J. Hlavacova (Ed.): ITAT 2017 Proceedings, pp. 40-47
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, © 2017 M. Platek, F. Otto, F. Mraz

On h-Lexicalized Automata and h-Syntactic Analysis

Martin Platek’, F. Otto?, and F. Mraz' *

I' Charles University, Department of Computer Science
Malostranské ndm. 25, 118 00 PRAHA 1, Czech Republic
martin.platek@mff.cuni.cz, frantisek.mraz@mff.cuni.cz
2 Fachbereich Elektrotechnik/Informatik, Universitit Kassel
D-34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract: Following some previous studies on list auto-
mata and restarting automata, we introduce a generalized
and refined model — the h-lexicalized restarting list au-
tomaton (LxRLAW). We argue that this model is useful
for expressing transparent variants of lexicalized syntactic
analysis, and analysis by reduction in computational lin-
guistics. We present several subclasses of LxRLAW and
provide some variants and some extensions of the Chom-
sky hierarchy, including the variant for the lexicalized syn-
tactic analysis. We compare the input languages, which
are the languages traditionally considered in automata the-
ory, to the so-called basic and h-proper languages. The
basic and h-proper languages allow stressing the trans-
parency of h-lexicalized restarting automata for a super-
class of the context-free languages by the so-called com-
plete correctness preserving property. Such a type of trans-
parency cannot be achieved for the whole class of context-
free languages by traditional input languages. The trans-
parency of h-lexicalized restarting automata is illustrated
by two types of hierarchies which separate the classes of
infinite and the classes of finite languages by the same
tools.

1 Introduction

Chomsky introduced his well-known hierarchy of gram-
mars to formulate the phrase-structure (immediate con-
stituents) syntax of natural languages. However, the syn-
tax of most European languages (including English) is of-
ten considered as a lexicalized syntax. In other words,
the categories of Chomsky are bound to immediate con-
stituents (phrases), while by lexicalized syntax they are
bound to individual word-forms. In order to give a general
theoretical basis for lexicalized syntax that is comparable
to the Chomsky hierarchy, we follow some previous stud-
ies of list and restarting automata (see [1, 4, 5, 13]) and
introduce a generalized and refined model that formalizes
lexicalization in a natural way — the h-lexicalized restart-
ing list automaton with a look-ahead window (LxRLAW).
We argue that, through the use of restarting operations

*The first and the third author were partially supported by the Czech
Science Foundation under the project 15-04960S.

and basic and h-proper languages, this new model is bet-
ter suited for modeling (i) lexicalized syntactic analysis
(h-syntactic analysis) and specially (ii) (lexicalized) anal-
ysis by reduction of natural languages (compare [6, 7]).

Analysis by reduction is a technique for deciding the
correctness of a sentence. It is based on a stepwise sim-
plification by reductions preserving the (in)correctness of
the sentence until a short sentence is obtained for which
it is easy to decide its correctness. Restarting automata
were introduced as an automata model for analysis by re-
duction. While modeling analysis by reduction, restarting
automata are forced to use very transparent types of com-
putations. Nevertheless, they still can recognize a proper
superset of the class of context-free languages (CFL). The
first observation, which supports our argumentation, is that
LxRLAW allow characterizations of the Chomsky hierar-
chy for classes of languages and for h-syntactic analysis
as well.

An LxRLAW M is a device with a finite state control
and a read/write window of a fixed size. This window can
move in both directions along a tape (that is, a list of items)
containing a word delimited by sentinels. The LxRLAW-
automaton M uses an input alphabet and a working alpha-
bet that contains the input alphabet. Lexicalization of M is
given through a morphism which binds the individual sym-
bols from the working alphabet to symbols from the input
alphabet. M can decide (in general non-deterministically)
to rewrite the contents of its window: it may delete some
items from the list (moving its window in one or the other
direction), insert some items into the list, and/or replace
some items. In addition, M can perform a restart opera-
tion which causes M to place its window at the left end
of the tape, so that the first symbol it contains is the left
border marker, and to reenter its initial state.

In the technical part we adjust some known results
to results on several subclasses of LxRLAW that are ob-
tained by restricting its set of operations to certain subsets,
and we also provide some variants and extensions of the
Chomsky hierarchy of languages. E.g., an LxRLAI uses an
input alphabet only.

We recall and newly introduce some constraints that
are suitable for restarting automata, and we outline ways
for new combinations of constraints, and more transparent
computations.

A
ITAT

On h-Lexicalized Automata and h-Syntactic Analysis

41

Section 2 contains the basic definitions. The charac-
terizations of the Chomsky hierarchy by certain types of
LxRLAW is provided in Section 3.

In Section 4 we introduce RLWW-automata as a re-
stricted type of LxRLAW and give several new con-
straints for them. By the basic and h-proper languages
we show the transparency of h-lexicalized restarting auto-
mata through the so-called complete correctness preserv-
ing property. Using the new constraints and the basic and
h-proper languages, we are able to separate classes of fi-
nite languages in a similar way as the classes of infinite
languages and establish in this way new hierarchies, which
can create a suitable tool for the classification of syntactic
phenomena for computational linguistics. The paper con-
cludes with Section 5.

2 Definitions

In what follows, we use C to denote the proper subset re-
lation. Further, we will sometimes use regular expressions
instead of the corresponding regular languages. Finally,
throughout the paper A will denote the empty word and
N will denote the set of all positive integers.

