
Foreign Key Constraint Identification in Relational Databases

Jan Motl, Pavel Kordík

Czech Technical University in Prague,
Thákurova 9, 160 00 Praha 6, Czech Republic,

jan.motl@fit.cvut.cz, pavel.kordik@fit.cvut.cz

Abstract: For relational learning, it is important to know
the relationships between the tables. In relational databases,
the relationships can be described with foreign key con-
straints. However, the foreign keys may not be explicitly
specified. In this article, we present how to automatically
and quickly identify primary & foreign key constraints
from metadata about the data. Our method was evaluated
on 72 databases and has F-measure of 0.87 for foreign
key constraint identification. The proposed method signifi-
cantly outperforms in runtime related methods reported in
the literature and is database vendor agnostic.

1 Introduction

Whenever we want to build a predictive model on relational
data, we have to be able to connect individual tables to-
gether [3]. In Structured Query Language (SQL) databases,
the relationships (connections) between the tables can be
defined with foreign key (FK) constraints. However, FK
constraints are not always available. This can happen, for
example, whenever we work with legacy databases or data
sources, like comma separated value (CSV) files.

Identification of relationships from database belongs to
reverse engineering from databases [14] and can be done
manually or by means of handcrafted rules [2, 3, 7, 17].
Manual FK constraint discovery is very time-consuming
for complex databases [11]. And handcrafted systems may
overfit to small collections of databases, used for the train-
ing. Therefore we use machine learning techniques for this
task and evaluate them on a collection of 72 databases.

Unfortunately, FK constraint identification is difficult. If
we have n columns in a database, then there can be n2 FK
constraints, as each column can reference any column in
the database, including itself1. Hence, there is n2 candidate
FK constraints.

Example 1. If we have a medium-sized database with 100
tables, each with 100 columns, then we have to consider
108 candidate FK constraints.

We can evaluate probability p that a single candidate FK
constraint is a FK constraint with a classifier (e.g. logis-
tic regression) in a constant time. Hence, if we assumed
that the probability pi, j, which denotes a probability that a
column i references column j, is independent of all other
candidate FK constraints in the database, the computational

1We have not observed any instance of a column referencing itself.
Nevertheless, SQL standard does not forbid it.

complexity of FK constraint identification would be O(n2).
However, the probabilities do not appear to be independent.

Example 2. If we had two columns A,B and we had known
that pA,B = 0.9 and pB,A = 0.8 then under assumption of in-
dependence it would be reasonable to predict that column
A references column B and also that column B references
column A. However, directed cyclic references2 do not gen-
erally appear in the databases as it would make updates
inconveniently difficult [10]. Hence, our example database
most likely contains only one FK constraint with A refer-
encing B.

If we accepted that the FK constraints are not indepen-
dent of each other, we could generate each possible combi-
nation of FK constraints and calculate the probability that
the candidate combination of FK constraints is the true
combination of FK constraints. The computational com-
plexity of such algorithm is O(2n2

). Clearly, a practical
algorithm must take simplifying assumptions to scale to
complex databases.

The applications of the FK constraint discovery, besides
relational learning, include data quality assessment [1] and
database refactoring [11].

The paper is structured as follows: first, we describe re-
lated work, then we describe our method, then we describe
our experiments and their results, discuss the results and
provide a conclusion.

2 Related Work

Li et al. [8] formulated a related problem, attribute corre-
spondence identification, as a classification problem.

Rostin et al. [16] formulate FK constraint identification
as a classification problem.

Meurice et al. [11] compared different data sources for
the FK constraint identification: database schema, Hiber-
nate XML files, JPA Java code and SQL code. Based on
their analysis, the database schema data source has four
times higher recall than any other data source. In this ar-
ticle, we focus solely on the database schema data source.
Furthermore, they introduce 4 rules for filtering the candi-
date FK constraints: the “likeliness” of the candidate FK
constraint must be above a threshold, the FK constraints
cannot be bidirectional, the column(s) of the selected FK

2However, undirected cyclic references are commonly used, for ex-
ample, to model hierarchies.

J. Hlaváčová (Ed.): ITAT 2017 Proceedings, pp. 106–111
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, c© 2017 J. Motl, P. Kordík

constraints can be used only once and there can be only a
single (undirected) path from FK constraints between any
two tables.

