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ABSTRACT
Applications of aggregation for information summary have
great meanings in various fields. In big data era, processing
aggregate function in parallel is drawing researchers’ atten-
tion. The aim of our work is to propose a generic framework
enabling to map an arbitrary aggregation into a generic al-
gorithm and identify when it can be efficiently executed on
modern large-scale data-processing systems. We describe
our preliminary results regarding classes of symmetric and
asymmetric aggregation that can be mapped, in a system-
atic way, into efficient MapReduce-style algorithms.

1. INTRODUCTION
The ability to summarize information is drawing increas-

ing attention for information analysis [11, 6]. Simultane-
ously, under the progress of data explosive growth process-
ing aggregate function has to experience a transition to
massively distributed and parallel platforms, e.g. Hadoop
MapReduce, Spark, Flink etc. Therefore aggregation func-
tion requires a decomposition approach in order to execute
in parallel due to its inherent property of taking several val-
ues as input and generating a single value based on certain
criteria. Decomposable aggregation function can be pro-
cessed in a way that computing partial aggregation and then
merging them at last to obtain final results.

Decomposition of aggregation function is a long-standing
research problem due to its benefits in various fields. In
distributed computing platforms, decomposability of aggre-
gate function can push aggregation before shuffle phase [17,
3]. This is usually called initial reduce, with which the
size of data transmission on a network can be substantially
reduced. For wireless sensor network, the need to reduce
data transmission is more necessary because of limitation of
power supply [15]. In online analytical processing (OLAP),
decomposability of aggregate function enables aggregation
across multi-dimensions, such that aggregate queries can be
executed on pre-computation results instead of base data to
accelerate query answering [8]. An important point of query
optimization in relational databases is to reduce table size
for join [10], and decomposable aggregation brings interests
[4].
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When an arbitrary aggregation function is decomposable,
how to decompose it and when a decomposition is ’efficient’
is a hard nut to crack. Previous works identify interesting
properties for decomposing aggregation. A very relevant
classification of aggregation functions, introduced in [11], is
based on the size of sub-aggregation (i.e., partial aggrega-
tion). This classification distinguishes between distributive
and algebraic aggregation having sub-aggregation with fixed
sizes, and holistic functions where there is no constant bound
on the storage size of sub-aggregation. Some algebraic prop-
erties, such as associativity and commutativity, are identi-
fied as sufficient conditions for decomposing aggregation [17,
3]. Compared to these works, our work provides a generic
framework to identify the decomposability of any symmetric
aggregation and generate generic algorithms to process it in
parallel. Moreover, all but few researches in the literature
consider symmetric functions. Asymmetric aggregation is
inherently non-commutative functions and this makes their
processing in parallel and distributed environment far from
being easy. In [16], a symbolic parallel engine (SYMPLE) is
proposed in order to automatically parallelize User Defined
Aggregations (UDAs) that are not necessarily commutative.
Although interesting, the proposed framework lacks guaran-
tees for efficiency and accuracy in the sense that it is up to
users to encode a function as SYMPLE UDA. Moreover,
symbolic execution may have path explosion problem.

My research focuses on designing generic framework that
enables to map symmetric and asymmetric aggregation func-
tions into efficient massively parallel algorithms. To achieve
this goal, we firstly identify a computation model, and an
associated cost model to design and evaluate parallel algo-
rithms. We consider MapReduce-style (MR) framework and
use the MRC [12] cost model to define ’efficient’ MR algo-
rithms. We rest on the notion of well-formed aggregation [4]
as a canonical form to write symmetric aggregation and pro-
vide a simple and systematic way to map well-formed aggre-
gation function α into an MR algorithm, noted by MR(α).
Moreover, we provide reducible properties to identify when
the generated MR(α) is efficient (when MR(α) is an MRC
algorithm). Then we extend our framework to a class of
asymmetric aggregation function, position-based aggrega-
tion, and propose extractable property to have genericMRC
algorithms. Our main results are Theorem 1 and Theorem
2, of which proofs are provided in an extended report[2].