An h-lexicalized two-way restarting list automa-
ton, LxRLAW for short, is a one-tape machine M =
(0,%,T,¢,$,90,k,8,h), where Q is the finite set of states,
¥ is the finite input alphabet, I" is the finite working al-
phabet containing ¥, the symbols ¢,$ ¢ I' are the mark-
ers for the left and right border of the work space, respec-
tively, h: TU{¢,$} — XU {¢,$} is a mapping creating a
(letter) morphism from ¢I™$ to ¢X*$ such that, for each
acXU{¢,$}, h(a) =a; qo € Q is the initial state, k > 1 is
the size of the read/write window, and

§:0x PEk —
Z((@x ({MVR,MVL} U{W(v),SR(v),SL(v),1()}))
U {Restart, Accept, Reject})

is the transition relation. Here & (S) denotes the powerset
of a set S,

ek = (¢- T Hurtu(@C*".$)u(e-T=F2.3),

is the set of possible contents of the read/write window
of M, and v € PE=", where n € N.

According to the transition relation, if M is in state g and
sees the string u in its read/write window, it can perform
nine different steps, where ¢’ € Q:

1. A move-right step (q,u) — (¢', MVR) assumes that
(¢ ,MVR) € 8(q,u) and u # $. It causes M to shift
the read/write window one position to the right and to
enter state ¢'.

2. A move-left step (q,u) — (q',MVL) assumes that
(¢',MVL) € 8(q,u) and u & ¢-T™* - {1,$}. Tt causes
M to shift the read/write window one position to the
left and to enter state ¢’.

3. A rewrite step (q,u) — (¢/,W(v)) assumes that
(¢ \W(v)) € 6(q,u), |v| = |u|, and the sentinels are
at the same positions in # and v (if at all). It causes M
to replace the contents u of the read/write window by
the string v, and to enter state ¢’. The head does not
change its position.

4. An S-right step (q,u) — (¢’,SR(v)) assumes that
(¢',SR(v)) € 6(q,u), v is shorter than u, containing
all sentinels in u. It causes M to replace u by v and
to enter state ¢'; the new position of the head is on
the first item of v (the contents of the window is thus
‘completed’ from the right; the positional distance to
the right sentinel decreases).

5. An S-left step (q,u) — (¢’,SL(v)) assumes that
(¢',SL(v)) € 6(q,u), v is shorter than u, containing
all sentinels in u. It causes M to replace u by v, to en-
ter state ¢, and to shift the head position by |u| — |v|
items to the left — but to the left sentinel ¢ at most (the
contents of the window is ‘completed’ from the left;
the distance to the left sentinel decreases if the head
position was not already at ¢).

6. An insert step (q,u) — (¢',1(v)) assumes that
(¢',1(v)) € 6(q,u), u is a proper subsequence of v
(keeping the obvious sentinel constraints). It causes
M to replace u by v (by inserting the relevant items),
and to enter state ¢’. The head position is shifted by
[v| — |u| to the right (the distance to the left sentinel
increases).

7. A restart step (q,u) — Restart assumes that
Restart € 6(g,u). It causes M to place its read/write
window onto the left end of the tape, so that the first
symbol it sees is the left border marker ¢, and to reen-
ter the initial state ¢.

8. An accept step (q,u) — Accept assumes that
Accept € 8(q,u). It causes M to halt and accept.

9. A reject step (q,u) — Reject assumes that Reject €
0(q,u). It causes M to halt and reject.

A configuration of M is a string agf8 where g € Q, and
either «c = A and B € {¢}-I"-{$} or ¢ € {¢} - T™ and
B € T'*-{$}; here ¢ represents the current state, aff is
the current contents of the tape, and it is understood that
the head scans the first k symbols of f or all of B when
|B| < k. A restarting configuration is of the form goewS$,
where w € I'*; if w € £*, then goewS$ is an initial configura-
tion. We see that any initial configuration is also a restart-
ing configuration. Any restart transfers M into a restarting
configuration.

In general, the automaton M is non-deterministic, that
is, there can be two or more steps (instructions) with the
same left-hand side (g,u), and thus, there can be more than
one computation for an input word. If this is not the case,
the automaton is deterministic.

42

M. Platek, F. Otto, F. Mraz

A computation of M is a sequence C = (y,Cy,...,C;
of configurations, where Cy is an initial configuration and
Ci41 is obtained by a step of M from C;, forall 0 <i < j.

An input word w € L* is accepted by M, if there is
a computation which starts with the initial configuration
goew$ and ends by executing an Accept instruction. By
L(M) we denote the language consisting of all input words
accepted by M; we say that M accepts the input language
L(M).

A basic (or characteristic, or working) word w € T* is
accepted by M, if there is a computation which starts with
the restarting configuration go¢w$ and ends by executing
an Accept instruction. By Lc(M) we denote the language
consisting of all basic words accepted by M; we say that
M accepts the basic (characteristic) language Lc(M).

Further, we take Lyp(M) = {h(w) € Z* |w € Lc(M) },
and we say that M recognizes (accepts) the h-proper lan-
guage Lyp(M).

Finally, we take Lo (M) = { (h(w),w) |w € Lc(M) } and
we say that M determines the h-syntactic analysis La(M).

We say that, for x € £*, La(M,x) = {(x,y) | y €
Lc(M),h(y) = x} is the h-syntactic analysis for x by M.
We see that La (M, x) is non-empty only for x € Lyp(M).

