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Abstract: We offer a new view on the two envelope prob-
lem (also called the exchange paradox). We describe it as
a zero-sum game of two players, having only partial in-
formation. We first explain a standard situation and show
that the mean gain—when defined—is really zero. How-
ever, there are even more paradoxical situations in which
the information obtained by the players supports the ex-
change of envelopes. We explain that this does not lead
to a contradiction and we demonstrate it also by computer
simulation. The reason for this paradox is that the mean
gain does not exist and that the players have different in-
formation, supporting their contradictory decisions.

1 Formulation of the Problem

The two envelope problem (also called the exchange para-
dox) is a famous logical puzzle demonstrating a paradox in
logic and probability. We adopt its formulation from [14],
expressed here as a game of two players:

There are two indistinguishable envelopes, each
containing money, one contains twice as much
as the other. Player A picks one envelope of his
choice; player B receives the second envelope.
They can keep the money contained in their en-
velopes or switch the envelopes (if both agree on
it). Should they switch?

There is an easy answer:

Argument 1. The situation is symmetric. Thus there is no
reason for (or against) switching.

However, there are other interpretations suggesting
something else:

Argument 2. The situation is symmetric. Thus the prob-
ability of having the envelope with the higher or lower
amount is 1/2. If the envelope of player A contains the
amount a, then the other envelope contains 2a (and the ex-
change results in a gain of a) or a/2 (and the exchange
results in a loss of a/2). In average, the mean gain is

1
2

a− 1
2

a
2
=

a
4
,

thus switching is always recommended.

Another point of view is the following:

Argument 3. The smaller amount is x, the bigger is 2x.
They are assigned randomly (with probabilities 1/2) to
players A and B. The mean values for both players are

1
2

x− 1
2

2x =
3
2

x

and there is no reason for (or against) switching.

We presented several arguments; each of them seems
correct, but their conclusions are contradictory.

Surprisingly, the debate about this paradox is still not
finished (cf. [3]).

“Currently, there is no consensus on a demon-
stration, since most people generally reject each
other’s demonstrations." [5]

One reason is that many authors merely defended their so-
lution (mostly correct), cf. [6, 13]. However, to resolve
the paradox, it is necessary to explain the errors in the
contradicting arguments.1 The topic was studied not only
by mathematicians and logicians but also by philosophers
(e.g., [4, 11]). For some of them, a sufficient explana-
tion is that a in Argument 2 denotes different amounts;
the smaller one in the first case and the bigger one in the
second case [4, 13]. However, this is not forbidden, this is
just what a random variable means. Thus a more advanced
analysis is needed.

The paradox has more variants (cf. [11]). The method
of choice of the amounts was not specified. (This is usual
in such puzzles. They rarely start with a precise definition
of a random experiment generating the data. Instead of
that, it was said that two amounts are given, one of them
twice greater than the other.) Here we assume that they
were drawn as realizations of some random variable with
a given distribution (known or unknown to players). Nev-
ertheless, the formulation of the problem does not specify
this at all, and some authors (e.g. [9]) consider this amount
as given (without any randomness); such formulation ex-
cludes a probabilistic analysis. Thus we do not consider it
here. Besides, it is not specified whether we first draw the
(realization of) random variable X (the smaller amount) or
the contents of the envelope given to player A, described

1We experienced this misunderstanding also during the reviewing
process of this paper: “Argument 3 is correct, so there is no paradox.”
However, what is wrong on Argument 2?
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by random variable A. It is natural to assume that the bi-
nary choice of envelopes is made with equal probabilities
and independently of all other random events (or param-
eters) of the experiment. Here we apply the probabilis-
tic approach to the problem in its original form: We first
draw a positive amount x from some distribution. We put
this amount into one envelope and 2x into the other enve-
lope. Both envelopes have probability 1/2 to be chosen by
player A. The remaining envelope is given to player B.

It is also not specified whether the players know the
amounts in their envelopes. This knowledge is useless if
the distribution is unknown. On the other hand, knowing
the distribution, the amounts bring useful information for
the decision. We suppose that the players know the dis-
tribution from which x was drawn. We discuss this case
in detail. Some of its consequences seem to determine the
strategy also without looking inside the envelope, but—as
we shall show—this need not correspond to conclusions
made in the former case.

We present an explanation of the paradox (based
on [12]) using results of probability and information the-
ory. The standard explanation of the exchange paradox
(following [7]) is presented in Section 2 and demonstrated
by an example in Section 3. As a new contribution, we
modify this example to two even more surprising and
counterintuitive versions of the paradox, which we explain
in detail in Sections 4 and 5. In Section 6, we verify the
results by a computer simulation.

