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Abstract. We would like to make all the web content 
usable in the same way as it is in 5 star Linked (Open) 
Data. We face several challenges. Either there are no LODs 
in the domain of interest or the data project is no longer 
maintained or even something is broken (links, SPARQL 
endpoint etc.).  

We propose a dynamic logic extension of the semantic 
model. Data could bear also information about their 
creation process. We calculate this on several movie 
datasets.   

In this work in progress we provide some preference 
learning experiments over extracted and integrated data.   
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1 Introduction, Motivation, Recent Work 
For our decisions we often need automated processing 

of integrated web data. Linked (open) data are one 
possibility to achieve this vision. Still, there are some 
challenges.  

Production URLs are sometimes subjects of 
change ([A]). Data migrate, data project run out of 
contracted sustainability period and so on. 

SPARQL endpoints are expensive for the server, and not 
always available for all datasets. Downloadable dumps are 
expensive for clients, and do not allow live querying on the 
Web ([V+]).  

In some areas there are no corresponding Linked data 
projects available at all. Imagine e.g. a customer looking 
for a car. He or she would like to aggregate all web data. 
Our idea is to remember previous successful extractions in 
given domain and use this in the current situation. For 
evaluation of previous extractions can help also social 
networks. We have presented this idea first in [PLEDVF]. 
We concentrated on one specific purpose – extract object 
attributes and use of these data in recommender systems. In 
this research we have tried to contribute to increase the 
degree of automation of web content processing. We 
presented several methods for mining web information and 
assisted annotations. 

1.1 Semantic Annotator for (X)HTML 

A tool for assisted annotation is available in [F2]. 
Semantic Annotator allows both manual and assisted 

annotation of web pages directly in Google Chrome. It 
requires no complicated installation and is available on all 
platforms and devices where it is possible to install Google 
Chrome. Semantic annotation is available to all current 
users of the Internet not only to authors’ site. Browser 
extension Semantic Annotator began as a prototype 
implementation in the Thesis [F1]. 

Google Chrome extension Semantic Annotator is used 
for manual semantic annotation of Web sites. The goal of 
semantic annotation is to assign meaning to each part of the 
page. The significance of real-world objects and their 
properties and relationships are described in dictionaries – 
either self-created or imported. Then the annotation process 
consists of selecting parts of the site and the assignment of 
meaning from the dictionary. 

 

Figure 1: Illustrative figure for Semantic annotator, more 
in [F1], [F2] 

In Figure 1 we show an example of annotation of 
product pages in e-shop. The user selects a web page and 
product name from the dictionary describing products that 
assigns a name meaning "product name". Then on the same 
page the user selects a product price and gives it the 
meaning of "price". Because of similarity of pages and 
usage of templates, annotating few pages enables to train an 
annotator for the whole site. Consequently, search of 
annotated website is then much more accurate. 

1.2 Semantic Annotations for Texts 

In previous section we have described a tool for 
annotation of (X)HTML pages. These are useful for 
extraction of attributes of products on pages created by the 
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same template even if texts are a little bit different. Even if 
there are no templates, in a fixed domain like reports on 
traffic accidents, there are still repetitions. 

A tool for annotation of text was developed in our group 
in PhD thesis [D1]. The tool is available under [D2]. It is 
built on GATE [BTMC], using UFAL dependency parsing 
[UFAL] and Inductive Logic Programming extension. It 
represents a tool for information extraction and consequent 
annotation.  

In the thesis [D1] are presented four relatively separate 
topics. Each topic represents one particular aspect of the 
information extraction discipline. The first two topics are 
focused on new information extraction methods based on 
deep language parsing in combination with manually 
designed extraction rules. The second topic deals with 
a method for automated induction of extraction rules using 
inductive logic programming. The third topic of the thesis 
combines information extraction with rule based reasoning. 
The core extraction method was experimentally 
reimplemented using semantic web technologies, which 
allows saving the extraction rules in so called shareable 
extraction ontologies that are not dependent on the original 
extraction tool. See Fig.2. on traffic accident data.  