In the following we only consider finite computations of
LxRLAW-automata, which finish either by an accept or by
a reject operation.

An LxRLAI M is an LxRLAW for which the input alpha-
bet and the working alphabet are equal.

Fact 1. (Equality of Languages for LxRLAIl-automata).
For each LxRLAl-automaton M, L(M) = Lc(M) =
Lnp(M).

— Cycles, tails: Any finite computation of an LxRLAW-
automaton M consists of certain phases. Each phase starts
in a restarting configuration. In a phase called a cycle, the
window moves along the tape performing non-restarting
operations until a Restart operation is performed and thus
a new restarting configuration is reached. If after a restart
configuration no further restart operation is performed, any
finite computation necessarily finishes in a halting config-
uration — such a phase is called a zail.
— Cycle-rewritings: We use the notation gocu$ Fj; gocv$
to denote a cycle of M that begins with the restarting con-
figuration go¢u$ and ends with the restarting configura-
tion go¢v$. Through this relation we define the relation of
cycle-rewriting by M. We write u =, v iff gocu$ F§; gocv$
holds. The relation u =, v is the reflexive and transitive
closure of u =4, v.

We point out that the cycle-rewriting is a very important
feature of LxRLAW.

— Reductions: If u =, v is a cycle-rewriting by M such
that [u| > |v|, then u =, v is called a reduction by M.

2.1 Further Refinements on LXRLAW

Here we introduce some constrained types of rewriting
steps which assume ¢,¢' € Q and u € PE=k,

A delete-right step (q,u) — (¢',DR(v)) is an S-right
step (q,u) — (¢,SR(v)) such that v is a proper sub-
sequence of u, containing all the sentinels from u (if any).

A delete-left step (q,u) — (¢’,DL(v)) is an S-left step
(g,u) — (¢’,SL(v)) such that v is a proper sub-sequence
of u, containing all the sentinels from « (if any).

A contextual-left step (q,u) — (¢’,CL(v)) is an S-left
step (q,u) — (¢',SL(v)), where u = viujvoupvs and v =
vivavs for some vy, uy,va,up,v3, such that v contains all
the sentinels from u (if any).

A contextual-right step (q,u) — (¢',CR(v)) is an S-
right-step (q,u) — (¢,SR(v)), where u = vivyv3 and v
= vyv3 for some v, v;,v3, such that v contains all the sen-
tinels from u (if any).

Note that the contextual-right step is not symmetrical to
the contextual-left step. We will use this fact in Section 4.

The set OG = {MVL,MVR,W,SL,SR,DL,DR,CL,
CR,I,Restart} represents the set of types of steps,
which can be used for characterizations of subclasses of
LxRLAW. This set does not contain the symbols Accept
and Reject, corresponding to halting steps, as they are used
for all LxRLAW-automata. Let T C OG. We denote by
T-automata the subset of LxRLAW-automata which only
use transition steps from the set T U{Accept, Reject}. For
example, {MVR, W }-automata only use move-right steps,
W-steps, Accept steps, and Reject steps.

Notations. For brevity, the prefix det- will be used to de-
note the property of being deterministic. For any class
&/ of automata, .2 (/) will denote the class of input lan-
guages that are recognized by automata from &, (/)
will denote the class of basic languages that are recog-
nized by automata from 7, and Zp(<) will denote the
class of h-proper languages that are recognized by auto-
mata from /. Moreover, Z5 (<) will denote the class
of h-syntactic analyses that are determined by automata
from o7 . Let us note that we use the more simple notation
% (<) in [15] and other papers in a different sense than
the denotation .%,p(%) here.

For a natural number k > 1, £ (k-&) (Zc(k-&/) or
Zp(k-27)) will denote the class of input (basic or h-
proper) languages that are recognized by those automata
from &7 that use a read/write window of size k.

— Monotonicity of Rewritings. We introduce various no-
tions of monotonicity as important types of constraints for
computations of LxRLAW-automata.

Let M be an LxRLAW-automaton, and let C =
Ci;Ci1,---,C; be a sequence of configurations of M,
where C;;1 is obtained by a single transition step of M
from C;, k <i < j. We say that C is a sub-computation
of M.

Let RW C {W,SR,SL,DR,DL,CR,CL,I}. Then we de-
note by W(C,RW) the maximal (scattered) sub-sequence

On h-Lexicalized Automata and h-Syntactic Analysis

43

of C, which contains those configurations from C that cor-
respond to RW -steps (that is, those configurations in which
a transition step of one of the types from the set RW is ap-
plied). We say that W(C,RW) is the working sequence
of C determined by RW.

Let C be a sub-computation of an LxRLAW-
automaton M, and let C,, = ¢agf$ be a configuration
from C. Then |B$| is the right distance of C,,, which is
denoted by D,(C,), and |¢a| is the left distance of C,,
which is denoted by D;(Cy,).

We say that a working sequence W(C,RW) =
(Cy,Cy,...,Cy) is RW-monotone (or RW -right-monotone)
if D,(C1) > D,(C2) > ... > D,(C,).

A sub-computation C of M is RW-monotone if
W(C,RW) is RW-monotone. If we write (right-)mono-
tone, we actually mean {W,SR,SL, DR, DL,CR, CL,
[}-right-monotone, that is, monotonicity with respect to
any type of (allowed) rewriting and inserting for the cor-
responding type of automaton. By completely(-right)-
monotone, we actually mean monotone with respect to
each configuration of the computation.

