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ABSTRACT
In many domains, such as scientific computing, users can
directly access and query data that is stored in large, and
often structured, data sources. Discovering interesting pat-
terns and efficiently locating relevant information, however,
can be challenging. Users must be aware of the data con-
tent and its structure, before they can query it. Further-
more, they have to interpret the retrieved results and pos-
sibly refine their query. Essentially, to find information, the
user has to engage in a repeated cycle of data exploration,
query composition, and query answer analysis. The focus of
my PhD research is on designing techniques that facilitate
this interaction. Specifically, I examine the utility of recom-
mender systems for the data exploration and query compo-
sition phases, and propose techniques that assist users in the
query answer analysis phase. Overall, the solutions devel-
oped in my thesis aim to increase the efficiency and decision
quality of users.

1. INTRODUCTION
With the advent of technology and the web, large volumes

of data are generated and stored in data sources that evolve
and grow over time. Often, these sources are structured as
relational databases that users can directly query and ex-
plore. For instance, astronomical measurements are stored
in a large relational database, called the Sloan Digital Sky
Survey (SDSS) [19, 21]. Climate data collected from various
sources is integrated in relational databases and offered for
analysis by users [5].

At a high level, user interaction with data involves two
phases: a query composition phase, where the user com-
poses and submits a query, and a query answer analysis
phase, where the user analyses query answers produced by
the system. During both phases, however, users can face
problems in understanding the data.

Consider, for example, the scientific computing domain.
The SDSS schema has over 88 tables, 51 views, 204 user-
defined functions, and 3440 columns [14]. A variety of users,
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ranging from high school students to professional astronomers,
with varied levels of skills and knowledge, interact with this
database. Furthermore, scientific databases are typically
used for Interactive Data Exploration (IDE), where users
pose exploratory queries to understand the content and find
patterns [13]. Efficiently composing queries over this data to
discover interesting patterns, is one of their main challenges.

After successfully composing the query, the next step is
to interpret query answers. However, the retrieved results
can often be difficult to understand. For example, consider
an aggregate query SELECT AVG(TEMPERATURE) over climate
data. In the weather domain, observational data regard-
ing atmospheric conditions is collected by several weather
stations, satellites, and ships. For the same data point, e.g.,
temperature on a given day, there can be conflicting and du-
plicate values. Consequently, the aggregate query can have
an overwhelming number of correct and conflicting answers.
Here, mechanisms that aid the user in understanding the
query answers are required.

In my thesis, I develop techniques that assist user inter-
action with data. I consider the data exploration and query
composition phase, and examine the utility of recommen-
dation systems for this phase. Furthermore, I consider the
query answer analysis phase and devise efficient techniques
that provide insights about query answers. More precisely,
I study three problems: 1. how do classical recommenda-
tion systems perform with regards to exploration tasks in
standard recommendation domains, and how can we mod-
ify them to facilitate data exploration more rigorously (Sec-
tion 2)? 2. what are the challenges of recommendation in the
relational database context and which algorithms are appro-
priate for helping users explore data and compose queries
(Section 3)? 3. how can we assist users in the query an-
swer analysis phase (Section 4)? Overall, I aim to develop
techniques that help users explore data and increase their
decision quality.

2. FACILITATING DATA EXPLORATION WITH
RECOMMENDER SYSTEMS

One way to facilitate data navigation and exploration is to
find and suggest items of interest to users by deploying a rec-
ommendation system [6, 16, 29]. Classical recommendation
systems are categorized into content-based and collaborative
filtering methods.

Content-based methods use descriptive features such as
genre of movies, or user demographics, to construct informa-
tive user and item profiles, and measure similarity between



them. But descriptive features might not be available. Col-
laborative filtering methods instead infer user interests from
user interaction data. The main intuition is that users with
similar interaction patterns have similar interests.

The interaction data may include explicit user feedback on
items, such as user ratings on movies, or implicit feedback,
such as purchasing history, browsing and click logs, or query
logs [11]. An important property of the interaction data is
that the majority of items (users) receive (provide) little
feedback and are infrequent, while a few receive (provide)
lots of feedback and are frequent. But many models only
work well when there is a lot of data available, i.e., they make
good recommendations for frequent users, and are biased
toward recommending frequent items [6, 15, 17].

However, recommending popular items is not sufficient for
exploratory tasks. Users are likely already aware of popu-
lar items or can find them on their own. Concentrating on
popular items also means the system has low overall cover-
age of the item space in its recommendations. It is essential
to develop methods that help users discover new items that
may be less common but more interesting. Therefore, we
investigate the following research question:

How do existing recommendation models perform with
regard to data exploration tasks in standard recom-
mendation domains, and how can they be modified to
facilitate data exploration more rigorously?

