
K-best Viterbi Semi-supervized Active Learning in Sequence Labelling

Tomáš Šabata1, Tomáš Borovička1, and Martin Holeňa2

1 Faculty of Information Technology,
Czech Technical University in Prague,

Prague, The Czech Repubic
2 Institute of Computer Science,

Czech Academy of Sciences,
Prague, The Czech Republic

Abstract: In application domains where there exists a
large amount of unlabelled data but obtaining labels is ex-
pensive, active learning is a useful way to select which data
should be labelled. In addition to its traditional successful
use in classification and regression tasks, active learning
has been also applied to sequence labelling. According to
the standard active learning approach, sequences for which
the labelling would be the most informative should be la-
belled. However, labelling the entire sequence may be in-
efficient as for some its parts, the labels can be predicted
using a model. Labelling such parts brings only a little
new information. Therefore in this paper, we investigate a
sequence labelling approach in which in the sequence se-
lected for labelling, the labels of most tokens are predicted
by a model and only tokens that the model can not predict
with sufficient confidence are labelled. Those tokens are
identified using the k-best Viterbi algorithm.

1 Introduction

Hidden Markov models (HMMs) and conditional ran-
dom fields (CRFs) are very popular models in sequence
labelling tasks such as handwriting recognition, speech
recognition, DNA analysis, video analysis, information
extraction or natural language processing (NLP). They
achieve good results if a high quality and fully annotated
dataset is available. Unfortunately, in these tasks, obtain-
ing labels for data may be expensive. The annotation cost
is a motivation for using active learning. Active learning
usually begins with a small labelled set L and in each it-
eration, the most informative instance of an unlabeled set
U is chosen, annotated by an oracle and added to the set
L. The model is retrained using the extended set L and the
whole process repeats till a stopping criterion is met. This
approach is valuable in tasks where unlabeled data are eas-
ily available but obtaining their labels is expensive. In this
case, it aims at achieving higher accuracy with minimal
cost.

Nevertheless, labelling long sequences can be trouble-
some, in particular for a human annotator who is prone to
create labels of lower quality. To address the problem, we
can combine active learning with semi-supervised learn-
ing. Semi-supervised active learning in sequence labelling
means that a model labels those parts of a sequence that

are easy to predict and let the annotator to focus only on
parts of sequences that are the most uncertain.

In this paper, we propose a semi-supervised active
learning approach that uses the k-best Viterbi algorithm
to detect candidates for manual labelling. The proposed
approach was experimentally evaluated on an NLP task,
part-of-speech tagging.

In the second section, we provide an overview of related
work in active and semi-supervised learning. The third
section recalls some basics of hidden Markov models that
are necessary for understanding of the proposed approach
which is introduced in the fourth section. An experiment
description, its result and analysis are given in the fifth
section. The paper is concluded by a discussion of the
results and possible future work.

2 Related work

While active learning has been studied for classification
and regression tasks [1], less attention has been given to
the task of sequence labelling. Despite this, the most of
the algorithms developed for the task of classification can
also be adapted for the task of sequence labelling [2].

Active learning can be applied in three different
scenarios: pool-based sampling, stream-based selective
sampling and membership query synthesis. The most com-
monly used scenario is pool-based sampling originaly pro-
posed in [3]. It has been studied for many real-world
problem domains with sequence labelling included. For
example, speech recognition [4], information retrieval [5]
or named entitiy recognition [6]. The main idea of pool-
based active learning is using a query strategy framework
to find the most informative sample (sequence) from the
unlabeled set (pool) of samples. This selected sample is
annotated and added to the labelled set. The model is re-
trained, and the whole process repeats. The second scen-
ario, stream-based selective sampling, is also possible to
use in sequence labeling [7] but it is used less commonly.
The difference against pool-based sampling is that samples
are coming in a stream and the framework decides to an-
notate the sample or to discard it. The discarded samples
are never later used in training. The main idea of the third
scenario, membership query synthesis, is that a learner can
query any unlabeled instance, usually generated de novo.