For each of the prefixes X € {RW,A,completely} we
say that M is X-monotone if each of its (sub)computations
is X-monotone.

Fact 2. Let M be an {MVR,SR,SL,W.,I}-automaton.
Then M is completely-monotone.

Remark on PDA. It is not hard to see that a 1-
{MVR,SR,SL, W, |}-automaton is a type of normalized
pushdown automaton. The top of the pushdown is repre-
sented by the position of the head, and the content of the
pushdown is represented by the part of the tape between
the left sentinel and the position of the head. In fact, in
a very similar way the pushdown automaton was intro-
duced by Chomsky. A k-{MVR,SR,SL, W, I}-automaton
can be interpreted as a pushdown automaton with a k-
lookahead, and with a limited look under the top of the
pushdown at the same time. (det-)PDAs can be simulated
even by (det-)1-{MVR,SL,W}-automata. In the follow-
ing, we will consider the automata which fulfill the condi-
tion of completely-right-monotonicity for pushdown auto-
mata (PDA).

3 Characterizations of the Chomsky
Hierarchy

We transform and enhance some results from [1, 5] con-
cerning input languages to basic and h-proper languages.
det-{MVR}- and { MVR}-automata work like determin-
istic and nondeterministic finite-state automata, respec-
tively. The only difference is that such automata can
accept or reject without visiting all symbols of an input
word. Nevertheless, these automata can be simulated by
deterministic and nondeterministic finite-state automata,
respectively, which instead of an Accept-step enter a spe-
cial accepting state in which they scan the rest of the input

word. Since the regular languages are closed under homo-
morphisms, we have the following proposition.

Proposition 3. For 2 € {<Z, %, %p} the classes
Z (1-det-{MVR}) and Z (1-{MVR}) coincide with the
class REG of regular languages.

Observe that for LxRLAW-automata with window
size 1, the operation SR coincides with the operations DR
and CR, and that the operation SL coincides with the oper-
ations DL and CL, and that in this situation all these oper-
ations just delete the symbol currently inside the window.

Proposition 4. For 2" € {&, %, Lp}:
2 ({MVR,CL,W}) C CFL,

where CFL is the class of context-free languages.

Proof. Any {MVR,CL,W}-automaton M = (Q,X,T’,¢,$,
qo,k,6,h) can be simulated by a pushdown automaton
(PDA) P which stores the current content of the window
of M in its control unit (as a state). On an input word w, P
first tries to read the first k symbols of w and to store them
within its control unit. If w is of length less than &, then P
accepts or rejects w upon encountering the right sentinel $.
Otherwise, P continues while preserving the following in-
variant: the contents of the pushdown store of P equals the
part the tape of M to the left of its current position, the
contents of the window of M and its state are both stored
in the control unit of P, and the rest of the tape of M to the
right of its window is the unread part of the input of P.
Hence, P accepts exactly L(M) by entering an accepting
state and reading the rest of its input whenever M performs
an Accept-step. If we include all working symbols of M
into the input alphabet of P, we obtain a PDA P’ such that
L(P") = Lc(M), thus the basic language of M is context-
free. As CFL is closed under homomorphisms, also the
h-proper language of M is context-free, too. O

Proposition 5. For 2 € {¥&,%c,%p}, the class
Z (1-{MVR,CL,W}) coincides with the class CFL of

context-free languages.

Proof. According to Proposition 4, each language ac-
cepted by a 1-{MVR, CL, W}-automaton as an input lan-
guage or as a basic language is context-free. It remains to
proof the opposite inclusion. Let L be a context-free lan-
guage. Clearly, the empty language and the language {1}
can be accepted by a 1-{MVR, CL, W}-automaton.
W.Lo.g. we can suppose that L\ {A} is generated by
a context-free grammar G = (I1,X, S, P;) in Chomsky nor-
mal form. We can construct a PDA P accepting the lan-
guage L\ {1} by empty store. For each nonempty word
w € L, the PDA P can guess and simulate a rightmost
derivation of w according to G in reverse order. That
is, P will perform a bottom-up analysis of w which uses
a shift-operation that moves the next input symbol onto
the pushdown and reductions according to the rewrite rules
from Pg. The reduction according to a rule of the form
X —x, for X €I1, x € L, consists of popping x from the

44

M. Platek, F. Otto, F. Mraz

top of the pushdown and pushing X onto the pushdown.
The reduction according to a rule of the form X — YZ,
where X,Y,Z are nonterminals of G, consists of popping
YZ (in reversed order) from the pushdown and pushing X
onto the pushdown.

The empty word A can be immediately accepted or re-
jected by a 1-{MVR,CL,W}-automaton M when A € L
or A & L, respectively. For each nonempty word w € X*,
each computation of P on w can be simulated by M in such
a way that the top of the pushdown will be in the window
of M. The rest of the contents of the pushdown of P will
be stored on the part of the tape of M to the left of the
position of its window.

