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Abstract: In this paper, we present our results on appli-
cation of reinforcement learning on full body control of
a humanoid robot. The task we try to learn is achieving
vertical position of robot’s torso from an initial position of
laying flat on the ground. Our experimental setup includes
an instance of the NAO robot in the Webots simulation en-
vironment. We use an actor-critic neural agent. As this
is a work in progress, we only train offline from a sample
of random movements. We present a series of experiments
on a simplified task and a final evaluation on the humanoid
robot control task that shows improvement over random
policy.
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1 Introduction

Nowadays, there are humanoid robot bodies available
with high degree of movement freedom. They are also
equipped with sensors, which provide large amount of in-
put from robot’s environment in multiple modes as well as
input from robot’s own body. This immense amount of in-
put data and freedom of actions poses a challenge of fully
exploiting robot’s potential.

In real-world environment, any movement is subject
to unpredictable deviations. When performing fixed se-
quences of movements, a robot will end up in a very dif-
ferent final position every time due to cumulating inaccu-
racies of every step in the sequence. Therefore, many sub-
tle and significant changes to originally planned sequence
need to be made continuously to compensate for stochas-
ticity of the real-world environment. A feasible control
policy needs to translate sensory readings to appropriate
action in every time step.

Complexity of such policy makes it very time consum-
ing to engineer using model-based methods. Also, it is
impossible to predict all situations a robot can encounter
in real-world. Ability to learn by reinforcement from the
environment is necessary for true autonomy. Therefore,
we aim to deploy and adapt reinforcement learning algo-
rithms to humanoid robotics.

Deploying reinforcement learning algorithms to a hu-
manoid robot is a difficult task as the dimensionality of
state and action space is high. Robot NAO, which we
use in our experiments, has 25 degrees of freedom. The

robot should learn to control its body by directly apply-
ing torque to its actuators. This means that all the dy-
namics of its body are responsibility of the learning al-
gorithm. As we have shown in our previous work [1], de-
ploying the Deep Deterministic Policy Gradient Algorithm
(DDPG) [2] yields very little results out of the box.

In this work, we evaluate applicability of actor-critic
agents to humanoid body control. We focus on testing the
capability of actor-critic method to infer the correct ac-
tion from available experience. We first compare multiple
common perceptron optimization methods to get best pos-
sible results on a simplified task. Then, we use the findings
from simplified task to set up an experiment with the robot
in a simulated environment, where we show an improve-
ment over random policy baseline.

2 Background

In the field of Reinforcement Learning (RL), we model
agent in its environment as a Markov Decision Pro-
cess (MDP). MDP consists of state space S, action
space A, transition dynamics given by probability density
P(st+1|st ,at), and a reward function R(s,a). By small let-
ters s and a we denote state and action respectively and
subscript them with t and t + 1 whenever the distinction
between subsequent time steps is necessary. In every time
step, agent observes the state of the MDP, picks an action
according to its policy π and receives a reward determined
by the reward function. The policy π is defined as proba-
bility of taking an action given the state agent has observed
π = P(a|s). Alternatively, policy can be constrained to a
deterministic form. Then, it is simply a function of state
that returns action to be performed at = π(st). In our work,
we use only the deterministic form of a policy.

We assume full observability of the environment. Under
this assumption, the state and its observation are equal.
They are often used interchangeably and in the rest of the
paper we use both these terms.

The neural actor-critic algorithms are model free ap-
proaches that learn a policy by function approximation.
The function approximation is used to evaluate utility (or
value) of actions in given state expressed as a single real
value. This evaluation function is called action value func-
tion and it is always denoted by Q(s,a). When the utility
of actions is known, it is possible to pick the most useful
one. Another commonly used term is a state value func-
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tion V (s), which evaluates utility of a state. The relation-
ship between the action value function and the state value
function is:

V (s) = maxaQ(s,a) (1)

2.1 Actor-Critic Agent and How it Learns

The DDPG algorithm utilizes an actor-critic neural net-
work architecture. The actor network implements the
deterministic policy. The critic approximates the action
value function Q(s,a), and the actor network is trained
to maximize the value of actions it outputs with re-
spect to the action value function the critic approximates.
The mathematical formulation of the actor is therefore
argmaxaQ(s,a).