J. Hlaváčová (Ed.): ITAT 2017 Proceedings, pp. 144–152
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, c© 2017 T. Šabata, T. Borovička, M. Holeňa

Active learning can use one of six different query
strategy frameworks [1]. The most commonly used
frameworks are Uncertainty Sampling [8] and Querry-by-
Committee [9]. Uncertainty Sampling selects sample in
which the model is least confident. Query-by-Committee
maintains a committee of predictors, and the sample on
which the predictors disagree most regarding their predic-
tions is considered to be the most informative. Other query
strategies applicable to sequences are Expected Gradient
Length, Information Density, Fisher Information and Fu-
ture Error Reduction [2]. The Future Error Reduction
framework is not commonly used due to its high computa-
tional complexity.

Semi-supervised learning methods were developed with
the same motivation of a partly unlabeled dataset. Self-
Training is a commonly used technique where the pre-
dictor is firstly trained on a small labelled dataset and
then used to annotate data. The most confident labels are
added to the training set, and the predictor is retrained.
Self-training has found application in several tasks of nat-
ural language processing [10, 11, 12]. Another technique,
Co-training, is a multi-learner algorithm where learners
have independent, complementary features of the data-
set and produce labelled examples separately [13]. Semi-
supervized learning was also applied to sequence model-
ling tasks [14, 15].

In tasks where a large amount of labelled data is re-
quired (for example, NLP tasks), the semi-supervised
learning does not perform well due to the propagation of
many tagging errors through the learning dataset. The
problem of the data pollution was partially solved in [16],
where a human was put into training loop to correct la-
belled examples. However, correction of labelled data can
be time-consuming and is similar to labelling the data from
scratch. To address the problem, a semi-supervised act-
ive learning which does not need any human inspection
was proposed in [17]. The approach uses active learn-
ing to find the most informative sequences. The model
labels the most informative sequences and uses a marginal
probability of each sequence token to decide if the predic-
tion is confident. The method contains two parameters, a
delay of running semi-supervised approach and a confid-
ence threshold. A proper setting of parameters is neces-
sary to achieve the desired results.

Inspired by the semi-supervised method in [17], we
proposed a method that does not need the confidence
threshold parameter due to using the k-best Viterbi paths.

3 Preliminaries

In the paper, we focus on a task of part of speech tag-
ging. For the simplicity, our approach is shown by means
of HMM but can be extended to CRF as well. In this sec-
tion, the principles of an HMM will be recalled.

3.1 Hidden Markov Models

With each HMM, a random process indexed by time is
connected, which is assumed to be in exactly one of a set of
N distinct states at any time. At regularly spaced discrete
times, the system changes its state according to probabilit-
ies of transitions between states. The time steps associated
with time changes are denoted t = 1,2,3, The actual
state at a time step t is denoted qt .

The process itself is assumed to be a first-order Markov
chain which is described as a matrix of transition probab-
ilities A = {ai j}, defined

ai j = P(qt = y j|qt−1 = yi), 1≤ i, j ≤ N. (1)

A simple observable Markov chain is too restrictive to
describe the reality. However, it can be extended. De-
noting Y the variable recording the states of the Markov
chain, an HMM is obtained through completing Y with
a random variable X. In the context of that HMM, X is
called ’observable variable’ or ’output variable’, whereas
Y is called ’hidden variable’. The hidden variable Y takes
values in the set {y1,y2, ...,yN} and the observable variable
X takes values in a set {x1,x2, ...,xM}.

We assume to have an observation sequence O =
o1o2...oT and a state sequence Q = q1q2...qT which cor-
responds to the observation sequence. HMM can be char-
acterised using three probability distributions:

1. A state transition probability distribution A = {ai, j}.

2. A probability distribution of observable variables,
B = {bi(xk)}, where bi(xk) is the probability of ot as-
suming the value xk if qt is in the state yi and it is
defined

bi(k) = P(ot = xk|qt = yi). (2)

3. An initial state distribution π = {πi} is defined by

πi = P(q1 = yi).

With these three elements, HMM is fully defined and de-
noted θ = (A,B,π).

The parameters of an HMM can be learned either in a
semi-supervised way with the Baum-Welch algorithm [18]
or in a fully-supervised way with the maximum-likelihood
estimation (MLE). In the fully-supervised way, values of
both observable and hidden variables are known.