2. MRC ALGORITHM
Several research works concentrate on the complexity of

parallel algorithms. MUD[7] algorithm was proposed to



Figure 1: MapReduce flowchart with MRC con-
straints

transform symmetric streaming algorithms to parallel algo-
rithms with nice bounds in terms of communication and
space complexity, but without any bound on time complex-
ity. This disqualifies MUD as a possible candidate cost
model to be used in our context. MRC[12] is another popu-
lar model that has been used to evaluate whether a MapeRe-
duce algorithm is efficient. The constraints enforced by
MRC w.r.t. total input data size can be summarized as
following: sublinear number of total computing nodes, sub-
linear space for any mapper or reducer, polynomial time for
any mapper or reducer, and logarithm round number. We
illustrate these constraints besides round number in a sim-
plified MapReduce flowchart in figure 1 where ε > 0.

Hence, the MRC model considers necessary parameters
for parallel computing, communication time, computation
space and computing time, and makes more realistic as-
sumptions. A MapReduce algorithm satisfying these con-
straints is considered as an efficient parallel algorithm and
will be called hereafter an MRC algorithm.

3. SYMMETRIC AGGREGATION WITHMRC

Let I be a doamin, an n-ary aggregation α is a function[9]:
In → I. α is symmetric or commutative[9] if α(X) =
α(σ(X)) for any X ∈ I and any permutation σ, where
σ(X) = (xσ(1), ..., xσ(n)). Symmetric aggregation result does
not depend on the order of input data, therefore input is
considered as a multiset. In this section, we define a generic
framework to map symmetric aggregation into an MRC al-
gorithm.

3.1 A Generic Form for Symmetric Aggrega-
tion

To define our generic aggregation framework, we rest on
the notion of well-formed aggregation [4]. A symmetric ag-
gregation α defined on a multiset X = {d1, . . . , dn} can be
written in well-formed aggregation as following:

α(X) = T (F (d1)⊕ . . .⊕ F (dn)),

where F is translating function(tuple at a time), ⊕ is a com-
mutative and associative binary operation, and T is termi-
nating function. For instance, average can be easily trans-
formed into well-formed aggregation: F (d) = (d, 1), (d, k)⊕
(d′, k′) = (d + d′, k + k′) and T ((d, n)) =

d

n
. In fact, any

symmetric aggregation can be rewritten into well-formed ag-
gregation with a flexible choice of ⊕, e.g ⊕ = ∪.

Well-formed aggregation provides a generic plan for pro-
cessing aggregate function in distributed architecture based

Table 1: MR(α): a generic MR aggregation algo-
rithm

operation
mapper

∑
⊕,dj∈Xi

F (dj)

reducer T (
∑
⊕,i oi)

on the associative and commutative property of ⊕: pro-
cessing F and ⊕ at mapper, ⊕ and T at reducer. Table
1 depicts the corresponding generic MapReduce(MR) algo-
rithm(the case of one key and trivially extending to any
number of keys), noted by MR(α), where mapper input is
a submultiset Xi of X and mapper output is oi, and

∑
⊕ is

the concatenation of ⊕.
However, the obtained MR(α) are not necessarily an effi-

cient MapReduce algorithm. We identify when MR(α) is a
MRC algorithm using reducibility property.

Definition 1. A symmetric aggregation function α defined
on domain I is reducible if the well-formed aggregation (F,⊕
, T ) of α satisfies

∀di, dj ∈ I : |F (di)⊕ F (dj)|= O(1).

With this reducible property, we provide a theorem iden-
tifying when MR(α) of a symmetric aggregation is a MRC
algorithm.

Theorem 1. Let α be a symmetric well-formed aggrega-
tion and MR(α) be the generic algorithm for α, then MR(α)
is an MRC algorithm if and only if α is reducible.