The last topic of the thesis deals with document 
classification and fuzzy logic. The possibility of using 
information obtained by information extraction techniques 
to document classification is examined. For more see also 
[PLEDVF]. 

In this research proposal we concentrate on synergy 
effect of annotation and integration of data for user 
preference learning, and consequently for recommendation. 

 

 

Figure 2: Illustrative figure of an extraction pattern for 
dependency tree, more in [D1], [D2].  

It turns out that similarity and dynamic aspects of web 
data play a role here as well. We propose an appropriate 
dynamic logic model of web data dynamics and provide 
some experiments. We hope this can serve as preliminary 
experiments for a more extended research proposal.  

2 Extraction Experiments 
Our main goal is: Try to remember information about 

the context of data creation in order to enable repetition of 
extraction. In general we can remember algorithms, 
training data and metrics of success.  

In this chapter we try to describe some extraction 
algorithms and process of data integration in movie 
domain. These data will be used in preference learning. By 
this we would like to illustrate our main goal.  

2.1 Integration 

We use Flix data (enriched Netflix competition data), 
RecSys 2014 challenge data [T] and RuleML Challenge 
data [K]. 

The datasets are quite different but they still have few 
things in common. Movies have their title and usually also 
the year of their production. Ratings are equipped by 
timestamp that allows us to order ratings from individual 
users chronologically. 

One of problems was that different datasets use different 
MOVIEID’s, so the movies cannot be straightforwardly 
mapped across datasets. To achieve this goal we wanted to 
enhance every movie by the corresponding IMDb 
identifier. 

We observed that the Twitter datasets use as their 
internal MOVIEID the numeric part of the IMDb 
identifier. So the movie “Midnight Cowboy” with Twitter 
MOVIEID = 64665 corresponds to the IMDb record with 
ID equal to ’tt0064665’. Therefore, we construct the 
algorithm 
τ1:Twitter-MOVIEID → IMDbId 

which simply concatenated prefix ’tt’ with the MOVIEID 
left-padded by zeroes to seven positions. The 
successfulness of this algorithm is shown in Table 1. 
 

Table 1: Simple identifier transformation 
 

Algorithm MovieLe
ns 

Flix Twitter 

τ1() 0% 0% 100% 
 
 

To be able to assign IMDb identifiers to movies from 
other datasets, we had to use the search capabilities of the 
IMDb database. We used an HTTP interface for searching 
movies according to their name. The request is send by 
HTTP request in form 
http://www.imdb.com/find?q=movie+title&s
=tt. 

The other versions of algorithm for assigning IMDb 
identifiers to movies can be in general formally described 
as 
τ2i,j: TITLE × YEAR → TT 

that is implemented by two independent steps 

τ2i,j(TITLE,YEAR) = σj(ηi(TITLE),TITLE,YEAR) 

where the algorithm ηi transforms movie title to query 
string needed for IMDb search, while the σj algorithm then 
looks for the correct record in returned table. The simplest 
implementation of algorithms can be denoted as follows: 
η1: TITLE → TABLE 

σ1: TABLE × TITLE × YEAR → TT 

where η1 algorithm concatenates all words of the title by 
the plus sign and σ1 algorithm returns TT in case the 
resulting table contains exactly one record. The results of 
this combination of algorithm are shown in Table 2 (ratio 
of correct answers). 
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Table 2: The simplest version of IMDb search by title name 
 

Algorithm MovieLe
ns 

Flix Twitte
r 

σ1(η1()) 42,7% 51,2% Not 
needed 

 
To illustrate different algorithms for same extraction 

task we describe another version. Here the algorithm is not 
learned, but it is hand crafted. One of reasons for relatively 
low effectiveness of σ1(η1()) algorithm was the sub-optimal 
query string used for IMDb search due to quite different 
naming conventions of movie titles in different datasets. To 
improve the results we enhanced the movie title 
transformation incrementally and produced its new 
versions. Every new version added new step of 
transformation of the movie title: 

η2: Convert all letters in movie title to lower case. 

