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ABSTRACT
Data-driven workflows, of which IBM’s Business Artifacts
are a prime exponent, have been successfully deployed in
practice, adopted in industrial standards, and have spawned
a rich body of research in academia, focused primarily on
static analysis. The present research bridges the gap be-
tween the theory and practice of artifact verification by
studying the implementation of a full-fledged and efficient
artifact verifier for a variant of the Hierarchical Artifact Sys-
tem (HAS) model presented in [9]. With a family of special-
ized optimizations to the classic Karp-Miller algorithm, our
verifier performs >10x faster than a nontrivial Spin-based
baseline on real-world workflows and is scalable to large syn-
thetic workflows.

1. INTRODUCTION
The past decade has witnessed the evolution of work-

flow specification frameworks from the traditional process-
centric approach towards data-awareness. Process-centric
formalisms focus on control flow while under-specifying the
underlying data and its manipulations by the process tasks,
often abstracting them away completely. In contrast, data-
aware formalisms treat data as first-class citizens. A notable
exponent of this class is IBM’s business artifact model pio-
neered in [14], successfully deployed in practice [3, 5, 18]
and adopted in industrial standards.

In a nutshell, business artifacts (or simply “artifacts”)
model key business-relevant entities, which are updated by a
set of services that implement business process tasks, spec-
ified declaratively by pre-and-post conditions. A collection
of artifacts and services is called an artifact system. IBM
has developed several variants of artifacts, of which the most
recent is Guard-Stage-Milestone (GSM) [7, 11]. The GSM
approach provides rich structuring mechanisms for services,
including parallelism, concurrency and hierarchy, and has
been incorporated in the OMG standard for Case Manage-
ment Model and Notation (CMMN) [15, 12].

Artifact systems deployed in industrial settings typically
specify complex workflows prone to costly bugs, whence the
need for verification of critical properties. Over the past few
years, the verification problem for artifact systems was in-
tensively studied. Rather than relying on general-purpose
software verification tools suffering from well-known limi-
tations, the focus of the research community has been to
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identify practically relevant classes of artifact systems and
properties for which fully automatic verification is possible.
This is an ambitious goal, since artifacts are infinite-state
systems due to the presence of unbounded data. Along this
line, decidability and complexity results were shown for dif-
ferent versions of the verification problem with various ex-
pressiveness of the artifact models, as reviewed in the next
section.

The project described in this paper bridges the gap be-
tween the theory and practice of artifact verification by pro-
viding the first implementation of a full-fledged and efficient
artifact verifier. The artifact model we use is a variant of
the Hierarchical Artifact System (HAS) model of [9], which
captures core elements of IBM’s GSM model. Rather than
building on top of an existing program verification tool such
as Spin, which we have shown to have strong limitations,
we implemented our verifier from scratch. The implemen-
tation is based on the classic Karp-Miller algorithm [16],
with a family of specialized optimizations to boost perfor-
mance. The experimental results show that our verifier per-
forms an order of magnitude faster compared to a baseline
implementation using Spin [10] on specifications based on
real-world BPMN workflows [2], and scales well on large
synthetic workflows. To the best of our knowledge, our arti-
fact verifier is the first implementation with full support of
unbounded data.

2. BACKGROUND AND RELATED WORK
[8, 6] studied the verification problem for a bare-bones

variant of artifact systems, in which each artifact consists
of a flat tuple of evolving values and the services are spec-
ified by simple pre-and-post conditions on the artifact and
database. The verification problem was to check statically
whether all runs of an artifact system satisfy desirable prop-
erties expressed in LTL-FO, an extension of linear-time tem-
poral logic where propositions are interpreted as existential
first-order logic sentences on the database and current arti-
fact tuple. In order to deal with the resulting infinite-state
system, a symbolic approach was developed in [8] to allow
a reduction to finite-state model checking and yielding a
pspace verification algorithm for the simplest variant of the
model (no database dependencies and uninterpreted data
domain). In [6] the approach was extended to allow for
database dependencies and numeric data testable by arith-
metic constraints.

In our previous work [9], we made significant progress on
several fronts. We introduced the HAS model, a much richer
and more realistic model abstracting the core elements of



the GSM model. The model features task hierarchy, con-
currency, and richer artifact data (including updatable arti-
fact relations). In more detail, a HAS consists of a database
and a hierarchy (rooted tree) of tasks. Each task has as-
sociated to it local evolving data consisting of a tuple of
artifact variables and an updatable artifact relation. It also
has an associated set of services. Each application of a ser-
vice is guarded by a pre-condition on the database and lo-
cal data and causes an update of the data, specified by a
post-condition (constraining the next artifact tuple) and an
insertion or retrieval of a tuple from the artifact relation.
In addition, a task may invoke a child task with a tuple of
input parameters, and receive back a result if the child task
completes. To express properties of HAS we introduce hi-
erarchical LTL-FO (HLTL-FO), which is similar to LTL-FO
but adapted to the hierarchy. The main results of [9] es-
tablish the complexity of checking HLTL-FO properties for
various classes of HAS, highlighting the impact of various
features on verification.