In the MLE, we assume a training set D =
{(o1,q1), ...,(on,qn)} of a size n whose elements are in-
dependent. The MLE consists in taking those parameters
θ ∗ that maximize the probability of the training set:

θ ∗ = argmaxθ P(D|θ). (3)

Due to (1) and (2), the probability in (3) turns to:

P(D|θ) = ∏
i, j

aT i, j
i, j ∏

i,k
[bi(k)]Ei(k),∑

j
ai, j = 1,∑

k
bi(k) = 1

K-best Viterbi Semi-supervized Active Learning in Sequence Labelling 145

where Ti, j stands for number of transitions from state yi to
state y j in the training set and Ei(k) stands for number of
emissions of value x j in state yi. Then, parameters A and
B can be obtained by following formulas:

ai, j =
Ti, j + ri, j

∑ j′(Ti, j′ + ri, j′)
and bi(k) =

Ei(k)+ ri(k)
∑k′(Ei(k)+ ri(k′))

,

(4)
where ri, j and ri(k) are our prior beliefs. The prior be-

liefs are used in the case of an insufficiently large data-
set, where the estimate would lead to zero probabilities of
events which never occurred in D.

To simplify the notation, we define variables α and β as
follows:

αt(i) =p(o1, ...,ot ,qt = yi|θ), (5)
βt(i) =p(ot +1, ...,oT ,qt = yi|θ). (6)

These variables are computed using the following
forward-backward algorithm [18]:

α1(i) =πibi(o1),

αt+1(i) =
(N

∑
j=1

αt(j)a j,i
)
bi(ot+1),

respectively,

βT (i) =1,

βt(i) =
N

∑
j=1

ai, jb j(ot+1)βt+1(j).

3.2 Marginal probability

Once, the model is learned, it can be used for the predic-
tion of a sequence of hiddden states given an observable
sequence. In the task of finding the most likely states se-
quence, it is possible to find the sequence that maximises
the expected number of correctly assigned states. From (5)
follows that the marginal probability of being in a specific
state i at a particular time t is:

γt(i) =
αt(i)βt(i)

∑n
j=1 αt(j)βt(j)

(7)

Then, maximising the expected number of correctly as-
signed states can be achieved through applying qt =
argmaxyi∈Y γt(yi) to the whole sequence. However, the
approach can find a sequence with very low or even zero
probability in case the sequence is not feasible.

3.3 Viterbi algrithm

Viterbi algorithm is a dynamic programming algorithm
that finds the most likely state sequence as a whole by
maximising of P(Q,O|θ). It gradually counts the max-
imal probability of the state chain from its beginning till
the state in time t with the state qt being yi represented by

a variable δt(i) = maxq1,...,qt−1 P(q1, ...,qt = yi,o1, ...,ot).
The algorithm is initialized as follows:

δ1(i) = πibi(o1), (8)

and for each 2 ≤ t ≤ T and each yi from Y , the algorithm
calculates the variable δt(i):

δt(i) = (max1≤ j≤Nδt−1(y j)ai, j)bi(ot). (9)

In each time t and for each node i, the algorithm stores
the link to one of all predecessor nodes with which it forms
the best path. These links are stored in the additional two-
dimensional array ψt(i), where:

ψ1(i) =0,
ψt(i) =argmax

1≤ j≤N
δt−1(j)a ji.

The probability of the most probable sequence can be
found by max1 leqi≤N δT (i) and the most probable state
path Q∗ = (q∗1,q

∗
2, ...,q

∗
T) can be found by backtracking:

q∗T =argmax
1≤i≤N

δT (i),

q∗t =ψt+1(q∗t+1).

The Viterbi algorithm has a similar structure as the
forward-backward algorithm, and both have complexity
O(N2T).

4 Proposed approach

Our proposed approach is an adaptation of the semi-
supervised active learning method (SeSAL), originally pro-
posed in [17]. Both SeSAL and our adaptation are based
on a standard fully-supervized active learning algorithm
(FuSAL). The concept of FuSAL algorithm is decribed by
pseudocode in Algorithm 1.