η3: If the movie title contains year of production at its 
end in brackets remove it. 

η4: If the movie title still contains text in brackets at its 
end, remove it. This text usually contained original name of 
movie in original language. 

η5: Move word “the”, respectively “a”/ “an” from the 
end of the title to the beginning. 

η6: Translate characters ”_”, ”.”, ”?” and ”,” to spaces 

η7: Translate ”&” and ”&amp;” in titles to word ”and” 

For example, the η7 transformation changes title 
“Official Story, The (La Historia Oficial) (1985)” to its 
canonical form “the official story”. 

This version of transformation then constructs the IMDb 
query in form 
http://www.imdb.com/find?q=the+official+story&s=tt&… 
and then looks up the resulting table to find identifier 
”tt0089276”. 

The results of this combination of algorithm were: 
 

Table 3: The more complex version of IMDb search by title 
name 

 
Algorithm MovieLe

ns 
Flix Twitter 

σ1(η7()) 45,4% 70,9
% 

Not 
needed 

 
In optimal case, the table returning from the IMDb 

search contains exactly one row with the requested record. 
For this situation the algorithm σ1 behaves well and is able 
to retrieve the correct IMDb identifier. In many other cases 
the result contains more rows and the correct one or the 
best possible one has to be identified. For this purpose we 
constructed more versions of the σj algorithm as well: 

σ2: The correct record should be from the requested 
year, so search only for records from this year and ignore 
other records  

σ3: The IMDb search provides more levels of tolerance 
in title matching. Try to use thee of them from the most 
exact one to the most general. If the matching record from 
requested year cannot be found using stricter search, the 
other search level is used. 

Currently, we have 13 081 out of all 17 770 Flix movies 
mapped onto the IMDb database. Even all 27 278 movies 
from the MovieLens set are mapped to the equivalent IMDb 
record. So the current results provided by the combination 
of most advanced versions of algorithms are: 

 
Table 4: The most complex version of IMDb search by title 

name 
 
Algorithm MovieLe

ns 
Flix Twitter 

σ3(η7()) 100.0% 73.6% Not 
needed 

 
 

 

Figure 3: Numbers of movies mapped onto IMDb database 

The diagram in the Figure 3 shows the number of 
movies in individual datasets and number of movies 
assigned to their corresponding IMDb record. Amount of 
movies associated to the IMDb record in different 
intersections after the integration is different. For example, 
the MovieLens dataset contains in total 27 278 movies. 
From these are 13 134 unique associated movies and also 
contain 3 759 associated movies common with the Flix 
dataset not existing in the Twitter dataset. The number of 
movies common for all three datasets is equal to 4 075. By 
summing of 3 759 and 4 075 we get the total number of 
7 654 associated movies belonging to both MovieLens and 
Flix datasets, etc. 

2.2 Extraction of attributes 

For each movie registered in the IMDb database we then 
retrieved XML data from the URL address 

 
http://www.omdbapi.com/?i=ttNNNNNNN&plot
=full&r=xml 
 
and then from the XML data retrieve following movie 
attributes: 
 

230 M. Kopecky, M. Vomlelova, P. Vojtas



IMDb title (/root/movie/@title), 
IMDb rating (/root/movie/@imdbRating), 
IMDb rated (/root/movie/@rated), 
IMDb avards (/root/movie/@awards), 
IMDb metascore (/root/movie/@metascore), 
IMDb year (/root/movie/@year), 
IMDb country (/root/movie/@country), 
IMDb language (/root/movie/@language), 
IMDb genres (/root/movie/@genre), 
IMDb director (/root/movie/@director), 
IMDb actors (/root/movie/@actors) 
 
The similar way the movies from datasets are mapped 

onto IMDb movies, we implemented the mapping 
technique described in [K] and assigned DbPedia1 
identifiers and semantic data to IMDb movies. 