The critic network is trained to minimize the error of
action value prediction. An action is valuable for the im-
mediate reward received upon taking it and also for all the
rewards received in future for which taking that specific
action was critical. Most often, the value of an action is
defined as exponentially weighted sum of future rewards:

Q(st ,at) =
∞

∑
i=t

γ irt+i (2)

where γ ∈ (0,1) is a discount factor that controls prefer-
ence of close or distant outcomes. The action value of this
form can be interpreted as an expected discounted cumu-
lative reward or as an expected discounted return.

An optimal policy picks the most valuable action in each
state. For such a policy, the Bellman Equation holds:

Q(st ,at) = rt + γQ(st+1,at+1) (3)

We take this relationship as an objective function for train-
ing critic network. The approximation error Yt in a time
step t can be obtained by a simple modification:

Yt = Q(st ,at)− (rt + γQ(st+1,at+1)) (4)

Since calculation of the error includes the approxi-
mated function Q(s,a) itself, the training bootstraps from
Q(s,a) = 0, or a random distribution of values close to
zero.

3 Related Work

The most inspiration we draw from the DDPG [2] algo-
rithm by DeepMind, which was our starting point. This
algorithm was already applied to control of robotic arms
with 7 degrees of freedom by Gu et al. [3].

Our previous work we tried to apply the DDPG al-
gorithm to the humanoid robot control task, which has
shown little success [1]. We continue this work by ex-
ploring deeper possible causes of failure. A major one is
most likely the regression accuracy. The mean error of
the critic network was around 0.7. Considering sample

standard deviation of reward values of around 0.62 this is
likely to seriously hurt the learning process while com-
bined with Bellman style propagation of discounted long-
term rewards.

The most closely related work to ours is probably an
example of learning a humanoid robot to stand up from
sitting on a chair by Iida et al. [4]. They also control di-
rectly joint torques and use an actor-critic architecture, but
with radial basis networks and Temporal Difference critic
updates. This means that their critic network approximates
the state value function. Its update rule is stated in equa-
tion 5.

∇V (st) = rt + γV (st+1)−V (st) (5)

Unlike Sun and Roos [5] or Tutsoy et al. [6], we do
not use animation primitives or inverse kinematics to lower
dimensionality of the task. We want to impose no restric-
tions to the freedom of movements created by learning al-
gorithm. This makes the problem much more challenging
and the solution more useful if we are successful. We also
do not want to rely on prior knowledge of body dynam-
ics like inverse kinematics. Relying on the model of the
specific device makes the method bound to it and makes
the solution on the accuracy of the mathematical model.
On the other hand, a model-free Reinforcement Learning
method has potential to find perfectly working behaviors
even for a damaged device with altered dynamics.

Beside the method we explore, there are Evolution
Strategies (ES) and Policy Gradient (PG) methods that
have also been successful in optimizing policies with con-
tinuous state and actions. Our method itself could be
called a to PG method as it improves the policy by follow-
ing its estimated gradient. However, it does so in quite an
unusual way compared to classic PG algorithms, as it de-
rives the gradient from a learned action-value Q(s,a) func-
tion. Therefore, it is also a Q-Learning approach. The PG
and ES methods are all competitive with the DDPG algo-
rithm we started with and they deserve careful evaluation
of applicability to NAO too.

Policy Gradient methods use a stochastic policy to gen-
erate a batch of randomized trajectories, then propagate
discounted returns to all recorded actions and update the
policy parameters in the ascent direction of likelihood of
greater returns. The Trust Region Policy Optimization al-
gorithm (TRPO) [7], a state of the art PG algorithm, uses
Fisher information matrix for parameter scaling indepen-
dency [8] and Kullback–Leibler divergence to normalize
the magnitude of gradient ascent steps.

