grouping
and replication between Map and Reduce relies on input
data characteristics such as word distribution. A skewed
distribution as it is common for textual data leads to data
groups which reveal very unequal computation costs, leading
to Straggling Reducer issues. Second, each Reduce instance
only has limited main memory. Data spilling also leads to
Straggling Reducers. In order to leverage parallelization,
all approaches we investigated rely on high replication and
hit this memory limit even with relatively small input data.
In this work, we propose an initial approach toward a join
framework to overcome both of these issues. It includes
a cost-based grouping and replication strategy which is ro-
bust against large data sizes and various data characteristics
such as skew. Furthermore, we propose an addition to the
MapReduce programming paradigm. It unblocks the Re-
duce execution by running Reducers on partial intermedi-
ate datasets, allowing for arbitrarily large data sets between
Map and Reduce.

1. INTRODUCTION
Similarity joins are an important operation for user rec-

ommendations, near-duplicate detection, or plagiarism de-
tection. They compute similar pairs of objects, such as
strings, sets, multisets, or more complex structures. Simi-
larity is expressed by similarity (or distance) functions such
as Jaccard, Cosine, or Edit. A naive approach to compute
a similarity self-join is to build the cross product over an
input dataset and filter out all non-similar pairs. This ap-
proach has a quadratic runtime. In the literature, there
are various non-distributed non-parallelized approaches for

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

#I
ns

ta
nc

es

Time

Figure 1: Straggling Reducer Issue.

similarity joins based on a two-phase approach [1, 2, 3, 10,
14]. They compute a set of candidate pairs which is usually
orders of magnitudes smaller than the cross product. Sub-
sequently, they verify if the candidates are similar. We refer
to them as filter-and-verification approaches. Motivated by
increasing dataset sizes, MapReduce-based distributed ap-
proaches have emerged [5, 12, 13]. We conducted an exten-
sive experimental study on nine current MapReduce-based
set similarity join algorithms on textual data (to appear).
There are two key findings. First, we compared the runtime
of the MapReduce join algorithms to the runtime of compet-
ing non-distributed algorithms from the recent experimental
survey of Mann et al. [11]. The runtime of MapReduce join
algorithms on small datasets is inferior to the runtime of
non-distributed approaches. This is not surprising due to
the MapReduce overhead. The second finding is that none
of the approaches can compute the join on larger (or even
arbitrarily large) datasets. The runtimes increase so drasti-
cally that we terminated the executions after a long timeout.

We identified two main reasons for these runtime issues
on large datasets. First, for every MapReduce-based simi-
larity join algorithm we investigated we found non-optimal
input datasets that lead to only a few running join Reduce
instances while all other instances were left idle. That is,
we often observed Straggling Reducers. Figure 1 shows the
compute instance usage of a non-optimal join execution on
a cluster of 48 compute instances. After roughly half the
execution time, only a few instances are used. The instance
usage is directly connected to data grouping and replication
between Map and Reduce. All algorithms under investiga-
tion exploit and thus rely on certain data characteristics for
replication and grouping. The most relevant characteristics
are the global token frequency of the input dataset and the
number of tokens in each record of a dataset. Stop words,
which occur in a majority of records of a dataset, cause
skewed data groups within most join approaches we inves-
tigated. As second cause, we identified memory overload
within Reduce instances. All approaches heavily replicate
data to leverage parallelization. The original MapReduce



programming paradigm as introduced by Dean et al. [4] re-
quires the Reduce instances to wait for the Map steps to
finish before the intermediate data groups are sorted and
grouped by key. When the Reduce buffers are filled, data
is spilled to disk, often causing high runtime penalties. The
use of Combiners is not possible for similarity joins, because
Reducers are stateful. This limitation is inherent to stan-
dard MapReduce.

In this paper, we propose an initial approach toward a
robust framework to compute distributed similarity joins.
It overcomes the Straggling Reducer issues and the input
dataset size limitation we experienced in our past experi-
ments. Our approach is twofold. First, we find a group-
ing and replication strategy which distributes compute load
evenly over the existing compute instances. This is challeng-
ing since it is not sufficient to generate data groups of equal
size. The runtime of a join computation within one group is
dependent on characteristics of the data in the group such
as record lengths. Second, we enable MapReduce to handle
large intermediate datasets by proposing an extension for
MapReduce which unblocks the Reduce execution based on
statistical information gathered in a preprocessing step.