The DbPedia identifier of movie is a string, for example 
”The_Official_Story” or ”The_Seventh_Seal”. This 
identifier can then be used to access directly the DbPedia 
graph database or retrieve data in an XML format through 
the URL address in form 
http://dbpedia.org/page/DbPediaIdentifie
r. From the data available on the DbPedia page can be 
directly or indirectly extracted movie attributes GENRE, 
GENRE1, ACTION, ADVENTURE,  ANIMATION, 
CHILDRENS, COMEDY, CRIME, DOCUMENTARY, 
DRAMA, FANTASY, FILM_NOIR, HORROR, 
MYSTERY, MUSICAL, ROMANCE, SCI_FI, 
THRILLER, WAR, WESTERN or attributes CALIF, LA, 
NY, CAMERON, VISUAL, SEDIT, NOVELS, SMIX, 
SPIELBERG, MAKEUP, WILLIAMS and many others. 

3 A Dynamic Logic Model for Web 
Annotation 

For effective using of changing and/or increasing 
information we have to evolve tools (e.g. inductive 
methods) used for creation of specific web service (here 
recommendation of movies). Our goal is to extend the 
semantic web foundations to enable describing creation, 
dynamics and similarities on data. To describe the 
reliability of extraction algorithms we propose a "half-a-
way" extension of dynamic logic.  

Our reference for dynamic logic is the book of D. Harel, 
D. Kozen, J. Tiuryn [HKT].  

Dynamic logic has two types of symbols: 
propositions/formulas ϕ, ψ ∈ Π and programs α, β ∈ Φ. 
One can construct a program also from a formula by test ϕ? 
and formulas also by generalized modality operations 
[α], <α>. The expression <α>ϕ says that it is possible to 
execute α and halt in a state satisfying ϕ; the expression 
[α]ϕ says that whenever α halts, it does so in a state 
satisfying ϕ. 

Main goal of dynamic logic is reasoning about programs, 
e.g. in program verification. In our case programs will be 
extractor/annotators and can be kept propositional, as for 
now we are not interested in procedural details of 
extractors. Formulas will be more expressible in order to be 
able to describe the context of extraction.  

                                                           
1 http://wiki.dbpedia.org/ 

Using the example above, let  
ϕ be the statement that a Twitter data entry has title 

“Midnight Cowboy” and MOVIEID = 64665;  
α be the algorithm concatenating prefix ’tt’ with the 

MOVIEID left-padded by zeroes to seven positions; and  
ψ says movie “Midnight Cowboy” corresponds to the 

IMDb record with ID equal to ’tt0064665’.  
The corresponding dynamic logic expression is 
 
∀x(ϕ(x)  [α]ψ(x)) 
 

saying that whenever α starts in a state satisfying ϕ(m1) 
then whenever α halts, it does so in a state satisfying ψ(m1) 
- see illustration in Fig.4.   

Programs (extractors) remain propositional, states 
correspond to different representation of content on the 
web. On each of states the respective semantics is defined 
using appropriate query language. 

Our logic has expressions of two sorts and each sort is, 
respectively can be typed:   

Statements about web data: can be 
either atomic, e.g. Φ0

RDF, Φ0
FOL, Φ0

RDB, Φ0
XML, Φ0

DOM, 
Φ0

BoW, Φ0
PoS, Φ0

DepTree, etc. or more complex, e.g. ϕRDF, 
ψFOL, etc. With the corresponding data model and query 
language based semantics. All can be subject of 
uncertainty, probability extensions. 