An utility function φM(x) represents an informativness
of the sample x given the model M. In the algorithm, any
utility function can be used to find the most informative
sequence [2].

In the SeSAL, the most informative instance is annot-
ated by a model M and only the tokens whose predicted
labels have a confidence smaller than a given threshold
are given to a human annotator (oracle). Finding the op-
timal threshold value is an optimisation task minimising
the dataset pollution and the number of queried labels.
If the threshold is too high, a human annotates labels in
which the model is well confident. On the other hand, if
the threshold is too low, the algorithm accepts incorrectly
labelled tokens which may result in a polluted training set.

In the SeSAL, they use a parameter called delay that
represents a number of iterations of the FuSAL before the
algorithm is switched to SeSAL. This helps to avoid pro-
ducing errors coming from incorrect labels comming from
an insufficiently converged model.

146 T. Šabata, T. Borovička, M. Holeňa

Algorithm 1 FuSAL algorithm
Given:

L: set of labeled examples
U: set of unlabeled examples
φM: utility function

Algorithm:
1: while stopping criterion is not met do
2: learn model M from L

3: for all xi ∈ U:uxi ← φM(xi)
4: select x∗ = argmaxxi

uxi

5: query an oracle for labels y of x∗

6: remove x∗ from U

7: insert < x∗,y > into L

8: end while

In our approach, the confidence of labels is replaced by
calculating the k best Viterbi paths to find tokens where
predictions of the model differ in the k most likely se-
quences. The number of paths affects the behaviour of
the algorithm, however, we assume this parameter to be
less data dependent than confidence threshold. We call the
approach k-best Viterbi SeSAL. The pseudocode of it is de-
scribed in Algorithm (2).

Algorithm 2 k-best Viterbi SeSAL algorithm
Given:

L: set of labeled examples
U: set of unlabeled examples
φM: utility function
k: number of paths

Algorithm:
1: while stopping criterion is not met do
2: learn model M from L

3: for all xi ∈ U:uxi ← φM(xi)
4: select x∗ = argmaxxi

uxi

5: find the k best Viterbi paths {v1, ...,vk}
6: for t in length(x∗) do
7: if vi(t) for all i = 1, . . . ,k are equal then
8: label x∗(t) with y(t) = v1(t)
9: else

10: query an oracle for a label y(t) of x∗(t)
11: end if
12: end for
13: remove x∗ from U

14: insert < x∗,y > into L

15: end while

The proposed approach uses the approach from the
FuSAL active learning framework to find the most inform-
ative instance (lines 2-4). Then, the semi-supervised learn-
ing is applied in order to label the instance. The algorithm
computes the k best Viterbi sequences that are used to de-
tect not likely labels (line 5).

The Viterbi algorithm described in section 3.3 provides
only one best sequence. To produce k best sequences it
is not enough to store only one best label per node. The

simplest way how to modify Viterbi algorithm is to store
up to k best predecessors that can form k best sequences.
Unfortunately, with this modification, the algorithm has
the computational complexity of O(kT N2). This compu-
tational overload can be lowered by the iterative Viterbi
A* algorithm which has the complexity of O(T + kT) in
the best case and O(T N2 + kT N) in the worst case [19].

With the k-best Viterbi paths found, the algorithm loops
trough the decoding (lines 6-12). The label is accepted
only if all sequences produced it. Otherwise, a human an-
notator (oracle) is called to label the instance.

5 Experiment and results

In this section, we describe an experiment used for the
evaluation of the proposed method. The method is evalu-
ated on an NLP task called part-of-speech tagging (POS).
The input to the POS is a set of meaningful sentences. The
output is a set of tag sequences, one tag for each word.
Word classes (noun, verb, adjective, etc.) or their deriv-
ates are the most often used tagsets. The number of tags is
not limited.

POS is a difficult task for two reasons. First, the num-
ber of possible words in the text can be very high, and it
may contain words that occur rarely. Second, some words
can have assigned several tags, and to find the correct tag,
the context of the sentence is needed. CRFs can take a
wide context into account and thus is the most commonly
used in the POS. However, though it is impossible to take
a wide context into account in HMM, it is a sufficiently
good performing model for our experiment.