3.2 Deriving MRC Algorithm from Algebraic
Properties

In this section, we investigate several symmetric aggre-
gation properties satisfying Theorem 1. If an aggregation
α is in one of the following classes, then α has an MRC(α)
algorithm illustrated in table 1.

An aggregate function α is associative [9] if for multi-
set X = X1 ∪X2, α(X) = α (α(X1), α(X2)) . Associative
and symmetric aggregation function can be transformed
in well-formed aggregation (F,⊕, T ) as following,

F = α, ,⊕ = α, T = id (1)

where id denotes identity function. α is reducible because
it is an aggregation. Therefore MR(α) of associative and
symmetric aggregation α is an MRC algorithm.�

An aggregation α is distributive [11] if there exists a com-
bining function C such that α(X,Y ) = C(α(X), α(Y )). Dis-
tributive and symmetric aggregation can be rewritten in
well-formed aggregation (F,⊕, T ) as following,

F = α, ⊕ = C, T = id. (2)

Similarly, α is reducible and corresponding MR(α) is an
MRC algorithm.�

Another kind of aggregate function having the same be-
havior as symmetric and distributive aggregation is com-
mutative semigroup aggregate function [5]. An aggre-
gation α is in this class if there exists a commutative semi-
group (H,⊗), such that α(X) =

⊗
xi∈X α(xi). The corre-

sponding well-formed aggregation (F,⊕, T ) is illustrated as
following,

F = α, ⊕ = ⊗, T = id. (3)



It is clearly that α is reducible and MR(α) is an MRC
algorithm.�

A more general property than commutative semi-group
aggregation is symmetric and preassociative aggregate func-
tion. An aggregation α is preassociative [13] if it satis-
fies α(Y ) = α(Y ′) =⇒ α(XY Z) = α(XY ′Z). Accord-
ing to [13], some symmetric and preassociative(unarily
quasi-range-idempotent and continuous) aggregation func-
tions can be constructed as α(X) = ψ

(∑n
i=1 ϕ(xi)

)
, n ≥ 1,

where ψ and ϕ are continuous and strictly monotonic func-
tion. For instance, α(X) =

∑n
i=1 2 · xi, where ψ = id and

ϕ(xi) = 2·xi. The well-formed aggregation (F,⊕, T ) for this
kind of preassociative aggregation is illustrated as following

F = ϕ, ⊕ = +, T = ψ. (4)

The corresponding MR(α) is also an MRC algorithm.�
An aggregate function α is barycentrically associative [14]

if it satisfies α(XY Z) = α(Xα(Y )|Y |Z), where |Y | denotes

the number of elements contained in multiset Y and α(Y )|Y |

denotes |Y | occurrences of α(Y ). A well-known class of sym-
metric and barycentrically associative aggregation is quasi-

arithmetic mean : α(X) = f−1

(
1

n

∑n
i=1 f(xi)

)
, n ≥ 1,

where f is an unary function and f−1 is a quasi-inverse of f .
With different choices of f , α can be different kinds of mean
functions, e.g arithmetic mean, quadratic mean, harmonic
mean etc. It is trivial to rewrite this kind of aggregation into
well-formed aggregation (F,⊕, T ) and the MR(α) is also an
MRC algorithm,

F = (f, 1), ⊕ = (+,+), T = f−1(

∑n
i=1 f(xi)

n
). (5)

4. ASYMMETRIC AGGREGATION
Many commonly used aggregation function is symmet-

ric(commutative) such that the order of input data can be
ignored, while asymmetric aggregation considers the order.
Two common asymmetric cases could be weighted aggre-
gation and cumulative aggregation, where aggregated result
will be changed if data order is changed, e.g. WMA(weighted
moving average) and EMA(exponential moving average)[1],
which are used to highlight trends.