A shift-operation of P can be simulated by a MVR-step.
The reduction according to a rule of the form X — x, for
X €I, x € £, will be simulated by the W-step which
rewrites x in the window of M by X. The reduction ac-
cording to a rule of the form X — YZ, where X,Y,Z € I1,
will be simulated by the CL-step which deletes the tape
cell containing Z and a W-step which rewrites the sym-
bol Y in the window of M by X. As P accepts when the
pushdown contains the single symbol S, M will perform
an Accept-step, when the only symbol on its tape is the
initial nonterminal S. Clearly, L(M) = L(P). Addition-
ally, M can check that after each MVR-step the symbol
which appears within its window is either the sentinel $ or
a terminal from X. In this way it is ensured that M does
not accept any word containing a working symbol, hence
Lc(M) = Lnp(M) = L. 0

It is easy to see that a linear-bounded automaton work-
ing on a tape containing an input word delimited by
sentinels directly corresponds to a 1-{MVR,MVL ,W}-
automaton. We can also see that a {MVR,MVL,W}-
automaton can be simulated by a 1-{MVR,MVL /W}-
automaton. Recall that the class CSL is closed under non-
erasing homomorphisms. Therefore, we have the follow-
ing statement.

Proposition 6. For 2 € {<£,%c,%4r} the class
2 ({MVR,MVL,W}) coincides with the class CSL of
context-sensitive languages.

By adding the ability to insert cells within the working
tape to the operations MVR, MVL and W, we can easily
simulate an arbitrary Turing machine. Hence we have the
following proposition.

Proposition 7. For 2" € {¥,%c,%4p}, the class
Z ((det-){MVR,MVL,W,I}) coincides with the class RE

of recursively enumerable languages.

From the previous results we obtain the following vari-
ant of the Chomsky hierarchy for the classes of the h-
syntactic analysis which follows from the corresponding
hierarchies for the classes of h-proper and basic languages.

Corollary 1. We have the following hierarchy:
Zy({MVR}) C Zx ({MVR,CL,W}),

ZA({MVR,CL,W}) C ZA({MVR,MVL,W}),
ZLA{MVR,MVL,W}) C Zx({MVR,MVL,W, 1}).

In a similar way we can obtain the deterministic variants
of the Chomsky hierarchy.

4 RLWW-Automata with New Constraints

Here we formulate the h-lexicalized two-way restarting
automaton in weak accepting (cyclic) form, and some of
its subclasses. By considering basic and h-proper lan-
guages, this new type of automaton is close to the method
of analysis by reduction (see [6]), its computations are
transparent, and it reflects well the structure of its basic
and h-proper languages.

An h-lexicalized two-way restarting automaton
in weak accepting form (originally called cyclic
form) M, an hRLWW-automaton for short, is a
{MVR,MVL,SL,SR, Restart }-automaton, which uses an
SL-step or SR-step exactly once in each cycle (only one
of them), and directly accepts only words that fit into its
window.

An hRLWW-automaton is called an hRLW-automaton
if its working alphabet coincides with its input alphabet.
Note that in this situation, each restarting configuration is
necessarily an initial configuration.

An hRLW-automaton is called an hRL-automaton if
each of its rewrite steps is a DL- or DR-step.

An hRL-automaton is called an hRLC-automaton if
each of its rewrite steps is a CL- or CR-step.

An hRLWW-automaton is called an hRLWWC-
automaton if each of its rewrite steps is a CL-step or CR-
step.

An hRLWW-automaton is called an hRRWW-
automaton if it does not use any MVL-steps. Analogously,
we obtain hRRW-automata, hRR-automata, and hRRC-
automata.

We see that for hRLWW-automata, all cycle-rewritings
are reductions. We also have the following simple
facts, which illustrate the transparency of computations of
hRLWW-automata due their basic and h-proper languages.

Fact 8. (Complete Correctness Preserving Property).

Let M be a deterministic hRLWW-automaton, let C =
Co,Cy,---,C, be a computation of M, and let ¢cu;$ be the
tape contents of the configuration C;, 0 <i<n. Ifu; €
Lc(M) for some i, then uj € Lc(M) for all j=0,1,...,n.

Fact 9. (Complete Error Preserving Property).

Let M be a deterministic hRLWW-automaton, let C =
Co,C1,--+,C, be a computation of M, and let ¢cu;$ be the
tape contents of the configuration C;, 0 <i<n. If u; ¢
Lc(M) for some i, then uj & Lc(M) for all j=0,1,...,n.

Fact 10. (Prefix Correctness Preserving Property).
Let M be an hRRLWW-automaton, let C = Cy,Cy,--- ,C,, be
a computation of M, and let ¢u;$ be the tape contents of
the configuration C;, 0 <i < n. If u; € Lc(M) for some i,
then uj € Lc(M) for all j <.

On h-Lexicalized Automata and h-Syntactic Analysis

45

Fact 11. (Suffix Error Preserving Property).

Let M be an hRRLWW-automaton, let C = Cy,Cy,- -+ ,C,, be
a computation of M, and let ¢u;$ be the tape contents of
the configuration C;, 0 < i <n. If u; ¢ Lc(M) for some i,
then uj & Lc(M) for all j > i.

Corollary 2. (Equality of Languages for hRLW-
automata).
For each hRLW-automaton M, L(M) = Lc(M) = Lyp(M).

From the last corollary above, the Complete Error and
Complete Correctness Preserving Properties for determin-
istic hRLW-automata, and the Suffix Error Preserving
Property and the Prefix Correctness Preserving Property
for hRLW-automata follow for their input, basic, and h-
proper languages.

4.1 On Regular Languages and Correctness
Preserving Computations

Proposition 12. The class REG is characterized by ba-
sic and h-proper languages of deterministic hRLWW-
automata which use only the operations MVR, CR,
Restart, and which use the operation CR only when the
window is at the position just to the right of the left sen-
tinel. We denote such automata by det-Rg2.