2 Exchange Paradox: First Level

We introduce a third member of the experiment, the
banker C, who controls the game and puts (his) money
in the envelopes. We assume that the smaller amount, x,
was chosen by a realization of a random variable X . (The
larger amount in the second envelope is 2x.) The distribu-
tion of random variable X is known to the banker and also
to the players. For simplicity, we assume that the distribu-
tion is discrete and the amounts are positive. Then we do
an independent random experiment (e.g., tossing a coin)
with two equally probable results, expressed by a random
variable U , whose possible values are 0 and 1 and expec-
tation EU = 1/2. If U = 0, player A receives the smaller
amount, x; if U = 1, player A receives the bigger amount,
2x. He does not know x, only the contents of his envelope,
specified by realization a of random variable A,

A =

{
x if X = x and U = 0 ,
2x if X = x and U = 1 ,

A = (1+U)X .

Player B receives the other envelope and knows only its
contents, specified by realization b of random variable B,

B =

{
x if X = x and U = 1 ,
2x if X = x and U = 0 ,

B = (2−U)X .

If the players exchange the envelopes, the gain of A is G =
B−A. For player B, G is the loss and −G is the gain.

Random variables X and U are independent. If X has an
expectation EX , then

EA = (1+EU)EX =
3
2

EX ,

EB = (2−EU)EX =
3
2

EX ,

EG = EB−EA = 0 .

This is in accordance with Arguments 1 and 3. It remains
to find an error in Argument 2.

As U,X are independent,

P(U = 0|X = x) = P(U = 0) =
1
2
,

P(U = 1|X = x) = P(U = 1) =
1
2

for all x. However, this does not apply to conditional prob-
abilities P(U = 0|A= a),P(U = 1|A= a) because U,A are
dependent:

P(U = 0|A = a) =
P(U = 0,A = a)

P(A = a)

=
P(U = 0,X = a)

P(A = a)
=

P(X = a)
2P(A = a)

,

P(U = 1|A = a) =
P(U = 1,A = a)

P(A = a)

=
P(U = 1,X = a

2 )

P(A = a)
=

P(X = a
2 )

2P(A = a)
,

where

P(A = a) = P(U = 0,A = a)+P(U = 1,A = a)

= P(U = 0,X = a)+P(U = 1,X = a
2 )

=
1
2
(
P(X = a)+P(X = a

2 )
)
.

Notice that P(U = 0|A = a) is the conditional probability
of gain and P(U = 1|A = a) is the conditional probability
of loss given A = a. Their ratio is

P(X = a)
P(X = a

2 )
.

As there is no uniform distribution on an infinite count-
able set (a fact ignored even in [10]), P(X = a),P(X = a

2 )
cannot be equal for all a. Typically, the conditional prob-
ability of gain, P(U = 0|A = a), is higher for “small”

The Role of Information in the Two Envelope Problem 113



values of a and smaller for “high” values, although the
notions “small” and “high” are relative. In any case,
these probabilities converge to 0 when a goes to infin-
ity, hence there must be values “sufficiently large” so that
P(X = a) < P(X = a

2 ) and the conditional probability of
gain P(U = 0|A = a) < 1

2 . This can also lead to an effec-
tive strategy based on random switching [9, 10].

Given A = a, switching brings a gain with conditional
probability distribution

P(G = g|A = a) =
P(G = g,A = a)

P(A = a)
,

where

P(G = g,A = a) =





P(U = 0,X = a) if g = a ,
P(U = 1,X = a

2 ) if g =− a
2 ,

0 otherwise.

=





1
2 P(X = a) if g = a ,
1
2 P(X = a

2 ) if g =− a
2 ,

0 otherwise.

We obtain

P(G = g|A = a) =





P(X = a)
P(X = a)+P(X = a

2 )
if g = a ,

P(X = a
2 )

P(X = a)+P(X = a
2 )

if g =− a
2 ,

0 otherwise.