Chen et al. [3] describe how to significantly acceler-
ate FK constraint identification by pruning unpromising
candidates at multiple levels. We inspire from them and
use multi-level architecture as well. Furthermore, they in-
troduce 4 rules for filtering the candidate FK constraints:
explore FK constraints only between the tables selected
by the user, only a single FK constraint can exist between
two tables, directed cycles from FK constraints are forbid-
den and there can be only a single (undirected) path from
FK constraints between any two tables. We inspire from
Meurice’s and Chen’s articles and reformulate their rules
as integer linear programming (ILP) problem.

3 Method

To make the relationship identification fast, a predictive
model was trained only on the metadata about the data,
which are accessible with Java Database Connectivity
(JDBC) API. This approach has the following properties:

1. It is fast and scalable.
2. It is database vendor agnostic.
3. It is not affected by the data quality.
The problem of relationship identification was decom-

posed into two subproblems: identification of primary keys
(PKs) and identification of FK constraints (Figure 1). The
reasoning behind this decomposition is that identification
of PKs is a relatively easy task. And knowledge of PKs
simplifies identification of FK constraints because FK con-
straints frequently reference PKs3.

The identification of the PKs is performed in two stages:
scoring and optimization. During the scoring phase, a prob-
ability that an attribute is a part of a PK (a PK can be
compound — composed of multiple attributes) is predicted
with a classifier. The probability estimates are then passed
into the optimization stage, which delivers a binary predic-
tion.

The same approach is taken for FK constraint identifi-
cation. During the scoring phase, a probability that a can-
didate FK constraint is a FK constraint is estimated with
a classifier. The probabilities are then passed into an opti-
mizer, which returns the most likely FK constraints.

3.1 Primary Key Scoring

All metadata that are exposed by JDBC4 about attributes
(as obtained with getColumns method) and tables (as ob-
tained with getTables) were collected and considered as
features for classification. For brevity, we describe and jus-
tify only features used by the final model.

3A FK may reference any attribute that is unique, not only PKs. Nev-
ertheless, all FKs in the analyzed databases reference PKs.

4See docs.oracle.com for the documentation.

Primary key
scoring

Primary key
optimization

Relationship
scoring

Relationship
optimization

List of all the columns
in the database

Gradient boosted trees

Integer linear programming

Gradient boosted trees

Integer linear programming

Probabilities that the columns
are in some PK

List of PKs,
List of candidate FK constraints

Probabilities that the candidates
are FK constraints

List of foreign key constraints

Figure 1: The algorithm decomposition.

Data types like integer or char are generally more likely
to be PKs than, for example, double or text. To promote
portability of the trained model, we do not use database
data types but JDBC data types, which have the advantage
that they are the same regardless of the database vendor.

Since some databases offer only a single data type for
numerical attributes, we also note whether numerical at-
tributes can contain decimals, as PKs are unlikely to con-
tain decimal numbers.

Doppelgänger is an attribute, which has a name sim-
ilar to another attribute in the same table. For example,
atom_id1 is a doppelgänger to atom_id2. Doppelgängers
frequently share properties, i.e. either both of them are in
the PK or neither of them is in the PK.

Ordinal position defines the position of the attribute in
the table. PKs are frequently at the beginning of the tables.

String distance between the column and table names
are helpful for identification of PKs and FKs. Opinions on
the best measure for PK and FK constraint identification
vary. For example, [16] uses exact match while [3] uses
Jaro-Winkler distance. After testing all string measures
available in stringdist package [9], we found that Leven-
shtein distance delivers the best discriminative power on
the tested databases.

Keywords like id or pk frequently mark PKs. The pres-
ence of the keywords is analyzed after the attribute/table
name tokenization, which works with camel case and snake
case notation.

JDBC also provides attributes that leak information
about the presence of the PK, like isNullable, isAutoIncre-
ment and isGeneratedColumn. Since it is unreasonable to

Foreign Key Constraint Identification in Relational Databases 107

assume that these metadata would be set correctly after im-
porting data from CSV files, they were excluded from the
model.