4.1 A Generic Form for Asymmetric Aggre-
gation

In contrast to symmetric aggregation, asymmetric func-
tion is impossible to rewrite into well-formed aggregation,
because translating function F is a tuple at a time function
and⊕ is commutative and hence both of them are insensitive
to the order. For this reason, we propose an extended form
based on well-formed aggregation which is more suitable for
asymmetric aggregation.

Definition 2. An asymmetric aggregation α defined on
an ordered sequence X̄ is an asymmetric well-formed aggre-
gation if α can be rewritten as following,

α(X̄) = T (F o(X̄, x1)⊕ ...⊕ F o(X̄, xn)), (6)

where F o is order-influenced translating function, ⊕ is a
commutative and associative binary operation, and T is ter-
minating function.

For instance, α(X̄) =
∑
xi∈X̄(1− z)i−1xi[14] with a con-

stant z can be rewritten as F o(X̄, xi) = (1 − z)i−1xi, ⊕ =
+, T = id, where i is the position of xi in the sequence X̄.

Asymmetric well-formed aggregation can rewrite any asym-
metric aggregation α, and with the associative property of
⊕, α also has a generic MR algorithm MR(α): processing
F o and ⊕ at mapper, ⊕ and T at reducer. Similar to the
behavior of symmetric well-formed aggregation, reducible
property is needed to ensure MRC constraints. The re-
ducible property for asymmetric well-formed aggregation is

∀xi, xi+1 ∈ X̄ : |F o(X̄, xi)⊕ F o(X̄, xi+1)|= O(1).

However, in order to have a correct generic MRC algo-
rithm for asymmetric aggregation, reducible property is not
enough, because asymmetric function considers data order
such that operations for combining mapper outputs are more
than ⊕. We illustrate this problem and identify properties
to have correct MRC algorithm for a class of asymmetric
well-formed aggregation in the following.

4.2 Position-based Aggregation with MRC

We deal with a kind of asymmetric aggregation α called
position-based aggregation, for which F o is F o(X̄, xi) =
h(i) � f(xi), where h() and f() are unary functions, and
� is a binary operation. The corresponding asymmetric
well-formed framework is α(X̄) = T (

∑
⊕,xi∈X̄ h(i)� f(xi)),

where
∑
⊕ is the concatenation of ⊕.

Let X̄ be an ordered sequence X̄ = S̄1◦...◦S̄m, where S̄l is
a subsequence of X̄, l ∈ {1, ...,m} and ◦ is the concatenation
of subsequence, and i be the holistic position of xi in X̄ and
j be the relative position of xj in subsequence S̄l. Then∑
⊕ F

o(X̄, xi) of α on any subsequence Sl is∑
⊕,xi∈S̄l

F o(X̄, xi) =
∑

⊕,xj∈S̄l

h(j + k)� f(xi),

where j + k (j + k = i) is the holistic position of the jth
element xj in S̄l. In order to process α in parallel on these
subsequences, the first requirement is to have l, which means
in distributed and parallel computing data set is split into
ordered chunks and chunk indexes can be stored. It can be
trivially implemented in Hadoop[16]. Secondly, k is needed,
the number of elements before S̄l. Sequential distributing
subsequence count values then starting aggregation is costly
due to too many times of data transferring on network. If k
can be extracted out of

∑
⊕,xj∈S̄l

h(j+k)�f(xi), then α can

be processed without distributing counts because operations
relating to count can be pushed to reducer. We identify
conditions to extract k which we call extractable property.

Lemma 1. Given an ordered sequence X̄, a position-based
asymmetric well-formed aggregation α defined in (F o,⊕, T )
and F o(X̄, xi) = h(i) � f(xi) for any xi ∈ X̄, where h()
and f() are unary functions, is extractable if there exists
a binary operation ⊗ making h() satisfy h(i + k) = h(i) ⊗
h(k + c) with a constant c, and ⊕, ⊗ and � satisfy one of
the following conditions,

• ⊗, � and ⊕ are same,

• ⊗ and � are same and they are distributive over ⊕,

• ⊗ is distributive over � which is same as ⊕.