In our experiment, we used data from the Natural lan-
guage toolkit [20], which provides data for many NLP
tasks such as POS, chunking, entity recognition, inform-
ation extraction, etc. A few statistics for the employed
benchmark datasets are provided in Table 1. Each data-
set contains its proper tagset and a simplified tagset with
12 tags representing ten basic word classes, a dot and the
rest.

Table 1: Benchmark datasets.
Dataset #sentences #words #tags
Brown 57340 56057 472

CoNLL2000 10948 21589 44
Treebank 3914 12408 46

In order to compare the datasets, HMMs were trained
using supervised learning on the full dataset with all labels
available. Accuracy and the F1 score measures were used
for the performance comparison. The performance was
measured for both the original tagset (Acc 1 and F-score 1)
and the simplified tagset (Acc 2 and F-score 2). The data
was randomly split into training and testing sets in a 7:3
ratio. The performance of the supervised learning is shown
in Table 2. Due to the results in the table, we consider

K-best Viterbi Semi-supervized Active Learning in Sequence Labelling 147

HMM to be sufficiently well performing in the experiment.
The worse F-score in the case of Brown dataset with all
tags is caused an approximately ten times higher number
of possible hidden values.

Table 2: Prediction performance learned on the full data-
set. Training and testing data were randomly split in a 7:3
ratio. Acc 1 and F-score 1 represent results based on all
tags, whereas, Acc 2 and F-score represent results based
on simplified tags.

Dataset Acc 1 Acc 2 F-score 1 F-score 2
Brown .9421 .9572 .4520 .9245

Conll2000 .9508 .9546 .9080 .9408
Treebank .9189 .9307 .8205 .9291

5.1 Experimental setup

For most of the experiments we used the following set-
tings. In the base model, HMM, tags were considered to
be hidden state values and words were considered to be
observable variable values. The parameters of the model
were estimated using MLE. To handle words that have not
occurred in the training set, we added uniformly distrib-
uted pseudo-counts to both matrices A and B. Prior beliefs
were set to be uniformly distributed, therefore, each word
has the probability of 1/|words|.

In order to simulate a standard situation in active learn-
ing, the original dataset was randomly split into training
and testing sets in a 7:3 ratio and then, the training set was
randomly split into labelled and unlabeled sets in a 3:7 ra-
tio.

In each iteration of the experiment, the most informat-
ive instance was selected, annotated and put into the la-
belled training set. As most informative were considered
instances maximizing the employed one of the following
four uncertainty measures:

• least confidence

φLC(x) = 1−P(y∗1|x;θ),

• margin

φM(x) =−(P(y∗1|x;θ)−P(y∗2|x;θ)),

• total token entropy

φT E(x) =−
T

∑
t=1

N

∑
n=1

P(yt = n|x;θ)logP(yt = n|x;θ),

• k-best sequences entropy

φSE(x) =− ∑̂
y∈V

P(ŷ|x;θ)logP(ŷ|x;θ),

where V is set of k-best Viterbi sequences and y∗k is the k-th
most probable sequence of labels. The behaviour of differ-
ent uncertainty measures is investigated in the experiment
in Section 5.2.

After finding them most informative sequence, semi-
supervised learning was applied. The sequence was la-
belled according to Algorithm 2. The algorithm has one
parameter, the number of k best sequences. The effect
of the parameter on the performance of the proposed ap-
proach is described in the experiment in Section 5.3.

5.2 Uncertainty measure

At first, we study effects of uncertainty measures on the
proposed method. The measures were evaluated on the
TreeBank dataset with 30% labeled instances. The para-
meter k was set to 100.

The experiment has shown that the computational com-
plexity of the k-best sequence entropy measure and the
margin measure is too high for practical usage due to the
calculation of the k best Viterbi paths (two best Viterbi
paths respectively) for each unlabeled instance. Moreover,
active learning that uses as a measure the k-best sequences
entropy had a tendency to choose short sentences. In that
case, active learning had a lower accuracy than the random
sampling method.