For comparison to features extracted from the data
(and not metadata), two additional features were extracted:
whether the attribute contains nulls (containsNull) and
whether the attribute contains unique values (isUnique).
These features are generally expensive to calculate [3].
Nevertheless, some databases, like PostgreSQL, automat-
ically generate these statistics for each attribute in the
database and provide a vendor-specific access to these
statistics.

3.2 Primary Key Optimization

Since each table in a well-designed database should con-
tain a PK, a single most likely PK is identified for each
table in the database. If the single most likely PK attribute
in a table is a doppelgänger, all its doppelgängers in the
table are declared to be part of the PK as well, creating a
compound key. The described optimization can be solved
with an ILP solver, which we use mostly because foreign
key optimization (section 3.4) is using ILP formulation as
well.

3.3 Foreign Key Scoring

Features for FK constraints are a combination of features
calculated for individual attributes from section 3.1 (pre-
fixed with fk and pk respectively) with features unique for
the FK constraints. The description of the unique features
follows.

Data types between FK and PK attributes should match.
Nevertheless, SQL permits FK constraints between char
and varchar data types.

Data lengths between FK and PK attributes should
match. Nevertheless, SQL explicitly permits FK con-
straints between attributes of different character lengths
as defined in the SQL-92 specification, section 8.2.

String distance between FK column name and PK ta-
ble name should be small because FK column names fre-
quently embed a part of the PK table name. Similarly, FK
column name should be similar to PK column name be-
cause FK column names frequently embed a part of the PK
column name. On the other end, FK column name should
generally differ from FK table name as they are not directly
related.

Furthermore, to be able to compare metadata-based fea-
tures to data-based features, we tested whether all non-null
values in the FK are present in the PK (satisfiesFKCon-
straint). This is generally an expensive feature to calcu-
late [3]. Nevertheless, some databases, like PostgreSQL,
automatically calculate histograms for each attribute in the
background and offer a vendor specific interface to access
the histograms. And based on the range of the histograms
many candidate FK constraints can be pruned. More ad-
vanced data-based features (e.g. similarity of the FK and

PK distributions) were not explored as the focus of the ar-
ticle is on the metadata-based features.

3.4 Foreign Key Optimization

The optimization can be formulated as an integer linear op-
timization problem on a directed graph G = (V,E), where
V is the set of attributes in the database and E is the set
of candidate FK constraints. The pi j is the estimated prob-
ability that the candidate FK constraint referencing FK i
to PK j is a FK constraint. The probabilities are estimated
with a classification model trained on features described
in section 3.3. Compound FKs are modeled as multiple
FK constraints (one FK constraint for each attribute). We
define variable xi j:

xi j =

{
1 if the candidate FK constraint is a FK constraint
0 otherwise

(1)
The optimization problem is then:

max
x ∑

[i, j]∈E
xi j−2 ∑

[i, j]∈E
xi j(1− pi j) (2a)

s.t.

∑
j∈V

xi j ≤ 1, ∀i, (2b)

∑
i∈S, j∈S,[i, j]∈E

xi j ≤ |S|−1, ∀S⊆V, |S| ≥ 1, (2c)

xi1 j1 − xi2 j2 = 0, ∀P,F ⊆V, i ∈ F, j ∈ P, |P| ≥ 2,
(2d)

xi1 j− xi2 j = 0, ∀D⊆V, i ∈ D, j ∈V, (2e)
xi j ∈ {0,1}, ∀i ∈V, j ∈V. (2f)

The objective function defines all FK constraint candi-
dates xi j with pi j > 0.5 as FK constraints if it does not
violate any of the following constraints.

Unity constraint 2b enforces that a FK can reference
only a single PK. While a single FK can in theory reference
multiple different PKs, no such occurrence appeared in the
analyzed databases.

Acyclicity constraint 2c ensures that the graph is (direc-
tionally) acyclic. However, this formulation of acyclicity
requires an exponential number of constraints. To deal with
that, we generate acyclicity constraints lazily [15]. Acyclic-
ity constraint is desirable because if pi j is high, p ji is gen-
erally high as well (particularly for i = j). But directed
cycles (even over intermediate tables) do not appear in the
analyzed databases.