Proof. We outline only the main ideas of the proof. First
we show that any basic language and h-proper language of
a det-Rg?2 is regular. Let M) be a k-det-Rg2-automaton.
It is not hard to see that M} can be simulated by a finite
automaton Ay, with a stack of size k+ 1 stored within
its finite control, and therefore Leo(My) = L(Agy1), and
Lyp(My) = Lyp(Ag+1). Since the regular languages are
closed under homomorphisms, L;p(Ax1) is a regular lan-
guage, too.

On the other hand, we can see from the pumping lemma
for regular languages that any regular language L C X* can
be accepted by a det-Rg2-automaton with working (and
input) alphabet X. O

Remark. Since det-Rg2-automata are deterministic
hRLWW-automata, we see that they are completely cor-
rectness preserving for their basic languages.

4.2 Monotonicity and h-Proper Languages

As an hRRWWC-automaton is an hRRWW-automaton
which uses only CL-operations instead of SL-operations
and CR-operations instead of SR-operations, we can prove
the following theorem in a similar way as it was done for
a stronger version of hRRWW-automata in the technical
report [15].

Theorem 13. CFL = Zp(det-mon-hRLWWC).

Proof. The proof is based mainly on ideas from [15]. Here
it is transformed for hRLWW-automata with the constraint
of the weak accepting form.

If M = (0,2,T,¢,%,q0,k,6,h) is a right-monotone
hRLWW-automaton, then its characteristic language
Lc(M) is context-free [14]. As Lyp(M) = h(Lc(M)), and
as CFL is closed under morphisms, it follows that Lyp(M)
is also context-free.

Conversely, assume that L C X* is a context-free lan-
guage. Without loss of generality we may assume that
L does not contain the empty word. Thus, there exists a
context-free grammar G = (N, X, S, P) for L which is in
Greibach normal form, that is, each rule of P has the form
A — aa for some string & € N* and some letter a € X. For
the following construction we assume that the rules of G
are numbered from 1 to m.

From G we construct a new grammar G’ := (N,A, S, P'),
where A :={(V;,a) | | <i<m and the i-th rule of G has
the form A — ao } is a set of new terminal symbols that
are in one-to-one correspondence to the rules of G, and

P .= {A— (Via)a|A— ao is the i-th rule of G,
1<i<m}.

Obviously, a word @ € A* belongs to L(G') if and only
if o has the form @ = (V;,,a1)(Vi,,a2) - (Vi,,a,) for
some integer n > 0, where ai,az,...,a, € X, i1,i,...,i, €
{1,2,...,m}, and the sequence of these indices describes
a (left-most) derivation of w := ajas---a, from S in G.
Let us take h((V;,a)) = a for all (V;,a) € A. Then it fol-
lows that h(L(G')) = L(G) = L. From o this derivation
can be reconstructed deterministically. In fact, the lan-
guage L(G') is deterministic context-free. Hence, there
exists a deterministic right-monotone hRRC-automaton M
for this language (see [4]). By interpreting the sym-
bols of A as auxiliary symbols, we obtain a determin-
istic right-monotone hRRWW(C-automaton M’ such that
h(Le(M')) = Lup(M') = h(L(M)) = h(L(G')) = L. Ob-
serve that the input language L(M') of M’ is actually
empty. O

Remark. By means of h-lexicalized restarting auto-
mata, the above construction corresponds to the linguis-
tic effort to obtain a set of categories (auxiliary symbols)
that ensures the correctness preserving property for the re-
spective analysis by reduction. Note that in its reductions,
the automaton M’ above only uses delete operations (in a
special way). This is highly reminiscent of the basic (el-
ementary) analysis by reduction learned in (Czech) basic
schools.

4.3 Hierarchies

In this subsection we will show similar results for finite
and infinite classes of basic and h-proper languages and for
classes of h-syntactic analysis given by certain subclasses
of hRLWW-automata. At first we introduce some useful
notions.

For a (sub)class X of hRLWW-automata, by fin(i)-X we
denote the subclass of X-automata which can perform at

46

M. Platek, F. Otto, F. Mraz

most i reductions, and by fin-X we denote the union of
fin(i)-X over all natural numbers i.

By Lc(M,i) we denote the subset of Lc(M) contain-
ing all words accepted by at most i reductions. We take
LhP(Mai) = h(LC(Mvi))'

Proposition 14. Let i > 0, and let M be an hRLWW-
automaton. Then there is a fin(i)-hRLWW-automaton M,
such that Lc(M,i) = Lc(M\), and ifu=>y, v, then u =y v.
If M is deterministic, then M is deterministic as well.

Proof. The basic idea of the construction of M; is to add
to the finite control of M the counter of possible cycles on
the starting word by M. While simulating the first cycle
of M, M, already simulates the next up to i — 1 cycles of M
rejecting all words which are not acceptable with at most i
cycles by M. O

We can see that a similar proposition can also be shown
for hARRWW-automata.

For a positive integer k, let the prefix de(k)- denote
hRLWW-automata which delete at most k symbols in each
reduction.

The next proposition lays the foundation to the desired
hierarchies. In order to show the next proposition we
consider the following sequence of languages for k > 1:
Lrgi = {(a¥)i i >1}.

Proposition 15. ZAp(k-de(k)-det-fin(1)-Rg2) ~
Zip((k—1)-hRUWW) £ 0, for all k > 2.