Salimans et al. [9] achieve comparable results to TRPO
in MuJoCo physics simulator locomotion environments.
Their approach is an Evolution Strategy, that represents
the population by a factored gaussian distribution over
weights of the neural network, which implements the pol-
icy. As black box optimization methods, Evolution Strate-
gies work only with parameters perturbations and sampled
values of the objective function, which is the result of an
episode. The lack of per-transition evaluation of the deci-
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sions made by the policy is the main difference from PG
methods [8]. It also makes them generally less sample ef-
ficient. However, they are more suitable for paralleliza-
tion [9].

4 Approach

In following experiments, we use actor-critic neural net-
work architecture with offline learning from fixed sam-
ple of random trajectories. We focus on testing the ca-
pability of actor-critic method to infer the correct action
from available experience. A sample of trajectories gener-
ated by random policy should be enough to infer first few
moves from the initial state. A random policy is a pol-
icy that samples random actions uniformly over the action
space. Having the trajectories pre-generated also speeds
up our experiments.

We train without propagating long-term effects by boot-
strapping critic with the Bellman equation, as it could be
an undesirable source of variance. Therefore, the critic in
this case implements a straightforward regression of re-
wards from state and action pairs, which should be suffi-
cient for tasks in this paper. We implement both networks
as multilayer perceptrons with one hidden layer. We com-
pare results of stochastic gradient descend, ADAM opti-
mizer [10] and LBFGS optimizers and some hyperparam-
eters to find a setup that yields stable results.

The expected outcome is a policy that makes a reliable
partial progress towards moving the robot to the upright
posture. The fixed sample of random movements makes it
unlikely to accomplish the whole task, as the samples of
state and action are concentrated around the starting point
and will be missing further along the unknown optimal tra-
jectory.

4.1 Artificial Task

We start parameter exploration with a simpler artificial
task to lower computational costs, and make it possible
to perform more exhaustive search. More benefits of eval-
uating on an artificial task include elimination of noise and
availability of known optimal policy.

The artificial task is defined as follows:

• state - real vector s ∈ Rd . Represents agents position
in a d-dimensional space. Dimensionality d is a pa-
rameter of the task.

• action - a real vector a ∈ Rd of values in range ∈
[−1,1]. Represents a direction and distance in which
the agent wants to move.

• transition - st+1 = st +at .

• reward function - r(s,a) = ||s||− ||s+a||.

An episode ends when ∃c ∈ s;c > 3, which is considered
a failure. The agent has breached the boundary of allowed

space. As a successful completion of the task is consid-
ered when the agent gets to the zero-position closer than a
threshold value: ||s||< 0.001.

4.2 Getting up Task

The goal is to achieve a vertical posture of robot’s torso.
We measure how much a posture is vertical by readings
from accelerometer located in torso. In a vertical posture,
the acceleration on Z axis of the accelerometer is approx-
imately -9.8 ms−2 which equals gravitational acceleration
of the earth. To complete this task the robot does not need
to stand on its feet necessarily. Any stable sitting posture
is enough. The reward function r(st ,st+1) is defined for
every transition from state st to state st+1 as the difference
of the vertical acceleration (See equation 6). We denote an
acceleration measured on axis Z in state st as AccelZ(st).

r(st ,st+1) =−(AccelZ(st+1)−AccelZ(st)) (6)

The location of accelerometer in robot’s body is shown at
the figure 2.

A specific characteristic of this task is no implicit divi-
sion to episodes. The robot can make some progress to-
wards the goal. Whenever it makes a wrong move, it will
fall back to the initial position or some state along the way.
This effect of gravity exposes the agent to new states and
it is desirable to let the agent go on trying to learn inde-
pendence of initial position.

We suppose that this nature of the task makes it unfavor-
able for propagation of discounted return by bootstrapping
critic with Bellman equation. After a few rewarding ac-
tions, the robot will be in partially upright position, where
any imprecise movement can cause fall. While explor-
ing such states with random policy, there will be a strong
imbalance between subsequent actions that bring more
progress and rewards, and actions that cause the whole
progress to be lost. Bootstrapping too early, before the
subsequent correct actions have been sampled, will cause
incorrect inference of long-term action utility. Therefore,
we have decided to train only the immediate reward signal
prediction with the critic network.