Completeness constraint 2d says that if a PK is com-
pound, then either all or neither attribute of the PK P is ref-
erenced from the FK table by attributes F . Completeness
constraint ensures that compound FKs are syntactically cor-
rect.

108 J. Motl, P. Kordík

Doppelgänger constraint 2e says that if attributes are
doppelgängers to each other, then either all or neither at-
tribute from the doppelgänger set D reference the (same)
PK attribute.

Constraint 2f defines the problem as an integer program-
ming problem.

It should be noted that if constraints 2d and 2e are re-
moved, we get an optimization problem similar to the iden-
tification of minimum spanning tree in a graph [6]. Hence,
the FKs can be efficiently optimized with Dijkstra algo-
rithm with a modified termination condition (the algorithm
terminates once the objective function starts to increase).

4 Results

Following paragraphs describe an empirical comparison
of 5 classifies on 3 different sets of features from 72
databases.

4.1 Data

We used all 72 relational databases from relational repos-
itory [12]. The databases range from classical relational
benchmarking databases (like TPC-C or TPC-H) to real-
world databases used in challenges (e.g. from PKDD in
1999 or from Predictive Toxicology Challenge in 2000).
The collection of the databases contains in total 1343 PKs,
1283 FK constraints, 6129 attributes and 788 tables. That
means that on average approximately 1 of 5 attributes is
part of a PK. The count of all possible relationships is
1,232,392 (in theory, a FK can reference any attribute in
the database, including itself). That means that on average
approximately 1 of 960 tested relationships are FK con-
straints.

4.2 Algorithm

Following classification algorithms were tested on the prob-
lem: decision tree, gradient boosted trees, naive Bayes,
neural network and logistic regression as implemented in
RapidMiner 7.5. Since the best results were obtained with
gradient boosted trees, the reported results are for gradient
boosted trees.

4.3 Measure

For evaluation of the classification models, AUC and F-
measure [5] were used. Classification accuracy was omit-
ted due to a significant class imbalance in FK identification
task. AUC evaluates the ability of the model to rank. Hence,
AUC is used to evaluate the quality of scoring. On the other
end, F-measure is suitable for the evaluation of the quality
of thresholding. Hence, F-measure is used to evaluate the
quality of the optimization.

4.4 Validation

To measure the generalization of the models to new un-
observed databases, batch cross-validation over databases
[16, section 4.3] was performed. Since 72 databases were
analyzed, it means that each model was trained and eval-
uated 72 times. The batch cross-validation has the advan-
tage, in comparison to 10-fold cross-validation, that the
samples from a single database are either all in the train-
ing set or all in the testing set. Hence, if the samples from
a single database are more similar to each other than to
samples from other databases, we may expect that batch
cross-validation will deliver a less optimistically biased es-
timate of the model accuracy on new unobserved databases
than 10-fold cross-validation.

4.5 Feature Importance

Generally, it is desirable to minimize the count of utilized
features to make the model easier to understand and de-
ploy. Table 1 depicts feature importance for PK identifica-
tion as reported by gradient boosted trees for features that
remained after backward selection.

Table 1: Feature importance for primary key identification
for different feature sets. Higher weight means higher im-
portance.

Feature All Meta Ordinal Data

ordinalPosition 3279 1970 2581 -
isDoppelgänger 142 99 - -
isDecimal 80 81 - -
containsNull 18 - - 239
levenshteinToTable 15 124 - -
dataType 14 71 - -
isUnique 9 - - 780
containsKeyword 7 21 - -

AUC 0.985 0.970 0.934 0.784

The single most important feature for PK identification
is the position of the attribute in the table. This is not so
surprising because all non-compound PKs in the analyzed
databases (with the exception of Hepatitis database) were
the first attribute in the table. Indeed, if we always predicted
that the first attribute in a table is a PK, we get F-measure
equal to 0.934±0.007.

Table 2 lists feature importance for FK constraint identi-
fication. Interestingly, the knowledge whether the FK con-
straint is satisfiable is the least important feature from the
selected features.

4.6 Optimization Contribution

The PK optimization improves F-measure of PK identifi-
cation from 0.845±0.069 to 0.875±0.057. While FK opti-
mization improves F-measure of FK constraint identifica-
tion from 0.743±0.020 to 0.870±0.022.