Proof. We outline the basic ideas only. We can con-
struct a k-det-Rg2-automaton MRy, such that Lc(MRy) =
Lyp(MRy) = Lrgy. For MR a window of the size k suf-
fices, because MRy can first move its window to the right
of the left sentinel. If it sees a*, then it performs a CR-step
which deletes . Next, if the window contains only the
right sentinel, the automaton accepts, otherwise it restarts.

From Proposition 14 we can see that there is a k-det-
Rg2-automaton MR} such that Lc(MR}) = Lwp(MR}) =
Lip (MR, 1).

On the other hand, there is no (k — 1)-hRLWW-
automaton accepting Lyp(MR),) as its h-proper language.
For a contradiction, let us suppose that Lyp(M) =
Lwp(MR)) for a (k —1)-hRLWW-automaton M. Then
M accepts a word w € Lc(M) such that h(w) = d* €
Lyp(MRy,1). In an accepting computation on w, automa-
ton M must perform at least one reduction, but it can delete
at most (k — 1) symbols by which it obtains a word w' of
length between 1 and k — 1, hence h(w') & Lyp(MR,) — a
contradiction to Lnp(M) = Lyp(MR,). O

Corollary 3. For all types X € {det-Rg2,hRR, hRRC,
hRRW, hRRWWC, hRRWW, hRL, hRLC hRLW,
hRLWWC, hRLWW?}, all prefixes pr; € {A, fin}, all
prefixes prefy € {A,mon,det,det-mon}, and all k > 2,
the following holds:

Lip(k-pr-prefy-X) C L ((k+ 1)-pri-prefy-X) and
Zip(de(k)-pri-prefy-X) C Lp(de(k+ 1)-pr,-prefy-X).

Remark. The next theorem enables us to classify finite
linguistic observations in a similar way as infinite for-
mal languages. It refines a part of the Chomsky hier-
archy and gives a useful tool for classifications of sev-
eral syntactic phenomena of natural languages. In order
to show the next theorem we consider the following se-
quences of languages for k > 1: Lefiy = {a'b™ | i > 1}
and Lesy .y = {a'bic™*,a* ' bict™h i > 1),

Theorem 16. For X = hRLWWC, and k > 2 the following
holds:

(1) Zp(k-det-Rg2)
Lip(k-det-X),

(2) Za(k-det-Rg2)
L (k-det-X),

(3) ZLp(k-det-fin-Rg2) C Hp(k-det-fin-mon-X) C
Lip (k-det-fin-X),

(4) La(k-det-fin-Rg2) C Za(k-det-fin-mon-X) C
L (k-det-fin-X).

C Zp(k-det-mon-X) C

C Za(k-det-mon-X) C

Proof. We outline the main ideas of the proof. For k > 2
and X = hRLWWOC, the following inclusions follow from
definitions:

(1) Zp(k-det-Rg2) C
Zp(k-det-X),

2) Zn(k-det-Rg2) C
L (k-det-X),

(3) Zp(k-det-fin-Rg2) C Ap(k-det-fin-mon-X) C
th(k-det-fin—X),

(4) Za(k-det-fin-Rg2) C Za(k-det-fin-mon-X) C
L (k-det-fin-X).

It remains to show that all these inclusions are proper.
We use the sequence of context-free languages Lcfi to
show the first proper inclusion in all four propositions.

For any natural number k > 2, it is not hard to
construct a k-det-mon-hRLC-automaton Mcf; such that
Lc(Mcfy) = Lyp(Mcfy) = Lcfy. By applying Propo-
sition 14 for i = k, we can construct a k-det-mon-
fin(k)-hRLC-automaton Mcf; such that Lc(Mcfy) =
Lip(Mcfy) = Lyp(Mcfi, k).

For a contradiction, let us suppose that there is an k-det-
Rg2-automaton M;, such that Lyp (M) = Lnp(Mc fi, k). Let
us consider the word a1 p*+)*=1) € [, (Mcf]). As this
word is longer than k, M; must use at least one cycle to ac-
cept a word w such that a(w) = a**1p*+1)(k=1) " Since any
k-det-Rg2-automaton can delete only some of the first k
symbols we have a contradiction to the complete correct-
ness preserving property of M. Thus, the first inclusion is
proper for all four propositions of the theorem.

Using languages Lcs; we can show the second inclu-
sion to be proper in all four propositions. Let k > 2 be
an integer. It is easy to construct a k-det-hRLC-automaton
Mesy, such that Lc(Mcsy) = Lyp(Mcsy) = Lesg. By ap-
plying Proposition 14 for i = k, we can construct a k-
det-fin(k)-hRLC-automaton Mcs), such that Lc(Mcs)) =
th(Mcs]’c) = th(MCSk,k).