4.3 Experimental Setup

All experiments take place in Webots simulator with single
instance of robot NAO. Figure 1 shows a block diagram of
the whole experimental setup for robotic task. Observation
of the environment includes:

• 25 joint angles that are to be reached and maintained
by servomotors.

• 25 actual measured joint angles

• 3 real values of gyroscope

• 3 real values of accelerometer

• 8 feet force sensors readings
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Figure 1: Block diagram of experimental setup. Boxes denote software components, ellipses denote data.

Figure 2: Location of accelerometer in robot’s body
and its coordinate system.

Some more sensory data are supported but are not avail-
able in the Webots simulator (e.g. joint absolute current
values). Image from two cameras is also available, but we
do not use this input yet.

In this environment, the policy controls directly the
torque applied to all 25 actuators in 13 joints. An illus-
tration of robot’s joints and their degrees of freedom pre-
sented on the figure 3. The action vector a ∈ (−1,1)25

specifies the fraction of maximum torque to be used in
positive or negative direction.

The implementation of action in this form for NAO
was not straightforward as NAO’s API has a built-in feed-
back control mechanism that maintains specified angles of
robot’s joints. The API allows to set new posture to be
maintained and a torque limit. To simulate direct torque
control, we set the torque limit for every joint and com-
pute the change in the maintained angle of i-th joint ∆αi
by following relationship:

∆αi = ωmax,i ∗ai ∗∆t (7)

Figure 3: Joints with their degrees of freedom marked.

Where the ωmax,i is the maximum rotation velocity of the i-
th joint (with full torque) and ∆t is a duration of the action.
This way we make sure that a joint is being moved with the
specified force during the whole interval ∆t and reaches its
destination angle right at the end of the action time frame.

4.4 Performance Metrics

There are several ways to measure how successful the
learned policy is. The more important of all metrics is
observation by a human expert. Only human expert is
able to tell whether what the robot is doing makes sense.
However, it is impossible to evaluate many trained models
this way as the time of human expert is precious. There-
fore, numerical measures are necessary to compare poli-
cies with each other to select a few suitable for evaluating
further.

A simple sum of collected rewards is not very informa-
tive metric for this task. Recall, that the reward function
returns the difference in accelerometer readings between
subsequent states. Then, the sum of collected rewards
up to timestep t is equal to accelerometer reading in time
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Table 1: Action errors achieved with different optimizer combinations

algorithm
critic

optimizer
actor

optimizer
mean action
error mean

mean action
error sd

mean maximum
action error

maximum action
error sd

optimal policy 0.000 0.000
actor-critic lbfgs sgd 0.073 0.2250 0.263 0.3524
actor-critic lbfgs adam 0.096 0.1001 0.337 0.2335
actor-critic adam sgd 0.134 0.2181 0.381 0.3890
actor-critic lbfgs lbfgs 0.188 0.1571 0.532 0.2282
actor-critic adam adam 0.199 0.2073 0.558 0.4048
actor-critic adam lbfgs 0.272 0.2175 0.648 0.3215
random policy 0.886 0.04277 1.494 0.2632
worst possible

policy 1.670 0.01607 2.000

step t plus the accelerometer reading in the initial state.
Suppose there are two policies π1 and π2. The policy π1
reliably achieves half of rewards that lead to target states
and falls 10 times during the testing episode. The policy π2
reliably achieves half of rewards that lead to target states
and falls 100 times during the testing episode. Then policy
π1 is obviously better and it is likely to end up with higher
score than π2. However, it is certainly not guaranteed as
the final posture of both policies is random variable.

The maximum cumulative reward is also not very infor-
mative measure. More precisely, by maximum cumulative
reward we mean the highest sum of rewards collected up
to some time step of a testing episode. See equation 8 for
formal specification.

maxt(
t

∑
i=0

r(si,ai)) (8)

This metric does not capture well the stability of learning.
Poorly trained models that result in very variable policies
can lead the robot near to the target posture occasionally
without really learning anything. Therefore, we expect
high variance of measurements of this metric.