The idea of load balancing in MapReduce based on statis-
tics is not new. The TopCluster algorithm [8] is an online
approach which includes cardinality estimations at runtime.
Our approach on the other hand needs exact data statistics
in order to unblock the Reduce execution. These statistics
have to be collected before the join execution. Our approach
is comparable to the one by Kolb et al. [9], which involves a
preprocessing MR job to collect data statistics and a join job
which uses the statistics for an optimal data grouping and
replication. We extend this approach by using the knowlege
of the group sizes to unblock the Reduce execution. Further-
more, we tailor the grouping and replication to the specific
problem of set similarity joins.

The contributions of this paper are as follows:

• We propose a first approach toward a robust distributed
similarity join framework.

• We define a robust grouping and replication strategy
leading to evenly distributed compute loads amongst
the available compute nodes.

• We extend the MapReduce programming paradigm to
unblock Reduce execution to handle (potentially arbi-
trarily) large datasets.

The structure of the paper is as follows. In Section 2, we
give an overview on the similarity join problem, algorithmic
approaches, and motivate the need for research with the
runtime issues we experienced in our past experiments. In
Section 3, we introduce our approach for a robust join frame-
work and its interaction with an extension of MapReduce to
unblock Reduce execution. In Section 4, we conclude our
work and give an outlook on future work.

2. BACKGROUND
Without loss of generality, we use the set similarity self-

join as a running example. Our framework can be applied
to other filter-and-verification-based similarity joins as well.
The set similarity join computes all pairs of similar sets
(s1, s2) within a set of records S. A similarity function
sim(s1, s2) expresses the similarity between two records. For

sets, there are similarity functions such as Jaccard, Cosine,
or Dice. The user chooses a threshold t above which two
sets are considered being similar. Formally, given a set S,
a similarity function sim(s1, s2), and a similarity thresh-
old t, the set similarity join computes the set {(s1, s2) ∈
S × S|sim(s1, s2) ≥ t, s1 6= s2}.

A naive approach computes the similarity on all pairs
(s1, s2). Since it has a quadratic runtime, it is not feasi-
ble even for small datasets. In the literature, filter-and-
verification approaches emerged. Their basic idea is to gen-
erate an (inverted) index over all input records. For each
postings list, they compute the cross product (half of it in
the self-join case to be exact) and the union of all these
cross products. Each distinct record ID pair in the union is
a candidate pair, because the two records contain at least
one common token. These candidate pairs are further veri-
fied to compute the end result. Sophisticated filtering tech-
niques keep the indexes and the number of candidate pairs
small. The most prominent filter is the prefix filter [1, 2, 3].
Given a record length, a similarity function, and a similar-
ity threshold, the prefix length is the minimum number of
tokens which need to be indexed to guarantee an overlap of
at least one common token if it is similar to another record.

Motivated by increasing dataset sizes, MapReduce-based
versions of the filter-and-verification approach emerged [5,
12, 13]. The main idea is identical to the non-distributed
approaches. It is to compute an inverted index, to com-
pute the cross product on each postings list, and to verify
the resulting candidate pairs. The inverted index is built
as follows. A Map step computes key-value pairs with a to-
ken or a more complex signature as key. The MapReduce
framework groups key-value pairs with the same key to one
Reduce instance. This instance computes the cross product
on the postings list. Depending on the value of the key-value
pair (all tokens of the input record vs. only the record ID),
the verification takes place within the Reduce, or there are
further MapReduce steps to join the original records to the
candidate pairs for the verification.

The key generation of all algorithms known to us relies
on characteristics of the input data. In the most basic algo-
rithm [7], each token in the input record is used as key. Obvi-
ously, the number of record groups is equal to the number of
distinct tokens in the input dataset. The size of each record
group depends on the global frequency of its key token. The
data replication is dependent on the record lengths. For
sufficiently large datasets with stop words (tokens which oc-
cur in almost every record) and/ or many long records, the
Straggling Reducer effect occurs. More sophisticated ap-
proaches use a prefix filter, which reduces the number of
tokens for replication to a prefix, which is shorter than the
record length, but still dependent on it. The use of such
filters shifts the Straggling Reducer issue to larger datasets
and/ or datasets with longer records, but does not solve it
for arbitrarily large datasets.