Foreign Key Constraint Identification in Relational Databases 109

Table 2: Feature importance for foreign key constraint iden-
tification. Higher weight means higher importance.

Feature All Meta Data

levenshteinFkColToPkTab 298.1 301.2 -
levenshteinFkColToFkTab 245.8 246.0 -
fk_isDoppelgänger 210.6 210.4 -
levenshteinFkColToPkCol 182.2 182.2 -
fk_containsKeyword 160.2 160.3 -
dataLengthAgree 92.2 92.2 -
pk_isDoppelgänger 60.3 60.3 -
fk_isPrimaryKey 57.8 57.8 -
fk_ordinalPosition 48.4 48.2 -
dataTypeAgree 10.3 10.2 -
satisfiesFKConstraint 1.6 - 382

AUC 0.990 0.988 0.934

4.7 Runtime & Scalability

The time required to score all 72 databases is 55 seconds in
total, where 95% of the runtime is due to the fact that JDBC
collects metadata about the attributes for each table individ-
ually, causing many round trips between the algorithm and
the database server. When we replaced JDBC calls with
a single query to information_schema, which provides all
the data at the database level, the total runtime decreased
to 5 seconds.

Furthermore, the algorithm was tested on our university
database with 909 tables. The runtime was 18 minutes, due
to the quadratic growth of candidate FK constraints with
the count of attributes in the database [3]. To keep the mem-
ory requirements manageable, FK candidates were scored
on the fly and only the top n FK candidates with the highest
probability were kept in a heap for FK optimization.

5 Discussion

Table 3 depicts a comparison of our approach to differ-
ent approaches in the literature. Since the implementa-
tions of the referenced approaches are not available, we
take and report the measurements for the biggest com-
mon denominator of the evaluated databases — the TPC-H
database. The approaches differ in the utilized features
(e.g. Kruse et al. utilize SQL scripts, while our approach
does not) and objectives (e.g. Chen et al. aim to maxi-
mize precision at the expense of recall). The results of our
method for all 72 databases are available for download at
https://github.com/janmotl/linkifier.

Empirical comparison of our metadata-based approach
to other metadata-based approaches is in Table 4. Oracle
Data Modeler [13] estimates FK constraints based on the
knowledge of PKs (it is assumed that a FK must reference
a PK), equality of column names between the FK and the
PK and equality of the data types between the FK and the
PK. SchemaCrawler [4] is using an extended version of

these three filters. SchemaCrawler assumes that a FK must
reference either a PK or a column with a unique constraint.
The column names must equal but differences in the pres-
ence/absence of id keyword and differences between sin-
gular and plural forms are ignored, improving the recall.
And datatypes must equal including their length (except of
varchar datatype), improving the precission.

5.1 Limitations

The metadata-based identification of PK and FK con-
straints is limited by the quality of the metadata. For exam-
ple, if all the columns in the database had non-informative
names and all the columns were typed as text, the accuracy
of the predictions would suffer.

But even if the metadata are of hight quality, our
metadata-base approach is not able to reliably reconstruct
a hierarchy of subclasses. The problem is illustrated in Fig-
ure 2. Based on the table and PK names, we can correctly
infer that Person and Vendor are subclasses of BusinessEn-
tity. However, our metadata-based method has no means
how to infer that Customer and Employee are subclasses of
Person and not directly of BusinessEntity.

Figure 2: Example entity diagram with a hierarchy of sub-
classes.

Both these limitations can be addressed by extending the
metadata-based approach by appropriate data-based fea-
tures. For example, whenever a subclass can reference mul-
tiple superclasses, the superclass with the lowest row count,
which still satisfies the FK constraint, should be selected.

6 Conclusions

We described a method for foreign key constraint iden-
tification, which does not put any assumptions on the
schema normalization, data quality, availability of ven-
dor specific metadata or human interaction. The code for
primary & foreign key constraint identification was de-
signed to be database vendor agnostic and was successfully
tested against Microsoft SQL Server, MySQL, PostgreSQL
and Oracle. The code with a graphical user interface is

110 J. Motl, P. Kordík

Table 3: Literature review of different approaches to foreign key constraint identification on TPC-H 1GB database. Un-
known values are represented with a question mark.