The conditional expectation of the gain is always defined
and it is

E(G|A = a) =
aP(X = a)− a

2 P(X = a
2 )

P(X = a)+P(X = a
2 )

. (1)

These values may differ from 0.
The (unconditional) distribution of the gain is

P(G = g) =





1
2 P(X = g) if g > 0 ,
1
2 P(X =−g) if g < 0 ,
0 otherwise

and its expectation is

EG = ∑
g

gP(G = g) (2)

=
1
2

(
∑
g>0

gP(X = g)+ ∑
g<0

gP(X =−g)
)

(3)

=
1
2

(
∑
g>0

gP(X = g)−∑
h>0

hP(X = h)
)
= 0

(after substitution g := −h), provided that the sum (2) is
absolutely convergent. In this case

EG = ∑
a

P(A = a)E(G|A = a) (4)

= ∑
a

1
2
(
aP(X = a)− a

2 P(X = a
2 )
)

=
1
2

(
∑
a

aP(X = a)−∑
b

bP(X = b)
)
= 0

(after substitution a := 2b). This explains the error in Ar-
gument 2 provided that the expectation of G is defined.

Remark 1. There is another arrangement suggested in [8,
11]: First, the amount a in the envelope of player A is
drawn from some distribution. Then the random variable
U (as before) decides whether the second envelope will
contain 2a or a

2 . In this arrangement, random variables
U and A are independent and Argument 2 is valid. Argu-
ments 1 and 3 fail because of an intervention of the banker;
it is him who puts additional money in the second enve-
lope, so that the total amount may be 3a or 3

2 a. This is not
a zero-sum game, and it is not symmetric.

3 Example of the First Level of Paradox

Let T be a random variable with geometrical distribution
with quotient q ∈ (0,1):

P(T = t) =
qt

1−q
, t ∈ {0,1,2, . . .} .

Let X = 2T , thus X attains values 1,2,4,8, . . . with proba-
bilities

P(X = 2t) =
qt

1−q
, t ∈ {0,1,2, . . .} .

In this arrangement, a player can deduce the contents of
both envelopes only if he holds 1. For any other value,
both cases are possible—switching may bring a gain or a
loss.

Suppose that the expectation of X exists; this happens
iff q < 1

2 . Then

EX =
∞

∑
t=0

2t qt

1−q
=

1
(1−q)(1−2q)

.

The joint distribution of U and A is given (for a = 2s,
s ∈ {0,1,2 . . .}) by

P(U = 0,A = a) = P(U = 0,X = a) =
qs

1−q
,

P(U = 1,A = a) = P(U = 1,X = a
2 ) =





qs−1

1−q
if s≥ 1 ,

0 if s = 0 .

For q = 0.25, it is shown in Fig. 1.
If player A has a = 2s, the conditional probability of his

gain by switching is

P(U = 0|A = 2s) =
P(X = a)

P(X = a)+P(X = a
2 )

=
q

q+1
(5)

for all s ∈ {1,2, . . .} (and 1 for s = 0). As q < 1/2, this
probability is less than 1/3. The conditional expectation
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Figure 1: Joint distribution of U and A for q= 0.25. Values
a of A are on the horizontal axis; blue dots denote P(U =
0,A = a), orange circles P(U = 1,A = a).

of his gain is

E(G|A = 2s) =
2s P(T = s)−2s−1 P(T = s−1)

P(T = s)+P(T = s−1)

=





2s−1 · 2q−1
q+1

if s ∈ {1,2, . . .} ,
1 if s = 0 .

(6)

For q = 0.25, it is shown in Fig. 2. The contributions of
conditional expectations E(G|A = a) to the unconditional
expected gain EG are E(G|A = a) ·P(A = a), see Fig. 3.
The conditional expectation is positive only for s = 0 (i.e.,
a = 1), negative otherwise. This determines the right strat-
egy of switching: Switch only if you hold 1. The two play-
ers never both agree on switching the envelopes because at
most one of them holds 1.

If player A does not know the contents of his envelope,
he may use only its distribution

P(A = 2s) =





1
2

(
qs

1−q
+

qs−1

1−q

)
if s ∈ {1,2, . . .} ,

1
2

1
1−q

if s = 0 ,

0 otherwise ,

=





1
2

qs−1 q+1
1−q

if s ∈ {1,2, . . .} ,
1
2

1
1−q

if s = 0 ,

0 otherwise .

Figure 2: Conditional expectation of gain given A = a for
q = 0.25 (orange circles). It is a mixture (=convex combi-
nation) of the cases U = 0 (blue dots) and U = 1 (yellow
dots).

Figure 3: The contributions of conditional expectations of
gain given A = a to the unconditional expected gain for
q = 0.25.

The unconditional expectation of the gain is

EG =
∞

∑
s=0

P(A = 2s)E(G|A = 2s) (7)

=
1
2

(
1

1−q
+

∞

∑
s=1

(2q)s−1 2q−1
1−q

)

=
1
2

(
1

1−q
+

1
1−2q

· 2q−1
1−q

)
= 0 ,

in accordance with our arguments.