Programs (propositional): atomic Π0
σ for subject 

extraction, Π0
π for property extraction or Π0

ω for object 
value extraction in case of HTML, XHTML, or XML data; 
Π0

ner for named entity extraction in case of text data, etc. 
and more complex  ασπω, βσπω, γσπω, etc. In this logic we do 
not prove any statements about program depending on their 
code, so program names point to code one would reuse.  

Statements are typically accompanied by information 
about program creation like data mining tool, training data, 
metrics (e.g. precision, recall), etc. There is also a lot of 
reification describing the training and testing data and the 
metrics of learning. Our model is based on dynamic logic, 
calculates similarity of states and describes 
uncertain/stochastic character of our knowledge.   

 
 

 

Figure 4: Extraction data enriched 
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Hence we are able to express our extraction experience 
in statements like 

ϕ  [α]x ψ 

where ϕ is a statement about data D1 before extraction 
(preconditions), ψ is a statement about data/knowledge D2, 
K2 after extraction (postconditions), α is the program used 
for extraction. Modality [α]x  can be weighted, describing 
uncertainty aspects of learning.  

Lot of additional reification about learning can be 
helpful. 

The main idea of this paper is that if there are some data 
D1’ similar to D1 and ϕ is true in some degree – e.g. 
because both resources were created using same template - 
then after using α we can conclude with high 
certainty/probability that the statement ψ will be true on 
data D2’ (knowledge K2’).   

For instance the formula  
 
“MyData are similar to IRI3”  [σ3η7]0.736 “IMDBId is 

correct” 
 
Experiments with extraction and integration of movie 

data can serve as an example of this. In the next chapter we 
would like illustrate how this influences recommendation. 

 

4 Preference Learning Experiments 
To show usability of extracted and annotated data, we 

provide experiments in area of recommender systems.  
 

4.1 Data Preprocessing 

We selected all Twitter users with ratings less or equal 
to 10, random 3000 MovieLens users and random 3000 Flix 
users.  

For these, we split the RATING data by assigning last 
(according to time stamp) 5 records from each user as a test 
data, the remaining data was used as train data. 

Based on train data, we calculated aggregated variables: 
 

Table 5: Computed variables for each movie 
 

Variable Description 

α1 CNT Number of ratings for a movie 

α2 MAVG Average rating for a movie 

α3 
BAYESAVG 

(GLOBAL.AVERAGE*50 
+MAVG*CNT) / (CNT+50) 

 
 

Table 6: Computed variables for each user 
 

Variable Description 

α4 
USERSHIFT 

The average over rated movies 
(user.rating-BAYESAVG) 

 

Table 7: Computed variables for each pair of user and 
movie 

 
Variable Description 

α5 
GENREMATCH 

Equality of the most frequent 
user’s genre and the movie’s genre 

  
 
 

4.2 Results 

Based on these attributes, we learned a linear model of 
RATING as a function of  
(CNT+BAYESAVG+MAVG+USERSHIFT+GENREMAT
CH). 

Table 8 summarizes the train mean square error, test 
mean square error and for comparison the mean square 
error of the 'zero' model predicting always the overall 
average of training data. These are the uncertainty part of 
our dynamic logic. 

 
Table 8: Result summarization 

 
Dataset MRSS 

train 
MRSS 
test 

MTSS 
train 

Flix  0.690 0.714 1.100 

Twitter  1.420 1.660 2.890 

MovieLens 0.607 0.633 1.070 
 

 
We can see that in all datasets, the difference between 

train and test error is very small compared with the results 
of the zero model. This means the model is not overfitted. 

Since the Twitter dataset uses scale 0 to 10 compared to 
the scale 0 to 5 for Flix and MovieLens, the error 
differences cannot be compared directly.  

The models may be compared by the R2 statistics, the 
amount of variance explained by the model  

R2 = 1 - Sum(R[i]2) / Sum((y[i]- y*)2) 
Here R[i] is the ith residual, y[i] is the rating of ith record, y* 
is average rating over all train records in dataset. Its range 
is from 0 (useless model) to 1 (prefect prediction). 