In order to derive a contradiction, let us assume that
there is a k-mon-det-hRLWWC-automaton M, such that

Zp(k-det-mon-X) C

LA (k-det-mon-X) C

On h-Lexicalized Automata and h-Syntactic Analysis

47

Lynp(My) = Lyp(Mcsg,k). Let us consider the word
a1t kDD € b (Mes,). As this word is longer
than 2k, M), must use at least two cycles to accept a word w
such that i(w) = a*t1pk+1ck+D(E=1) Because of the cor-
rectness preserving property M; must reduce w into a word
w1 such that ~(w;) = d1b*c**=1) and then it must re-
duce w; to a word wy such that h(w;) = akbkck(=1) Byt
these two reductions violate the condition of monotonic-
ity — a contradiction to the monotonicity constraint of M.
Hence, the second inclusion is proper in all four proposi-
tions of the theorem. O

5 Conclusion

We have introduced the h-lexicalized restarting list au-
tomaton (LXxRLAW), which yields a formal environment
that is useful for expressing the lexicalized syntax in com-
putational linguistics. We presented a basic variant of the
Chomsky hierarchy of LxRLAW-automata, which can be
interpreted as a hierarchy of classes of input, basic, and h-
proper languages, and a hierarchy of h-syntactic analyses
as well.

In the main part of the paper we have concentrated on h-
lexicalized (deterministic) hRLWW-automata fulfilling the
constraint of weak accepting form. We have stressed the
transparency of computations of these automata for their
basic and h-proper languages due to the complete correct-
ness preserving property. We believe that the automata
having the complete correctness preserving property con-
stitute a meaningful class of automata and that they cover
a significant class of languages, including the class CFL.

The newly added property of weak accepting form is
particularly important for computational linguistic, since
it allows to use finite observations (languages) for classi-
fications of classes of infinite and finite languages as well,
as we have shown in Section 4.3.

hRLWW-automata can be considered as a refined ana-
Iytical counterpart to generative Marcus contextual gram-
mars (see e.g. [8]) and Novotny’s pure grammars (see
e.g. [12]). Contextual and pure grammars work with the
(complete) generative correctness preserving property. We
have applied many useful techniques for the formalization
of syntactic analysis of Czech sentences from Ladislav
Nebesky (see e.g. [11]).

We plan in the close future to show a transfer from
the complete correctness preserving monotone hRRWW-
automaton to the complete correctness preserving mono-
tone LxRLAW-automaton without any restart, which in
fact works like a push-down automaton. Such an automa-
ton computes in linear time. It is also possible to obtain
similar hierarchies for this type of automata as for the
hRRWW-automata from Section 4.3.

We also plan to study some relaxations of the complete
correctness preserving property.

References

[1] Michal P. Chytil, Martin Platek, Jorg Vogel: A note on
the Chomsky hierarchy. Bulletin of the EATCS 27: 23-30
(1985)

[2] Petr Jancar, FrantiSek Mrdz, Martin Plitek, Jorg Vogel:
Restarting automata. In: Horst Reichel (ed.): FCT’95,
Proc., pages 283-292, LNCS 965, Springer, Berlin (1995)

[3] Petr Jancar, FrantiSek Mrdz, Martin Platek: Forgetting Au-
tomata and Context-Free Languages. Acta Informatica 33:
409-420 (1996)

[4] Petr Jancar, FrantiSek Mrdz, Martin Plitek, Jorg Vogel:
On monotonic automata with a restart operation. J. Au-
tom. Lang. Comb. 4: 287-311 (1999)

[5] Petr Jancar, Martin Plétek, Jorg Vogel: Generalized linear
list automata. ITAT 2004, Univerzita P. J. Safsrika v Kosi-
ciach, 2005, p. 97-105, ISBN 80-7097-589-X (2005)

[6] Markéta Lopatkovd, Martin Plitek, Vladislav Kubori:
Modeling syntax of free word-order languages: Depen-
dency analysis by reduction. In: Véclav Matousek, Pavel
Mautner, Tomas Pavelka (eds.), TSD 2005, Proceedings,
pages 140-147, LNCS 3658, Springer, Berlin (2005)

[7] Markéta Lopatkovd, Martin Platek, Petr Sgall: Towards a
formal model for functional generative description: Anal-
ysis by reduction and restarting automata. Prague Bull.
Math. Linguistics 87: 7-26 (2007)

[8] Solomon Marcus: Contextual grammars and natural lan-
guages. Handbook of Formal Languages, pages 215-235,
Springer, Berlin (1997)

[9] FrantiSek Mraz: Lookahead hierarchies of restarting auto-
mata. J. Autom. Lang. Comb. 6: 493-506 (2001)

[10] FrantiSek Mraz, Friedrich Otto, Martin Platek: The de-
gree of word-expansion of lexicalized RRWW-automata
— A new measure for the degree of nondeterminism of

(context-free) languages. Theoretical Computer Science
410: 3530-3538 (2009)

[11] Ladislav Nebesky: On One Formalization of Sentence
Analysis. Slovo a slovesnost, 104-107, (1962)

[12] Miroslav Novotny: With Algebra from Language to Gram-
mar and back (in Czech: S algebrou od jazyka ke gramatice
a zpét). Academia, Praha (1988)

[13] Friedrich Otto: Restarting automata and their relations to
the Chomsky hierarchy. In: Zoltan Esik, Zoltan Fulop
(eds.): Developments in Language Theory, Proceedings
of DLT 2003, pages 55-74, LNCS 2710, Springer, Berlin
(2003)

[14] Martin Platek: Two-way restarting automata and j-
monotonicity. In: LLeszek Pacholski, Peter Ruzicka (eds.):
SOFSEM’01, Proc., pages 316-325, LNCS 2234, Springer,

Berlin (2001)

[15] Martin Platek, Friedrich Otto, FrantiSek Mraz:
On h-Lexicalized Restarting List Automata,
Technical report, www.theory.informatik.uni-

kassel.de/projekte/RL2016v6.4.pdf, Kassel (2017)