4 Exchange Paradox: Second Level

In Section 2, we presented a standard explanation of the
exchange paradox. It is based on the assumption that the
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amount in the envelopes has an expectation. This can fail
even for some common distributions. (This fact is ignored,
e.g., in [9].) We discovered that this leads to a more ad-
vanced paradox. We have found out that Nalebuff [8] pro-
posed the same example, and similar ones can be found
in [2]. However, Nalebuff only noticed that both players
might be convinced that switching brings gain to them and
that the above arguments are not applicable if the expecta-
tion does not exist. It seems that no detailed analysis was
published since, and this is what we do here.

Let us consider the situation from Section 3 if q > 1
2 .

Then the expectation EX does not exist. (The respective
sum of a geometric series with quotient 2q > 1 is +∞.)
For q = 0.75, the joint distribution of U and A is shown in
Fig. 4.

Figure 4: Joint distribution of U and A for q= 0.75. Values
a of A are on the horizontal axis; blue dots denote P(U =
0,A = a), orange circles P(U = 1,A = a).

The expectation of the gain, EG, does not exist because
the sum (2) is not absolutely convergent; it is a difference
of two infinite sums in (3).

Still formula (6) for the conditional expectation of the
gain is valid,

E(G|A = 2s) =





2s−1 · 2q−1
q+1

if s ∈ {1,2, . . .} ,
1 if s = 0 .

Thus E(G|A = 2s)> 0 for all s ∈ {1,2, . . .}. For q = 0.75,
see Fig. 5. (Notice that formula (5) for the conditional
probability of gain P(U = 0|A = 2s) for s 6= 0 still holds
and gives a constant value from the interval ( 1

3 ,
1
2 ).) Player

A has a strong argument for switching the envelopes, in-
dependently of the amount in his envelope. (Thus he may
“rationally” decide for switching without looking inside
the envelope.) Such distributions are called paradoxical
in [2].

The same argument applies to player B. Although he
holds a different amount in his envelope, he also prefers
switching. We have again a paradox, now supported by a

Figure 5: Conditional expectation of gain given A = a for
q= 0.75 (orange circles). It is a mixture of the cases U = 0
(blue dots) and U = 1 (yellow dots).

Figure 6: The contributions of conditional expectations of
gain given A = a to the unconditional expected gain for
q = 0.75.

probabilistic analysis. The only thing which does not work
as in Section 3 is formula (7) for unconditional gain; the
sum is not absolutely convergent. However, the uncondi-
tional gain is not needed for decision if the conditional one
is always positive. How can we now defend Argument 1?

First of all, we refuse the possibility (considered in [2,
4, 6]) that players A and B will change the envelopes there
and back forever. After one exchange and looking inside,
they would know the contents of both envelopes and de-
cide deterministically with full information. One of the
players has the larger amount (and he knows that), so he
would not agree to switch again.

If the players know only the amount in the envelope they
received first, they have different information, and this is
the key difference.

Example 1. Suppose that A has 4 and B has 8. Then
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A knows that B can have 2 or 8, while B knows that A
can have 4 or 16. Using Argument 2, A might expect that
switching brings him a mean gain of 1. Using the model
described in this section (formula (5) remains valid), he
knows that his chance of gain is lower,

q
q+1

∈
(

1
3
,

1
2

)
.

For q = 0.75, this chance is 3/7 .
= 0.43, still sufficient to

give a positive conditional mean gain of

8q+2
q+1

−4 =
4
7
.

Player B may apply the same arguments, leading to twice
higher estimates of his gain.

Example 2. Suppose now that A has 4 and B has 2. Then
A knows that B can have 2 or 8, while B knows that A
can have 1 or 4. From the point of view of player A, the
situation is the same as in Ex. 1. Player B may apply the
same arguments, leading to twice lower estimates of his
gain, still supporting the decision to switch.

In Exs. 1 and 2, we saw that probabilistic analysis sug-
gests switching to both players. This apparently brings a
gain to only one of them, but their arguments overestimate
their chances. This explains why they may have contra-
dictory views on the effect of the switching of envelopes
(both thinking that the other envelope is “better”).

To understand this paradox better, imagine the reverse
game: Suppose that the players see the contents of the
other player’s envelope (and not of their own). Then the
same reasoning (based on the information received) would
support keeping the envelopes (and no switching). This
shows that it is the different incomplete information which
supports their paradoxical behavior. (The role of incom-
plete information and other arrangements of the experi-
ment are discussed in [11] for the “first level” of the para-
dox.)