The computational complexity of least confident and
total token entropy measures were reasonable even for
datasets with a big number of unlabeled samples. The per-
formance comparison is shown in Figures 1 and 2. Ac-
cording to the experiment results, FuSAL with the least
confident measure achieved higher accuracy after 50 itera-
tions. However, the total token entropy measure achieved
the certain level of accuracy in less queried tokens which
can be preferable for some tasks.

Taking into account the computational complexity of
the methods, the least confidence measure is used in the
rest of the experiment.

5.3 Parameter settings

In semi-supervised learning, a well performing model is
crucial to produce good quality labels. In SeSAL al-
gorithm, the parameter delay controls how many iterations
of FuSAL algorithm is used before semi-supervised ap-
proach is applied. The goal of this experiment was an ana-
lysis of the relationship between the parameter delay and
the parameter k. Since the proposed method does not use
the delay parameter, it has been simulated using datasets
with a different number of labelled samples. The exper-
iment was evaluated on the biggest dataset, Brown, with
three initial settings a) 10% of labelled samples, b) 30% of
labelled samples, c) 60% of labelled samples.

It has been shown that the value of the parameter k is
highly correlated with the number of labelled samples in
the dataset. In the dataset with 10% of labelled samples,
the high value of the parameter k has shown to be crucial

148 T. Šabata, T. Borovička, M. Holeňa

5 10 15 20 25 30 35 40 45 50
sentence_queries

0.870

0.872

0.874

0.876

0.878

ac
c

Least confident vs Total Token entropy

method
FuSAL LC
SeSAL - viterbi 100 LC
FuSAL TE
SeSAL - viterbi 100 TE

Figure 1: Comparison of the least confident measure (LC)
and the total token entropy measure (TE) for different
numbers of queries in connection with FuSAL and Viterbi
SeSAL.

0 500 1000 1500 2000 2500 3000
queriedTokens

0.870

0.872

0.874

0.876

0.878

ac
c

Least confident vs Total Token entropy

method
FuSAL LC
SeSAL - viterbi 100 LC
FuSAL TE
SeSAL - viterbi 100 TE

Figure 2: Comparison of the least confident measure (LC)
and the total token entropy measure (TE) for different
numbers of queries in connection with FuSAL and Viterbi
SeSAL.

to reduce the number of errors propagated to the training
dataset (Figure 3). With increasing number of labelled
samples, a high value of the parameter k becomes less
effective. In Figure 4 the difference between parameter
k=100 and k=200 almost vanished. Moreover, regarding
the number of queried labels, the settings k=100 becomes
more efficient (Figure (5). The same trend was also ob-
served in the case where 60% of instances were labelled.

0 10 20 30 40
sentence_queries

0.9144

0.9146

0.9148

0.9150

0.9152

0.9154

0.9156

0.9158

ac
c

Labeled 10%
method

SeSAL - viterbi 10
SeSAL - viterbi 50
SeSAL - viterbi 100
SeSAL - viterbi 200

Figure 3: An accuracy regarding a number of queried sen-
tences where 10% of the training set is labeled

0 10 20 30 40
sentence_queries

0.9398

0.9399

0.9400

0.9401

0.9402

0.9403
ac

c

Labeled 30%
method

SeSAL - viterbi 10
SeSAL - viterbi 50
SeSAL - viterbi 100
SeSAL - viterbi 200

Figure 4: An accuracy regarding a number of queried sen-
tences where 30% of the training set is labeled

0 100 200 300 400 500 600
queriedTokens

0.9398

0.9399

0.9400

0.9401

0.9402

0.9403

ac
c

method
SeSAL - viterbi 10
SeSAL - viterbi 50
SeSAL - viterbi 100
SeSAL - viterbi 200

Figure 5: An accuracy regarding a number of queried
tokens where 30% of the training set is labeled

K-best Viterbi Semi-supervized Active Learning in Sequence Labelling 149

0 10 20 30 40
sentence_queries

0

100

200

300

400

500

600

700

er
ro

rs
, q

ue
rie

d
to

ke
ns

Labeled 10%
method

SeSAL - viterbi 10
SeSAL - viterbi 50
SeSAL - viterbi 100
SeSAL - viterbi 200

Figure 6: A number of queried tokens (solid line) and er-
rors (dashed line) regarding a number of sentences where
10% of the training set is labeled.