The behavior of h() is similar to group homomorphism
however they are not exactly same, and our intention is to
extract k instead of preserving exact operations.



Theorem 2. Let α be a position-based well-formed ag-
gregation and MR(α) be the generic algorithm for α, then
MR(α) is an MRC algorithm if α is reducible and extractable.

Extractable property of position-based aggregation α al-
lows previous subsequences count value ’k’ to be extracted
out of mapper operation, then α can be correctly processed
by
∑
⊕ F

o or (
∑
⊕ f(xi),

∑
⊕ h(i)) at mapper phase. To

combine mapper outputs, more than ⊕ and T are needed
and specific combining operation depends on the three dif-
ferent extractable conditions (provided in our extended re-
port[2]).

For instance, given an input sequence X̄ = (x1, ..., xn),

then EMA(X̄) =

∑n
i=1(1− a)i−1 · xi∑n
i=1(1− a)i−1

, where a is a constant

between 0 and 1. We give below the asymmetric well-formed
aggregation of EMA, where h(i) = (1− a)i−1,

F o : F o(X̄, xi) =
(
h(i) · xi, h(i)

)
,

⊕ :
(
h(i) · xi, h(i)

)
⊕
(
h(i+ 1) · xi+1, h(i+ 1)

)
=
(
h(i) · xi + h(i+ 1) · xi+1, h(i) + h(i+ 1)

)
,

T : T (

n∑
i=1

h(i) · xi,
n∑
i=1

h(i)) =

∑n
i=1 h(i) · xi∑n
i=1 h(i)

.

It is clearly that EMA is a position-based aggregation, and
EMA is reducible because ⊕ is a pair of addition. Moreover
h() satisfies h(i + k) = h(i) · h(k + 1), and the correspond-
ing three binary operations ⊗ = ·, � = ·, ⊕ = + sat-
isfy the second extractable condition. Therefore EMA has a
MRC algorithm(the generic MRC algorithm for the second
extractable condition) illustrated as following, where we as-
sume input sequence X̄ = S̄1 ◦ ... ◦ S̄m and mapper input is
Sl, l ∈ {1, ...,m}, and count(S0) = 0,

• mapper:
(
OM

′
l =

∑
xj∈Sl

h(j)·xj , OM
′′
l =

∑
xj∈Sl

h(j),

OM
′′′
l = count(Sl)

)
,

• reducer:

∑m
l=1 OMl

′ · (1− a)
∑l−1

j=0 OM
′′′
j∑m

l=1 OM
′′
l · (1− a)

∑l−1
j=0 OMj

′′′
.

5. CONCLUSION AND FUTURE WORK
In this work, we studied how to map aggregation func-

tions, in a systematic way, into generic MRC algorithms
and we identified properties that enable to efficiently execute
symmetric and asymmetric aggregations using MapReduce-
style platforms. For symmetric aggregation, we proposed
the reducible property within well-formed aggregation frame-
work to satisfy space and time complexity of MRC. Several
algebraic properties of symmetric aggregation leading to a
generic MRC algorithm have been identified. Moreover, we
extended the notion of well-formed aggregation to asym-
metric aggregation and showed how it can be exploited to
deal with position-based asymmetric aggregation. Through
identifying the problem for parallelizing it, we proposed ex-
tractable property and merged it with the reducible prop-
erty of asymmetric well-formed aggregation to have MRC
algorithms.

Our future work will be devoted to the implementation
and experimentation. We will study the extension of our

framework to mainstream parallel computing platforms (e.g.
Apache Spark). Moreover, we also plan to extend our frame-
work to cover additional classes of asymmetric aggregations.
Finally, we plan to investigate how to generalize our ap-
proach to nested aggregation functions (i.e., functions de-
fined as a complex composition of aggregation functions).
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