We expect the input of the similarity join to be text, which
is integer-tokenized by a preprocessing step. The tokeniza-
tion may include changing letter cases, stemming, or stop
word removal. Depending on the preprocessing, the proper-
ties of input datasets vary by token distribution (stop words,
infrequent tokens), dictionary size, and record size. The to-
ken distribution of textual data is usually Zipfian, which
means that there are few very frequent tokens. This is a
challenge for approaches relying on token distribution.



3. APPROACH
In Figure 2, we illustrate the dataflow of our framework.

The first step computes exact data statistics. It computes
record length frequencies and global token frequencies. These
statistics can be computed in linear time and are highly par-
allelizable. Furthermore, it estimates runtime costs for the
join execution, based on data samples with differing aver-
age record lengths. The second step computes the actual
join. Every Map instance obtains the statistics from the
first step via a setup function which is called once before the
input data is read. Based on these statistics, it determines
a suitable data grouping and replication and assigns keys
to its output accordingly. Each join Reducer also obtains
the statistics via the setup function. Using the statistics,
it can compute the exact size of each group and start com-
puting the join on this group once all data for it has com-
pletely arrived. This can happen before all Mappers have
finished their execution. Note that this requires a change
in the original MapReduce. The Reduce-side shuffling peri-
odically counts the occurrences of each key in its input. It
triggers the execution of the first-order function once one of
the groups is complete. The Reducer can run any existing
state-of-the art non-distributed similarity join.

In the following, we describe how to find a suitable group-
ing and replication based on the statistics. We use the Jac-
card similarity function as an example, because it is the
most commonly used function in the literature. Our frame-
work is also applicable to any other set-based similarity func-
tion. Jaccard is defined by the intersection divided by the

union of two records |a∩b|
|a∪b| . Note that records with differing

lengths can be similar. Figure 3 shows this length rela-
tionship for a similarity threshold of 0.7. For each record
length on the y axis, it shows on the x axis, which record
lengths have to be considered as join candidates. Let us
assume the input has a length distribution as depicted in
Figure 4. In order to obtain data groups which can be self-
joined independently, we group together all records with the
same length and replicate each group to all larger length
groups it can be similar to. The resulting groups would be
{1}, {2}, {3, 4}, {4, 5, 6, 7}, {5, 6, 7, 8}, {6, 7, 8, 9, 10} etc. Note
that these groups have very uneven cardinalities, for exam-
ple |{1}| = 8.000, |{6, 7, 8, 9, 10}| = 688.000 etc.

In order to distribute the cardinalities evenly, we propose
to apply a hash-based grouping and replication on these
groups. Figure 5 shows an example for a hashing factor
of 4. A hashing function assigns each record to one of 4
groups. Each record is distributed 4 times, so that it joins
each other record in exactly one of the squares in the figure.
Note that there is a tradeoff related to the hashing factor.
If it is very low, there are only few large groups and the
replication is low. If it is high, there are many small groups
and the replication is high.

Partition
Replication

Map

Statistics
Map

Join
Reduce

Statistics
Reduce

Output 
Dataset

Input
Dataset

Sta-
tistics Join

Setup

Figure 2: Dataflow Graph of our Execution Framework.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In
p

u
t 

R
e

c
o

rd
 L

e
n

g
th

Possible Similar Record Lengths

Figure 3: Possible Similar Record Lengths for Jaccard and
Similarity Threshold 0.7.

Seite 1

2 4 6 8 10 12 14 1618 20 2224 26283032343638 404244 46 48 50 52 54 56
57

58
59

60
0

20000

40000

60000

80000

100000

120000

140000

160000

Length

N
u

m
b

e
r 

o
f R

e
co

rd
s

Figure 4: Example Record Length Distribution.

1       2       3       4

1

2

3

4

Figure 5: Hash-Based Grouping and Replication with hash-
ing factor h=4.