5.4 Number of queried tokens and errors
propagation

The parameter k affects the number of queried tokens and
the number of errors propagated to the learning set. The
optimal setting of the parameter minimises both. The ex-
periment in this section analyses the relationship between
tokens and errors.

One should consider the number od labelled samples in
setting of the parameter k. In the case of less labelled
samples, the parameter k should be set to a higher num-
ber to avoid production of errors (Figure 6). After several
iterations, when the base model is more accurate, higher
values of parameter k become less effective (Figure 7).

However, even with an almost labelled dataset and the
settings k = 200 we were not able to avoid errors in la-
belling. From all 2402 annotated tokens, 57 were annot-
ated wrongly. We consider the complicated control of an
acceptable error rate as one of the biggest disadvantages
of the proposed method.

5.5 Comparison with other methods

To evaluate the performance of the proposed method in
comparison with other methods an accuracy was meas-
ured regarding the number of queried sentences and the
number of queried tokens. Furthermore, the number of
errors propagated to the learning set was measured. All
experiments were evaluated on the Brown dataset with the
simplified tagset.

The SeSAL with uncertainty threshold and the proposed
method can be compared only if the parameters are set
such that the methods produce an approximately same
number of errors. In the experiment, confidence threshold
was set to 0.48 and parameter of the number of paths k was
set to 100.

0 10 20 30 40
sentence_queries

0

100

200

300

400

500

600

er
ro

rs
, q

ue
rie

d
to

ke
ns

Labeled 60%
method

SeSAL - viterbi 10
SeSAL - viterbi 50
SeSAL - viterbi 100
SeSAL - viterbi 200

Figure 7: A number of queried tokens (solid line) and er-
rors (dashed line) regarding a number of sentences where
60% of the training set is labeled.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of queried tokens

0.868

0.870

0.872

0.874

0.876

0.878

0.880

ac
c

method
random
FuSAL
SeSAL 0.48
SeSAL - viterbi 100

Figure 8: Achieved accuracy over the number of queried
tokens.

As expected, the FuSAL method achieved the highest
accuracy because all labels were annotated manually, thus
correctly. In the number of queried tokens, Viterbi SeSAL
achieved bigger accuracy in more queried tokens (Fig-
ure 8). The explanation can be seen in Figure 9 where
the number of errors and the number of queried tokens
was measured. In the given settings, the number of er-
rors propagated to the learning set was lower in Viterbi
SeSAL at the expense of the number of queried tokens.
Although, after several iterations, the error rate of the pro-
posed method has been lower than in the SeSAL method.

6 Conclusion and future work

We proposed a semi-supervised active learning method
that is easy to setup for the sequence labelling and is suf-

150 T. Šabata, T. Borovička, M. Holeňa

0 10 20 30 40 50 60 70
Number of queries

0

100

200

300

400

500

600

700

Qu
er

ie
d

to
ke

ns
, E

rro
rs

method
SeSAL 0.48
SeSAL - viterbi 100

Figure 9: The number of queried tokens (solid line) and
the number of errors (dashed line) over the number of
queries.

ficiently well performing in comparison with the semi-
supervised active learning method that use an uncer-
tainty threshold and a marginal probability. The proposed
method uses k best Viterbi paths to find the tokens in which
the model is not sufficiently confident.

The number of errors, the number of queried tokens and
the computational complexity are controlled by the para-
meter k. In order to reduce the number of errors propag-
ated to the labelling set, the parameter k should be set as
high as it is reasonable in terms of the computational time.
The computational complexity of k-best Viterbi path al-
gorithm can be partially reduced using iterative Viterbi A*
algorithm. In addition to a high computation complexity,
a complicated control of the number of propagated errors
is disadvantage of the proposed method.

An area for further research is the exploration of Co-
training in combination with the Query-by-Committee act-
ive learning framework where both approaches consider
several different views of the data. Furthermore, the semi-
supervised active learning method that can be applied
to both probabilistic and deterministic sequential models
should be more studied to find a general solution for them.

Acknowledgements

The reported research was supported by the CTU grant
nr. SGS17/210/OHK3/3T/18 and by the Czech Science
Foundation grant nr. 17-01251.