This situation is not so counterintuitive. Imagine for
instance a poker game where two players hold a poker
in their hands. They both evaluate their chances of win-
ning as very high, although it is clear that only one is in
the winning position. In the reverse game, where they see
the cards of the opponent (and not their own), each player
would estimate the chances of his opponent as very high,
and he would surrender.

The two envelope problem in this setting possesses the
same feature: the partial information given to players is
overly optimistic. Thus looking inside the envelopes is not
so helpful as it seems. Therefore, if rational players do
not look inside any of the envelopes, the latter argument
makes their choice ambivalent, and they would accept Ar-
gument 1. Even if they look in the envelopes, they will not
accept Argument 2, knowing (from the above analysis of
the model) that its prediction is biased and too optimistic.

5 Exchange Paradox: Third Level

Another modification of the example of Section 3 with q=
1/2 is also of particular interest. The joint distribution of
U and A is shown in Fig. 7. Formula (5) for the conditional

Figure 7: Joint distribution of U and A for q = 0.5. Values
a of A are on the horizontal axis; blue dots denote P(U =
0,A = a), orange circles P(U = 1,A = a).

probability of gain gives P(U = 0|A = 2s) = 1/3 if s 6= 0.
The loss is twice more probable but twice smaller. Thus
the conditional expectation of the gain simplifies to

E(G|A = 2s) =

{
0 if s ∈ {1,2, . . .} ,
1 if s = 0 ,

see Fig. 8 for the conditional expectations and Fig. 9 for
their contributions to the unconditional expectation EG.

Figure 8: Conditional expectation of gain given A = a for
q = 0.5 (orange circles). It is a mixture of the cases U = 0
(blue dots) and U = 1 (yellow dots).

It seems that player A (as well as B) may only gain by
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Figure 9: The contributions of conditional expectations of
gain given A = a to the unconditional expected gain for
q = 0.5.

switching (if he holds 1), in all other cases the risk of loss
is compensated by the same expected gain. In the sum
in (7), only the first summand is nonzero, and it is positive.
So the sum exists and evaluates to

1
2

1
1−q

> 0 .

The arguments from Section 4 are applicable. Moreover,
switching is supported by a computation which results in
a positive unconditional gain (of a player not looking in
his envelope). However, this argument is wrong. As in
Section 4, the expectation of the gain, EG, does not ex-
ist because the sum (2), as a difference of two infinite
sums in (3), is not absolutely convergent. Formula (7) uses
only one possible arrangement of the summands, leading
to an invalid conclusion. If player B applies the same argu-
ment, he uses another arrangement of the summands and
gets a positive expected gain for himself, loss for A. Thus
the sum (2) does not exist and the discussion from Sec-
tion 4 fully applies, despite the seemingly trivial (wrong)
sum (7).

6 Simulations

To verify the results, we also used computer simulations.
We computed the average gain from 1000 samples and
repeated this 5000 times. The results were displayed as
histograms of the averages, see Figs. 10, 11, 12 for quo-
tients q = 0.25,0.5,0.75, respectively. For q = 0.75, the
linear scale could not be used for the horizontal axis. The
semilogarithmic scale would not allow negative values.
Therefore, we used the 31st root as a compromise which
combines non-linearity similar to the logarithm and possi-
bility of displaying negative values.

As expected, the histograms show relatively frequent
occurrences of averages with high absolute value in cases

of q = 0.5,0.75, where the expectation does not exist. The
values are distributed approximately symmetrical with re-
spect to zero, verifying that no envelope appears “better”
and Argument 2 does not apply in practice, as predicted by
the theoretical analysis in previous sections.

Figure 10: Histogram of average gains of 1000 samples
for q = 0.25.

Figure 11: Histogram of average gains of 1000 samples
for q = 0.5.

7 Conclusions

We explained the two envelope paradox in its classical
form, as well as in two advanced instances in which the
players find rather convincing (and still insufficient) prob-
abilistic arguments for switching the envelopes. The latter
is our novel contribution to the discussion of the paradox.
We confirmed the following conclusion

“a perfectly rational player would simply recog-
nize that his subjective probabilities provide a
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Figure 12: Histogram of average gains of 1000 samples for
q = 0.75. The values on the horizontal axis are mapped by
the 31st root.

misleading account using Bayesian decision the-
ory and would therefore ignore those results” [1]

also in the case of nonexisting expectation, which was not
considered in the cited source.

This topic has consequences in psychology, but it is also
important in economics because it explains behavior at
a market which is seemingly well-motivated, but in fact
wrong. Besides, this paradox can be a good example and
motivation for the study of statistics and information the-
ory.
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