In table 9 we can see significant differences between 
datasets, ranging from 0.506 for Twitter (best 
improvement) compared to 0.356 for MovieLens and 0.262 
for Flix. 

 
Table 9: R2 statistics 

 
Dataset R2 

Flix  0.262 

Twitter  0.506 

MovieLens 0.356 
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In Table 10 we show preliminary results on testing 
repeatability. We trained the model on the data set in the 
row and tested on the test data in column. No surprise that 
in each column the best result is on the diagonal.  

 
Table 10: Repeatability tests 

 
Dataset Flix test Twitter 

test 
MovieLe

ns test 

Flix train 0.714 1.731 0.635 

Twitter 
train 

0.723 1.658 0.639 

MovieLens 
train 

0.715 1.679 0.633 

Zero model 1.100 2.890 1.070 
 

 
As the zero model we use movie rating average MAVG. 
In this research proposal, we do not evaluate role of 

similarity, we just illustrate similarity of our datasets.  
In Figure 5 we show MAVG function on a sample of 

movies (with IMDB ID#s). Table 11 show MAVG 
distances below diagonal. So far it is not clear to us which 
metrics to use to compute similarity – Euclidean or cosine? 
Further experiments are required as this can depend on 
domain.  

 

Figure 5: Towards calculating similarity – which vectors, 
which metrics? Here MAVG.  

 
Maybe the right idea to calculate similarity is content 

based. We illustrate this by Fig. 6 with behavior of statistics 
on genres. Table 11 show genre based distance in cells 
above diagonal.  

5 Proposal, Conclusions, Future Work 
We have provided preliminary experiments with 

reusability of our algorithms. Results are promising, but 
still we need more extensive testing.  

5.1 Proposal of Reusability Quality 

Similarly, as in Linked data quality assessment, we can 
imagine similar assessment for reusability.  

The main idea is, that this will be less sensitive to URL 
change, migration and “end-of-project-phenomenon”. One 
can imagine, that these information are published at 
https://sourceforge.net/ or similar service. What follows is 
a vision, we would like to discuss: 

 

 

Figure 6: Maybe genres play a role?  

 
Table 11: Distance of datasets. Below diagonal by MAVG, 

above diagonal with Genres 
 

 Flix Twitter Movie 
Lens 

Flix  0.00 0.10 0.14 

Twitter  0.51 0.00 0.06 

MovieLens 0.42 0.54 0.00 
 
 

6 Reusability extraction describes the algorithm, 
training data, metrics and results.  

7 Reusability extraction extends a 6 one by 
additional similarity measures and thresholds for successful 
reuse. A corresponding formula can look like  

 
“Data ≈0.2 IRI3”  [σ3η7]0.654 “IMDBId is correct” 
 
8 Reusability extraction describes a 7 one in a more 

extensive way with several different data examples and 
similarities. This can increase the chance that for a given 
domain you find solution which fits your data. 

9 Reusability extraction assumes a 8 one in 
a server/cloud implementation. You do not have to solve 
problems that the extractor does not run in your 
environment properly.  

Repeatable Web Data Extraction and Interlinking 233



10 Reusability extraction assumes a 9 one in a more 
user friendly way, you just upload your data (or their URL) 
and the system finds solution and you can download result. 
It is also possible to imagine this enhanced with some 
social network interaction.  

5.2 Conclusions 

We have presented a research proposal for improving 
degree of automation of web information extraction and 
annotation. We propose a formal dynamic logic model for 
automated web annotation with similarity and reliability.  

We illustrated our approach by an initial prototype and 
experiments on recommendation on movie data (annotated 
and integrated).  

5.3 Future work 

The challenge is twofold: 
- extend this to other domains 
- provide deeper analysis of data mining and possible 

similarities  
We can consider some more complex algorithms for 

preference learning, e.g., based on the spreading activation 
[GG]. 
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