Reference Features Objective Precision Recall F-measure Runtime [s]

Zhang et al. [17] Data F-measure 1.00 1.00 1.00 501
Chen et al. [3] Data, Metadata Precision 1.00 1.00 1.00 14
Rostin et al. [16] Data, Metadata F-measure ? ? 0.95 450

Our Metadata F-measure 0.77 0.77 0.77 1

Table 4: Empirical evaluation of metadata-based ap-
proaches to foreign key constraint identification on 72
databases together.

Implementation F-measure Runtime [s]

Oracle Data Modeler 0.06 2.07
SchemaCrawler 0.17 4.65

Our 0.87 5.14

published at GitHub (https://github.com/janmotl/
linkifier) under BSD license. The runtime is dominated
by the connection lag to the server and if the requirement
on the code portability is lifted, we are able to predict pri-
mary & foreign key constraints for all 72 tested databases
in 5 seconds.

7 Acknowledgments

We would like to thank Aleš Fišer, Jan Kukačka, Jiří
Kukačka, Manuel Muñoz and Batal Thibaut for their
help. We furthermore thank the anonymous reviewers,
their comments helped to improve this paper. This re-
search was partially supported by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS17/210/OHK3/3T/18.

References

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Pro-
filing relational data: a survey. VLDB J., 24(4):557–581,
2015.

[2] John G. Bennett, Perry A. Gee, and Charles E. Gayraud.
System and Methods Including Automatic Linking of Ta-
bles for Improved Relational Database Modeling with Inter-
face, 1997.

[3] Zhimin Chen, Vivek Narasayya, and Surajit Chaudhuri. Fast
Foreign-Key Detection in Microsoft SQL Server Power-
Pivot for Excel. VLDB Endow., 7(13):1417–1428, 2014.

[4] Sualeh Fatehi. SchemaCrawler, 2017.
[5] Tom Fawcett. An introduction to ROC analysis. Pattern

Recognit. Lett., 27(8):861–874, jun 2006.
[6] Dorit S. Hochbaum. Integer Programming and Combinato-

rial Optimization. IEOR269 notes, 2010.

[7] Sebastian Kruse, Thorsten Papenbrock, Hazar Harmouch,
and Felix Naumann. Data Anamnesis: Admitting Raw Data
into an Organization. IEEE Data Eng. Bull., pages 8–20,
2016.

[8] Wen Syan Li and Chris Clifton. SEMINT: a tool for identi-
fying attribute correspondences in heterogeneous databases
using neural networks. Data Knowl. Eng., 33(1):49–84,
2000.

[9] Nick Logan. Package stringdist. Technical report, CRAN,
2016.

[10] Victor Markowitz. Safe referential integrity and null
constraint structures in relational databases. Inf. Syst.,
19(4):359–378, jun 1994.

[11] Loup Meurice, Fco Javier Bermúdez Ruiz, Jens H. Weber,
and Anthony Cleve. Establishing referential integrity in
legacy information systems - Reality bites! Proc. - 30th
Int. Conf. Softw. Maint. Evol. ICSME 2014, pages 461–465,
2014.

[12] Jan Motl and Oliver Schulte. The CTU Prague Relational
Learning Repository, 2015.

[13] Oracle. Oracle SQL Developer Data Modeler, 2017.
[14] Lurdes Pedro de Jesus and Pedro Sousa. Selection of Re-

verse Engineering Methods for Relational Databases. Proc.
Third Eur. Conf. Softw. Maint., pages 194–197, 1998.

[15] Ulrich Pferschy and Rostislav Staněk. Generating subtour
elimination constraints for the TSP from pure integer solu-
tions. Cent. Eur. J. Oper. Res., pages 1–30, 2016.

[16] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix
Naumann, and Ulf Leser. A machine learning approach
to foreign key discovery. 12th Int. Work. Web Databases
(WebDB), Provid. Rhode Isl., (WebDB):1–6, 2009.

[17] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Ce-
cilia M. Procopiuc, and Divesh Srivastava. On multi-column
foreign key discovery. Proc. VLDB Endow., 3(1-2):805–
814, 2010.

Foreign Key Constraint Identification in Relational Databases 111