To answer this question, we focus on top-N item recommen-
dation, where the goal is to recommend the most appealing
set of N items to each user [6]. Informally, the problem set-
ting is as follows: we are given a log of explicit user feedback,
e.g., ratings, for different items. We want to assign a set of
N unseen items to each user.

2.1 Solution
In our solution [20], we focused on promoting less fre-

quent items, or long-tail items, in top-N sets to facilitate
exploration. Recommending these items introduces novelty
and serendipity into top-N sets, and allows users to discover
new items. It also increases the item-space coverage, which
increases profits for providers of the items [3, 6, 26, 22].
Our main challenge was in promoting long-tail items in a
targeted manner, and in designing responsive and scalable
models. We used historical rating data to learn user pref-
erence for discovering new items. The main intuition was
that the long-tail preference of user u, captured by θ∗u, de-
pends on the types of long-tail items she rates. Moreover,
the long-tail type or weight of item i, captured by wi, de-
pends on the long-tail preference of users who rate that item.
Based on this, we formulated a joint optimization objective
for learning both unknown variables, θ∗ and w.

Next, we integrated the learned user preference estimates,
θ∗, into a generic re-ranking framework to provide customized
balance between accuracy and coverage. Specifically, we de-
fined a re-ranking framework that required three compo-
nents: 1. an accuracy recommender that was responsible for
recommending accurate top-N sets. 2. a coverage recom-
mender that was responsible for suggesting top-N sets that
maximized coverage across the item space, and consequently
promoted long-tail items. 3. the user long-tail preference.

In contrast to prior related work [1, 10, 27], our frame-
work learned the personalization rather than optimizing us-
ing cross-validation or parameter tuning; in other words, our

Algorithm P@5 R@5 L@5 C@5

M
T

-2
0
0
K

Random 0.000 0.000 0.871 0.873
Pop [6] 0.051 0.080 0.000 0.002
MF [28] 0.000 0.000 1.000 0.001
5D ACC [10] 0.000 0.000 0.995 0.157

CofiR [24] 0.025 0.046 0.066 0.020
PureSVD [6] 0.018 0.022 0.001 0.067

θ∗Dyn900
Pop [20] 0.027 0.050 0.416 0.171

Table 1: Top-5 recommendation performance.

personalization method was independent of the underlying
recommendation model.

We evaluated our framework on several standard datasets
from the movie domain. Table 1 shows the top-5 recom-
mendation performance for the MovieTweetings 200K (MT-
200K) dataset [9] which contains voluntary movie rating
tweets from users. For accuracy, we computed precision
(P@5) and recall (R@5) [6] wrt the test items of users. Long-
tail accuracy (L@5) [10], is the normalized number of long-
tail items in top-5 sets per user. Long-tail items are those
that generate the lower 20% of the total ratings in the train
set, based on the Pareto principle or the 80/20 rule [26].
Coverage (C@5) [10] is the ratio of the number of distinct
items recommended to all users, to the number of items.

We compared with non-personalized baselines: Random
that has high coverage but low accuracy, and most popu-
lar recommendation (Pop) [6], that provides accurate top-N
sets but has low coverage and long-tail accuracy. We also
compared with personalized algorithms: matrix factoriza-
tion (MF) with 40 factors, L2-regularization, and stochastic
gradient descent optimization [28], a resource allocation ap-
proach that re-ranks MF (5D ACC) [10], CofiRank with re-
gression loss (CofiR) [24], and PureSVD with 300 factors [6].
On MT-200K, we chose the non-personalized Pop algorithm
as our accuracy recommender, and combined it with a dy-
namic coverage recommender (Dyn900) introduced in [20].

Our personalized algorithm is denoted θ∗Dyn900
Pop . Table 1

shows that while most baselines achieve best performance in
either coverage or accuracy metrics, θ∗Dyn900

Pop has high cover-
age, while maintaining reasonable accuracy levels. Further-
more, it outperforms the personalized algorithms, PureSVD
and CofiR, in both accuracy and coverage metrics.

3. FACILITATING DATA EXPLORATION AND
QUERY COMPOSITION

Getting information out of database systems is a major
challenge [12]. Users must be familiar with the schema to be
able to compose queries. Some relational database systems,
e.g, SkyServer, provide a sample of example queries to aid
users with this task. However, compared to the size of the
database and complexity of potential queries, this sample
set is small and static. The problem is exacerbated as the
volume of data increases, particularly for IDE. A mechanism
that helps users navigate the schema and data space, and
exposes relevant data regions based on their query context,
is required. We consider using recommendation systems in
this setting and focus on the following research question:

What are the challenges of recommendation in the
database context, and which algorithms are suitable
for facilitating interactive exploration and navigation
of relational databases?