3. MODEL AND EXAMPLE
The artifact model used in our implementation is a variant

of the HAS model of [9] denoted HAS*, which differs from
the HAS model used in [9] in two respects. On one hand,
it restricts HAS by disallowing arithmetic in service pre-
and-post conditions, and requires the underlying database
schema to use an acyclic set of foreign keys, as in the widely
used Star (or Snowflake) schemas [17]. On the other hand,
HAS* extends HAS by allowing an arbitrary number of ar-
tifact relations in each task, arbitrary variable propagation,
and more flexible interactions between tasks. As shown by
our real-life examples, HAS* is powerful enough to model a
wide variety of business processes, and so is a good vehicle
for studying the implementation of a verifier. Moreover, de-
spite the extensions, the complexity of verifying HLTL-FO
properties of HAS* can be shown to remain expspace, by
adapting the techniques of [9].

We illustrate the HAS* model with a simplified example
of order fulfillment business process based on a real-world
BPMN workflow. The workflow allows customers to place
orders and suppliers to process the orders. It has the follow-
ing database schema:

• CUSTOMERS(id, name, address, record)
ITEMS(id, item name, price, in stock)
CREDIT RECORD(id, status)

In the schema, the id’s are key attributes, and record is a
foreign key referencing CREDIT RECORD. The CUSTOMERS ta-
ble contains basic customer information and CREDIT RECORD

provides each customer’s credit rating. The ITEMS table con-
tains information on all the items. The artifact system has 4
tasks: T1:ProcessOrders, T2:TakeOrder, T3:CheckCredit
and T4:ShipItem, which form the hierarchy in Figure 1.

Intuitively, the root task ProcessOrders serves as a global
coordinator which manages a pool of orders and the child
tasks TakeOrder, CheckCredit and ShipItem implement
the 3 processing stages of an order. At each point in a run,
ProcessOrders nondeterministically picks an order from
its pool, triggers one processing stage, and places it back
into the pool upon completion.

ProcessOrders: The task has the artifact variables: cust id,
item id, status which store basic information of an order.
It also has an artifact relation ORDERS(cust id, item id, status)
storing the orders to be processed.

T2: TakeOrder T4: ShipItemT3: CheckCredit

T1: ProcessOrders

Figure 1: Tasks Hierarchy
The task has 3 internal services: Initialize, StoreOrder

and RetrieveOrder. Intuitively, Initialize creates a new order
with cust id = item id = null. When RetrieveOrder is
called, an order is non-deterministically chosen and removed
from ORDERS for processing, and (cust id, item id, status)
is set to be the chosen tuple. When StoreOrder is called,
the current order (cust id, item id, status) is inserted into
ORDERS. The latter two services are specified as follows (the
specification consists of a pre-condition, a post-condition,
and an update to the ORDERS artifact relation):

StoreOrder :
Pre: cust id 6= null∧item id 6= null∧status 6= “Failed”
Post: cust id = null ∧ item id = null ∧ status = “Init”
Update: {+ORDERS(cust id, item id, status)}

RetrieveOrder :
Pre: cust id = null ∧ item id = null // Post: True

Update: {−ORDERS(cust id, item id, status)}

TakeOrder: When this task is called, the customer enters
the information of the order (cust id and item id) and the
status of the order is initialized to “OrderPlaced”. The
task contains cust id, record and status as variables and
all are return variables to the parent task. There are two
services called EnterCustomer and EnterItem, that allow
the customer to enter her and the item’s information. The
CUSTOMERS and ITEMS tables are queried to obtain the cus-
tomer ID and item ID. These two services can be called
multiple times to allow the customer to modify previously
entered data. The task’s termination condition is cust id 6=
null ∧ item id 6= null, at which time its variables are re-
turned to its parent task ProcessOrders.

CheckCredit: This task checks the financial record of a
customer and decides whether the supplier will go ahead
with the sale. It is called when status = “OrderPlaced”.
It has artifact variables cust id (input variable), record

and status. When the credit record is good, status is set
to “Passed”, and otherwise to “Failed”. After status is
set, the task terminates and returns status to the parent
task. The task has a single service Check performing the
credit check.

Check :
Pre: true // Post:

∃n∃a CUSTOMERS(cust id, n, a, record)∧
(CREDIT RECORD(record, “Good”)→ status = “Passed”)∧
(¬CREDIT RECORD(record, “Good”)→ status = “Failed”)

Note that in a service we can also specify a set of propa-
gated variables whose values stay unchanged when the ser-
vice is applied. In Check, only cust id is a propagated vari-
able and others will be assigned new values.