An even data distribution is not sufficient to prevent Strag-
gling Reducer effects. The costs of joining a partition with
long records is higher than the cost of joining a partition
with equally many short records. Let us assume that the
Reducer of the join step has a quadratic runtime, which rep-
resents the worst case. The runtime costs of computing a
self-join on one group of records with cardinality groupSize
and with an average record length of avgRecLen can be es-
timated with Equation 1, assuming that the tokens in the
records are sorted by a global token order allowing for a
merge-join. In Figure 6, we show a plot of this cost esti-
mation function. It shows that the costs grow exponentially
with regard to the number of records in the group. The
power of the increase grows exponentially with regard to
the average length of the records in the group. In order



Number of Records/Group

20000
40000

60000

80000
Avg

 Le
ng

th 
of 

Rec
or

ds
/G

ro
up

20

40

60

80
100

C
osts/G

roup

Figure 6: Cost Estimation for one data group.

to avoid a Straggling Reducer effect, our aim is to find a
data grouping and replication which at least limits the max-
imum compute costs over all groups or ideally imposes equal
computation costs for each data group. In Figure 6, equal
computation costs would occur if all groups would exhibit a
combination of number of records and average record lengths
on an intersection of the graph with a horizontal plane.(

groupSize

2

)
∗ 2 ∗ avgRecLen (1)

Our idea is to optimize the overall computation costs with
the hashing factor h as variable (Equation 2) and the con-
straint that the computation cost of each group may not be
larger than the maximum cost threshold m, which ensures
that no Reducer gets overloaded.

min
h∈N+

∑
group

costs(group, h), costs(group, h) ≤ m (2)

The group-wise costs within this equation could either be
estimated by Equation 1 or it might use runtimes on sampled
data from the statistics MapReduce step.

4. CONCLUSIONS, FUTURE WORK
In this paper, we introduced a first approach toward a dis-

tributed similarity join framework which is robust against
arbitrary input dataset sizes and data characteristics such
as skew. We plan to detail it out, implement it and run ex-
periments with it. One crucial detail is to ensure that there
is a sufficient number of record groups which is complete. If
a Reduce instance collects only non-complete groups, strag-
gling will still occur. Another open detail is the choice of
the hash function for the join. Grouping and replication
strategies from existing MapReduce-based similarity join ap-
proaches could be integrated in the proposed strategy. Es-
pecially signature creating approaches like MassJoin [5] and
sophisticated grouping strategies like MRGroupJoin [6] us-
ing the pigeonhole principle are promising.

In future experiments, we are especially interested in the
tradeoff between replication and group size. Furthermore, it
is interesting if it pays off to use empirical runtime statistics
for the join costs or simply estimate the runtime analytically.

5. ACKNOWLEDGMENTS
This work was supported by the Humboldt Elsevier Ad-

vanced Data and Text (HEADT) Center.

6. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In Proceedings of the 32nd
international conference on Very large data bases,
pages 918–929. VLDB Endowment, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proceedings of the 16th
international conference on World Wide Web, pages
131–140. ACM, 2007.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In Data
Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on, pages 5–5. IEEE, 2006.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI, pages
137–150, 2004.

[5] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng.
Massjoin: A mapreduce-based method for scalable
string similarity joins. In Data Engineering (ICDE),
2014 IEEE 30th International Conference on, pages
340–351. IEEE, 2014.

[6] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
Proceedings of the VLDB Endowment, 9(4):360–371,
2015.

[7] T. Elsayed, J. Lin, and D. W. Oard. Pairwise
document similarity in large collections with
mapreduce. In Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on
Human Language Technologies: Short Papers, pages
265–268. Association for Computational Linguistics,
2008.

[8] B. Gufler, N. Augsten, A. Reiser, and A. Kemper.
Load balancing in mapreduce based on scalable
cardinality estimates. In Data Engineering (ICDE),
2012 IEEE 28th International Conference on, pages
522–533. IEEE, 2012.

[9] L. Kolb, A. Thor, and E. Rahm. Load balancing for
mapreduce-based entity resolution. In Data
Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 618–629. IEEE, 2012.

[10] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins.
Proceedings of the VLDB Endowment, 5(3):253–264,
2011.

[11] W. Mann, N. Augsten, and P. Bouros. An empirical
evaluation of set similarity join techniques. Proceedings
of the VLDB Endowment, 9(9):636–647, 2016.

[12] A. Metwally and C. Faloutsos. V-smart-join: A
scalable mapreduce framework for all-pair similarity
joins of multisets and vectors. Proceedings of the
VLDB Endowment, 5(8):704–715, 2012.

[13] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data, pages 495–506. ACM, 2010.

[14] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM Transactions on Database Systems (TODS),
36(3):15, 2011.