To answer this question, we address top-N aspect recom-
mendation, where the goal is to suggest a set of N aspects
to the user that facilitate query composition and database
exploration. Similar to the collaborative filtering setting in
Section 2, we analyse user interaction data, available in a
query log. Informally, the problem setting is as follows: we
are given a query log that is partitioned into sessions, sets
of queries submitted by the same user. Furthermore, we
also have a relational database synopsis with information
about the schema of the database (#relations, #attributes,
and foreign key constraints) and the range of numerical at-
tributes. Given a new partial session, the objective is to
recommend potential query extensions, or aspects.

3.1 Proposed Work
To formulate an adequate solution, the following chal-

lenges must be addressed:

1. Aspect Definition. There is no clear notion of “item”
or aspect in this setting. Instead, we need to find an
adequate set of aspects that can be used to to cap-
ture user intent and characterize queries. Given the
exploratory nature of queries in the scientific domains,
the aspects should enable both schema navigation and
data space exploration.

2. Sequential Aspects and Domain-Specific Constraints.
Individual elements in a SQL query are sequential and
there is dependency between them. For instance, in
SELECT T.A FROM T WHERE X > 10, the domain of vari-
able X is attributes in table T. Thus, given partial
query, only a subset of the aspects are syntactically
valid. Queries in the same session, are also submitted
sequentially.

3. Session and Aspect Sparsity. In SDSS, the typical ses-
sion has six SQL queries and lasts thirty minutes [21]
which indicates aspect sparsity in queries and sessions.

The relational database setting exhibits some similarities
to standard recommendation domains (e.g., movie): Some
aspects, e.g., tables, attributes, data regions, are popular
while the majority of them are unpopular. Some sessions
are frequent, i.e., many queries are submitted, while the
majority are infrequent. Scalability and responsiveness is
important in both domains.

Analogous to our work in Section 2, our main hypothesis
is that merely recommending popular aspects is not suffi-
cient for exploratory tasks. Although popular aspects can
help familiarize novice users with concepts like the impor-
tant tables and attributes, given the exploratory nature of
queries in IDE, recommendations are deemed more useful if
they can help users narrow down their queries and expose
relevant data regions. For example, recommending a spe-
cific interval like b1 < BRIGHTNESS < b2 is more useful than
just suggesting the attribute BRIGHTNESS.

Based on these intuitions, we will focus on recommending
interesting aspects that enable data exploration and schema
navigation for users of a relational database, and in partic-
ular, in IDE settings. Using the query log and the database
synopsis, we will devise a set of aspects that include not just
the relations, attributes, and user-defined functions, but also
intervals of numeric attributes, e.g., b1 < BRIGHTNESS < b2.

Subsequently, we can use a vector-based query representa-
tion model where each element denotes the presence of a cer-
tain aspect. Alternatively, a graph-based representation [23]
might be more suitable. After formulating similarity mea-
sures between queries (or sessions) [2], we can use a nearest
neighbour model to suggest relevant aspects to the user.

In contrast to prior work that focuses on supervised learn-
ing and query rewriting [7], we focus on aspect definition
and extraction. In contrast to [4, 7, 8], we rely on the
database synopsis only. Accessing a large scientific database
like SDSS to retrieve the entire set of tuples is expensive. In
contrast to [14] our recommendations include intervals not
just tables and attributes. The intermediate query format
in [18] is complementary to our work.

4. FACILITATING QUERY ANSWER ANAL-
YSIS

After users have successfully submitted a query, their next
challenge is to analyse and understand the query answers.
When the answer set is small, this task is attainable. The
challenge is in examining and interpreting large, or even
conflicting, answer sets.

To illustrate the problem, consider again climate data
that is reported by various sources and integrated in re-
lational databases. Because the sources were independently
created and maintained, a given data point can have mul-
tiple, inconsistent values across the sources. For example,
one source may have the high temperature for Vancouver
on 06/11/2006 as 17C, while another may list it as 19C.
As a result of this value-level heterogeneity, an aggregate
query such as SELECT AVG(TEMPERATURE) does not have a
single true answer. Instead, depending on the choice of data
source combinations that are used to answer the query, dif-
ferent answers can be generated. Reporting the entire set
of answers can overwhelm the user. Here, mechanisms that
summarize the results and help the user understand query
answers are required. Therefore, we study the following re-
search question:

After a query has been submitted to the system, how
can we help the user understand and interpret the
query answers?