ShipItem: This task checks whether the desired item is in
stock by looking up the item id in the ITEMS table to see
whether the in stock attribute equals “Yes”. If so, the item
is shipped to the customer (status is set to “Shipped”) oth-
erwise the order fails (status is set to “Failed”). This task
is specified similarly to CheckCredit (details omitted).

Properties of HAS* can be specified in LTL-FO. In the



above workflow, we can specify a temporal property saying
“If an order is taken and the ordered item is out of stock,
then the item must be restocked before it is shipped.” It can
be written in LTL-FO as:

∀i G(EnterItem ∧ item id = i ∧ instock = “No”)→
(¬(ShipItem ∧ item id = i) U (Restock ∧ item id = i))

4. VERIFIER IMPLEMENTATION
Although decidability of verification was shown in [9], a

naive implementation of the expspace algorithm outlined
there would be wholly impractical. Instead, our implemen-
tation brings to bear a battery of optimization techniques
crucial to performance. This approach of [9] is based on de-
veloping a symbolic representation of the runs of a HAS*.
In the representation, each snapshot is summarized by:

(i) the isomorphism type of the artifact variables, describing
symbolically the structure of the portion of the database
reachable from the variables by navigating foreign keys

(ii) for each artifact relation and isomorphism type, the num-
ber of tuples in the relation that share that isomorphism
type

The heart of the proof in [9] is showing that it is sufficient
to verify symbolic runs rather than actual runs. Observe
that because of (ii), the symbolic representation is not finite
state. Indeed, (ii) requires maintaining a set of counters,
which can grow unboundedly. Therefore, the verification
algorithm relies on a reduction to state reachability in Vector
Addition Systems with States (VASS) [4]. A VASS is a
finite-state machine augmented with positive counters that
can be incremented and decremented (but not tested for
zero). This is essentially equivalent to a Petri Net.

A direct implementation of the above algorithm is im-
practical because the resulting VASS can have exponentially
many states and counters in the input size, and state-of-the-
art VASS tools can only handle a small number of coun-
ters (<100) [1]. To mitigate the inefficiency, our implemen-
tation never generates the whole VASS but instead lazily
computes the symbolic representations on-the-fly. Thus, it
only generates reachable symbolic states, whose number is
usually much smaller. In addition, isomorphism types in
the symbolic representation are replaced by partial isomor-
phism types, which store only the subset of constraints on the
variables imposed by the current run, leaving the rest un-
specified. This representation is not only more compact, but
also results in an exponentially smaller search space. Then
our verifier performs the (repeated) state reachability search
using the classic Karp-Miller algorithm [16] with three spe-
cialized optimizations to further accelerate the search. We
discuss these next.

State Pruning The classic Karp-Miler algorithm is well-
known to be inefficient and pruning is a standard way to
improve its performance [16]. We introduce a new pruning
technique which can be viewed as a generalization of the
strategies in [16]. The high-level idea is that when a new
state I is found, if there exists a reached state I ′ such that
all states reachable from I are also reachable from I ′, then
we can stop exploring I immediately. In this case, we call I ′

a superstate of I and I a substate. Similarly, if there exists
a reached state I ′ which is a substate of I, then we can
prune I ′ and its successors. Compared to [16], our pruning
is more aggresive, resulting in a much smaller search space.

As shown in Section 5, the performance of the verifier is
significantly improved.

Data Structure Support When the above optimization is
applied, a frequent operation during the search is to find sub-
states and superstates of a given candidate state in the cur-
rent set of reached symbolic states. This operation becomes
the performance bottleneck when there is a large number
of reached states. We accelerate the superstate and sub-
state queries with a Trie index and an Inverted-Lists index,
respectively.

Static Analysis The verifier statically analyzes and sim-
plifies the input workflow with a preprocessing step. We
notice that in real workflows, some contraints in the spec-
ification can never be violated in a symbolic run, and thus
can be removed. For example, for a constraint x = y in
the specification, where x, y are variables, if x 6= y does not
appear anywhere in the specification and is not implied by
other constraints, then x = y can be safely removed from the
specification without affecting the result of the verification
algorithm.

5. EXPERIMENTAL RESULTS
We evaluated the performance of our verifier using both

real-world and synthetic artifact specifications.

The Real Set As the artifact approach is still new to
the industry, real-world processes available for evaluation
are limited. We therefore built an artifact system bench-
mark specific to business processes, by rewriting the more
widely available process-centric BPMN workflows as HAS*
specifications. There are numerous sources of BPMN work-
flows, including the official BPMN website [2], that provides
36 workflows of non-trivial size. To rewrite these workflows
into the HAS*, we manually added the database schema,
artifact variables/relations, and services for updating the
data. Among the 36 real-world BPMN workflows collected
from the official BPMN website bpmn.org, our model is suf-
ficiently expressive to specify 32 of them in HAS* and can
thus be used for performance evaluation. The remaining
ones cannot be expressed in HAS* because they involve com-
puting aggregate functions or updating the artifact relations
in ways that are not supported in the current model. We
will consider these features in our future work.