References

[1] Burr Settles. Active learning literature survey. University
of Wisconsin, Madison, 52(55-66):11, 2010.

[2] Burr Settles and Mark Craven. An analysis of active learn-
ing strategies for sequence labeling tasks. In Proceedings

of the conference on empirical methods in natural language
processing, pages 1070–1079. Association for Computa-
tional Linguistics, 2008.

[3] David D Lewis and William A Gale. A sequential al-
gorithm for training text classifiers. In Proceedings of the
17th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 3–
12. Springer-Verlag New York, Inc., 1994.

[4] Gokhan Tur, Dilek Hakkani-Tür, and Robert E Scha-
pire. Combining active and semi-supervised learning for
spoken language understanding. Speech Communication,
45(2):171–186, 2005.

[5] Cynthia A Thompson, Mary Elaine Califf, and Raymond J
Mooney. Active learning for natural language parsing and
information extraction. In ICML, pages 406–414, 1999.

[6] Lin Yao, Chengjie Sun, Shaofeng Li, Xiaolong Wang,
and Xuan Wang. Crf-based active learning for chinese
named entity recognition. In Systems, Man and Cybernet-
ics, 2009. SMC 2009. IEEE International Conference on,
pages 1557–1561. IEEE, 2009.

[7] Ido Dagan and Sean P Engelson. Committee-based
sampling for training probabilistic classifiers. In Proceed-
ings of the Twelfth International Conference on Machine
Learning, pages 150–157. The Morgan Kaufmann series in
machine learning,(San Francisco, CA, USA), 1995.

[8] David D Lewis and Jason Catlett. Heterogeneous uncer-
tainty sampling for supervised learning. In Proceedings of
the eleventh international conference on machine learning,
pages 148–156, 1994.

[9] H Sebastian Seung, Manfred Opper, and Haim Sompolin-
sky. Query by committee. In Proceedings of the fifth an-
nual workshop on Computational learning theory, pages
287–294. ACM, 1992.

[10] David Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In Proceedings of the 33rd an-
nual meeting on Association for Computational Linguist-
ics, pages 189–196. Association for Computational Lin-
guistics, 1995.

[11] Ellen Riloff, Janyce Wiebe, and Theresa Wilson. Learning
subjective nouns using extraction pattern bootstrapping. In
Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 25–32. As-
sociation for Computational Linguistics, 2003.

[12] Chuck Rosenberg, Martial Hebert, and Henry Schneider-
man. Semi-supervised self-training of object detection
models. 2005.

[13] Avrim Blum and Tom Mitchell. Combining labeled and
unlabeled data with co-training. In Proceedings of the elev-
enth annual conference on Computational learning theory,
pages 92–100. ACM, 1998.

[14] Andrew M. Dai and Quoc V. Le. Semi-supervised sequence
learning. CoRR, abs/1511.01432, 2015.

[15] Shi Zhong. Semi-supervised sequence classification with
hmms. International Journal of Pattern Recognition and
Artificial Intelligence, 19(02):165–182, 2005.

[16] David Pierce and Claire Cardie. Limitations of co-training
for natural language learning from large datasets. In Pro-
ceedings of the 2001 Conference on Empirical Methods in
Natural Language Processing, pages 1–9, 2001.

K-best Viterbi Semi-supervized Active Learning in Sequence Labelling 151

[17] Katrin Tomanek and Udo Hahn. Semi-supervised act-
ive learning for sequence labeling. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2,
pages 1039–1047. Association for Computational Linguist-
ics, 2009.

[18] Lawrence R Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE, 77(2):257–286, 1989.

[19] Zhiheng Huang, Yi Chang, Bo Long, Jean-Francois
Crespo, Anlei Dong, Sathiya Keerthi, and Su-Lin Wu. It-
erative viterbi a* algorithm for k-best sequential decoding.
In Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Long Papers-Volume
1, pages 611–619. Association for Computational Linguist-
ics, 2012.

[20] Steven Bird, Ewan Klein, and Edward Loper. Natural Lan-
guage Processing with Python. O’Reilly Media, 2009.

152 T. Šabata, T. Borovička, M. Holeňa