Specifically, we address the problem of helping users un-
derstand aggregate query answers in integration contexts
where data is segmented across several sources. We assume
meta-information that describes the mappings and bindings
between data sources is available [25].Our main concern is
how to handle the value-level heterogeneity that exists in
the data, to enable the user to better understand the range
of possible query answers.

4.1 Solution
In our solution [30], we represented the answer to the ag-

gregate query as an answer distribution instead of a single
scalar value. We then proposed a suite of methods for ex-
tracting statistics that convey meaningful information about
the query answers. We focused on the following challenges
1. determining which statistics best represent and answer’s
distribution 2. efficiently computing the desired statistics.
In deriving our algorithms, we assumed prior knowledge re-
garding the sources is unavailable and all sources are equal.

A high coverage interval is one of the statistics we ex-
tract to convey the shape of the answer distribution and
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Figure 1: High coverage intervals tell where the majority of
answers can be found.

the intervals where the majority of viable answers can be
found. Figure 1 shows the multi-modal answer distributions
of the aggregate query AVG(TEMP), on Canadian climate data
(S1) [5] and synthetic data (S4) [30], and their corresponding
high coverage intervals.

5. SUMMARY AND OUTLOOK
The goal of my thesis is to devise techniques that facilitate

user interaction with data. I address three aspects:

• (Accomplished) Facilitating data exploration with rec-
ommender systems in standard domains (Section 2).

• (In progress) Facilitating data exploration and query
composition in the relational database context (Sec-
tion 3). I am currently working on extracting a dataset,
and narrowing down the problem statement.

• (Accomplished) Facilitating query answer analysis by
extracting statistics and semantics about the range of
query answers (Section 4).

6. REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. Improving

aggregate recommendation diversity using ranking-based
techniques. TKDE, 24(5):896–911, 2012.

[2] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano
Rizzi, and Elisa Turricchia. Similarity measures for olap
sessions. Knowledge and information systems,
39(2):463–489, 2014.

[3] Pablo Castells, Neil J. Hurley, and Saul Vargas.
Recommender Systems Handbook, chapter Novelty and
Diversity in Recommender Systems. Springer US, 2015.

[4] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis
Polyzotis. Query recommendations for interactive database
exploration. In International Conference on Scientific and
Statistical Database Management, pages 3–18. Springer,
2009.

[5] Climate Canada. Canada climate data. http://climate.
weatheroffice.gc.ca/climateData/canada_e.html, 2010.

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin.
Performance of recommender algorithms on top-n
recommendation tasks. In RecSys, 2010.

[7] Julien Cumin, Jean-Marc Petit, Vasile-Marian Scuturici,
and Sabina Surdu. Data exploration with sql using machine
learning techniques. In EDBT, 2017.

[8] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei
Diao. Explore-by-example: An automatic query steering
framework for interactive data exploration. In Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data, pages 517–528. ACM, 2014.

[9] Simon Dooms, Toon De Pessemier, and Luc Martens.
Movietweetings: a movie rating dataset collected from
twitter. In CrowdRec at RecSys, 2013.

[10] Yu-Chieh Ho, Yi-Ting Chiang, and Jane Yung-Jen Hsu.
Who likes it more?: mining worth-recommending items
from long tails by modeling relative preference. In WSDM,
pages 253–262, 2014.

[11] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative
filtering for implicit feedback datasets. In 2008 Eighth
IEEE International Conference on Data Mining, pages
263–272. IEEE, 2008.

[12] HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh
Jayapandian, Yunyao Li, Arnab Nandi, and Cong Yu.
Making database systems usable. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, pages 13–24. ACM, 2007.

[13] Martin L Kersten, Stratos Idreos, Stefan Manegold, Erietta
Liarou, et al. The researchers guide to the data deluge:
Querying a scientific database in just a few seconds.
PVLDB Challenges and Visions, 3, 2011.

[14] Nodira Khoussainova, YongChul Kwon, Magdalena
Balazinska, and Dan Suciu. Snipsuggest: context-aware
autocompletion for sql. Proceedings of the VLDB
Endowment, 4(1):22–33, 2010.

[15] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy
Lebanon, and Yoram Singer. Local collaborative ranking.
In WWW, pages 85–96, 2014.

[16] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A
comparative study of collaborative filtering algorithms.
arXiv preprint arXiv:1205.3193, 2012.

[17] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic
matrix factorization. In Advances in neural information
processing systems, pages 1257–1264, 2007.

[18] Hoang Vu Nguyen, Klemens Böhm, Florian Becker,
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