The metric we consider most informative for the getting
up task is mean cumulative reward over all time steps of
the test episode. We define the mean cumulative reward
as:

∑n
t=0(∑

t
i=0 r(si,ai))

n
(9)

is number of time steps where n is number of time steps
of test episode. In other words, this metric is an average
verticality of robot’s posture weighted by time spent in that
posture. This metric is favorable to policies that can make
progress and also can maintain it or recover quickly after
fall.

5 Results

5.1 Artificial Task

A first experiment is presented in Table 1. We have com-
pared different optimization methods of actor and critic

Figure 4: Comparison of action errors achieved with
different optimizers for critic and actor respectively
for artificial task in 10 dimensions. Random policy
as a baseline.

networks for artificial task of 1 dimension. The presented
measures are mean and maximum action error during test-
ing episode. All results are averaged over 40 training at-
tempts. The error of an action is computed as a magni-
tude of difference from known optimal action. For critic
and actor 4 hidden units were sufficient for this task.
Adding more does not improve performance. The com-
pared optimization methods are ADAM, Limited memory
Broyden–Fletcher–Goldfarb–Shanno (lbfgs) and stochas-
tic gradient descend with annealed learning rate.

We include optimal policy, random policy and worst
possible policy for comparison. Optimal policy can be
easily derived from the artificial task definition. The worst
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Figure 5: Comparison of results achieved with different critic and actor hidden layer sizes. The red line marks average
performance of random policy.

policy can be derived from the same way as the optimal
policy and it is the exact opposite of it. The worst policy
computes the worst action available in each state. Random
policy samples actions uniformly over the action space.

We can see that all configurations produce policies
strongly biased towards the optimal policy. In further ex-
periments, we use the top two configurations.

Figure 4 shows the same comparison with artificial task
in 10 dimensions. The number of hidden units we needed
for these results was 160 for critic and 80 for actor. Adding
more hidden units brought only little improvement for
considerable computation time cost. Also, number of ran-
dom action samples was increased from 4000 to 12000.
Results on 10-dimensional artificial task also show im-
provement over random policy. However, the bias towards
the optimal policy is significantly weaker compared to 1
dimension. Therefore, we expect even smaller difference
between random policy and learned policy for the robot
control task.

5.2 Getting up Task

Figure 5 show comparison of results achieved with differ-
ent number of units in one hidden layer of critic and actor
networks. For every configuration, we show mean cumu-
lative reward over testing episode of 20 trained models.
This is a very early experiment, so we start from small
neural networks to save computation time. All configu-
rations achieved average score much higher than random
movements policy. However, the variance between poli-
cies trained with the same configuration is high and there
can be found policies that perform worse than random.
For the best configuration of actor of size 64 and critic
of size 256 the improvement over random policy can be
confirmed by two sample t-test (p-value: 0.00026).

Figure 6: Cumulative reward per simulation step dur-
ing an example testing episode.

An example of progress made by a trained policy dur-
ing a testing episode is shown in the Figure 6. This pol-
icy achieved mean cumulative reward score of 2.17. The
robot made a quick progress in getting off the ground and
then was able to maintain it with oscillations. The posture
usually reached with the well-trained policy is shown in
Figure 7. The robot was able to support its weight with
arms and push itself from the ground a bit. Since the first
few moves seem to be learned well, it looks reasonable to
gather another batch of experience by performing random
actions after those few successful steps. An exploration
schedule like this would almost certainly end up in a local
optimum. Nevertheless, it would be an interesting result
in this environment we suspect to be very noisy.

6 Conclusion

We have shown a partial progress in learning humanoid
robot control by actor-critic approach. The improvement
over random movements policy is clear but rather small.
Experiments with artificial task of varying dimensional-
ity show strong performance decrease in higher dimen-
sions despite more data provided. Results show, that more
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Figure 7: A reliably reached posture along the path to
getting up from the ground.

precise hyperparameter search could bring some improve-
ment of unknown magnitude. Therefore, feasibility of of-
fline actor-critic learning for humanoid robot body control
remains an open question.
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