The Synthetic Set The second benchmark we used for
evaluation is a set of randomly generated HAS specifications.
All components of each specification, including DB schema,
task hierarchy and services, are generated fully at random
of a certain size. The ones with empty search space due to
unsatisfiable conditions are removed from the benchmark.
Table 1 shows some statistics of the benchmarks.

Dataset Size #Relations #Tasks #Variables #Services

Real 32 3.563 3.219 20.63 11.59
Synthetic 120 5 5 75 75

Table 1: Statistics of the Two Sets of Workflows

Baseline and Setup We compare our verifier with a sim-
pler implementation built on top of Spin, a widely used soft-
ware verification tool [10]. Building such a verifier is by itself
a challenging task since Spin is incapable of handling data
of unbounded size, present in the HAS* model. We man-
aged to build a Spin-based verifier supporting a restricted
version of out model, without updatable artifact relations.



As the read-only database can still have unbounded size and
domain, the verifier requires a set of nontrivial translations
and optimizations. The details will be discussed in a sepa-
rate paper.

We implemented both verifiers in C++ with Spin version
6.4.6 for the Spin-based verifier. All experiments were per-
formed on a Linux server with a quad-core Intel i7-2600 CPU
and 16G memory. For each workflow in each dataset, we ran
our verifiers to test a randomly generated liveness property.
The time limit of each run was set to 10 minutes. For fair
comparison, since the Spin-based verifier (Spin-Opt) cannot
handle artifact relations, we ran both the full Karp-Miller-
based verifier (KM), and the Karp-Miller-based verifier with
artifact relations ignored (KM-NoSet).

Performance Table 2 shows the results on both sets of
workflows. The Spin-based verifier achieves acceptable per-
formance on the real set with an average elapsed time of few
seconds and only 1 timeout instance. However, it failed on
most runs (109/120) in the synthetic set of workflows. On
the other hand, both KM and KM-NoSet achieve average
running times below 1 second and with no timeout on the
real set, and the average running time is in seconds on the
synthetic set, with only 3 timeouts. The presence of artifact
relations introduced only a negligible amount of overhead
in the running time. Compared with the Spin-based veri-
fier, the KM-based approach is >10x faster in the average
running time and more scalable to large workflows.

Mode
Real Synthetic

Avg(Time) #Timeout Avg(Time) #Timeout

Spin-Opt 3.111s 1 67.01s 109
KM-NoSet .2635s 0 3.214s 3

KM .2926s 0 3.355s 2

Table 2: Performance of the two Verifiers

Cyclomatic Complexity To better understand the scal-
ability of the Karp-Miller-based approach, we measured the
difficulty of verifying each workflow using a metric called the
cyclomatic complexity [13], which is widely used in software
engineering to measure the complexity of program modules.
Figure 2 shows that the elapsed time increases exponentially
with the cyclomatic complexity. According to [13], it is rec-
ommended that any well-designed program should have cy-
clomatic complexity at most 15 in order to be readable and
testable. Our verifier successfully handled all workflows in
both benchmarks with cyclomatic complexity less than or
equal to 17, which is above the recommended level. For
instances with cyclomatic complexity above 15, our verifier
only timed out in 2/24 instances (8.33%).
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Figure 2: Running Time vs. Cyclomatic Complexity

Comparing Different Optimizations We show next the
effect of our 3 optimization techniques: state pruning (SP),
static analysis (SA) and data structure support (DSS), by
rerunning the experiment with the optimization turned off,
and comparing the difference. Table 3 shows the average

Dataset
SP SA DSS

Mean Trim. Mean Trim. Mean Trim.

Real 2943.58x 55.31x 1.80x 1.66x 1.90x 1.24x
Synthetic 494.57x 180.82x 17.92x 0.92x 1.45x 1.27x

Table 3: Mean and Trimmed Mean (5%) of Speedups

speedups of each optimization in both datasets. We also
present the trimmed averages of the speedups (i.e. removing
the top/bottom 5% speedups before averaging) which is less
sensitive to extreme values.

Table 3 shows that the effect of state pruning is the most
significant in both sets of workflows, with an average (trimmed)
speedup of 55x and 180x in the real and synthetic set, re-
spectively. The static analysis optimization is more effective
in the real set (1.6x improvement) but its effect in the syn-
thetic set is less obvious. It creates a small amount (8%)
of overhead in most cases, but significantly improves the
running time of a single instance, resulting in the huge gap
between the normal average speedup and the trimmed av-
erage speedup. Finally, the data-structure support provides
a consistent ∼1.2x average speedup in both datasets.
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