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Abstract: Implicitly weighted robust regression estimators
for linear and nonlinear regression models include linear
and nonlinear versions of the least trimmed squares and
least weighted squares. After recalling known facts about
these estimators, a nonparametric bootstrap procedure is
proposed in this paper for estimates of their variances.
These bootstrap estimates are elaborated for both the linear
and nonlinear model. Practical contributions include sev-
eral examples investigating the performance of the nonlin-
ear least weighted squares estimator and comparing it with
the classical least squares also by means of the variance es-
timates. Another theoretical novelty is a proposal of a two-
stage version of the nonlinear least weighted squares esti-
mator with adaptive (data-dependent) weights.

1 Introduction

Regression methodology has the aim to model (describe,
estimate) a continuous variable (response) depending on
one or more independent variables (regressors), which
may be continuous and/or discrete. Such modelling finds
applications in an enormously wide spectrum of applica-
tions and allows to predict values of an important variable,
which is considered to play the role of the response, for
particular values of regressors.

Standard estimation methods in various linear and non-
linear regression models are known to be too vulnera-
ble (sensitive) to the presence of outlying measurements
(outliers), which occur in real data for various reasons,
e.g. measurement errors, different conditions or violations
of assumptions of the model under consideration.

Therefore, numerous robust regression methods have
been proposed since the development of robust statisti-
cal estimation in 1960s as diagnostic tools for classical
methods. Some of them can be understood as reliable
self-standing procedures tailor-made to suppress the ef-
fect of data contamination by various kinds of outliers
[20, 6, 2, 13]. In the course of time, the breakdown
point has become one of crucial measures of robustness,
which can be interpreted as a high resistance (insensitiv-
ity) against outlying measurements in the data and one
of crucial measures of robustness of statistical estimators.
The finite-sample breakdown point is defined as the mini-
mal fraction of data that can drive an estimator beyond all
bounds when set to arbitrary values [13].

While M-estimators represent the most widely used ro-
bust statistical methods, they have been criticized for their

low breakdown point in linear regression. Thus, other
methods with a high value of the breakdown point (asymp-
totically up to 1/2) are desirable, which are commonly de-
noted as highly robust.

This paper is devoted to the question of estimating the
variance of highly robust implicitly weighted estimators
in linear and nonlinear models, which has not been in-
vestigated in literature. After recalling the least weighted
squares estimator in Section 2, a bootstrap estimate of its
variance is described and illustrated in Section 3. The
methodology is further generalized to nonlinear regression
in Section 4, where also a two-stage version of the nonlin-
ear least weighted squares estimator is proposed and in-
vestigated. Three examples comparing the performance
of standard and robust methods in the nonlinear model are
presented in a separate Section 5 and conclusions are sum-
marized in Section 6.

2 Least Weighted Squares

This section recalls the least weighted squares estimator,
which is one of promising tools estimating parameters of
the standard linear regression model

Yi = β0 +β1Xi1 + · · ·+βpXip + ei, i = 1, . . . ,n. (1)

Here, Y = (Y1, . . . ,Yn)
T denotes a continuous response,

(X1 j, . . . ,Xn j)
T is the j-th regressor for j = 1, . . . , p and

e1, . . . ,en are random errors of the model. The least
squares estimator bLS of β = (β0, . . . ,βp)

T is well known
to be highly vulnerable to the presence of outlying mea-
surements in the data [13]. Therefore, numerous robust
regression methods have been proposed as alternatives to
the least squares.

The least weighted squares (LWS) estimator of β in the
model (1) represents one of available robust estimators,
which was proposed in [25]. It is based on implicit weight-
ing of individual observations, down-weighting less reli-
able observations, which might be potential outliers with a
high influence on the results. Thus, if suitable weights are
used, it may reach a high breakdown point [12].

The weights are assigned to individual observations af-
ter an (implicitly given) permutation, which is determined
only during the computation of the estimator. For a given
estimate b = (b0,b1, . . . ,bp)

T ∈ IRp of β , let a residual be
defined as

ui(b) = Yi−b0−b1Xi1−·· ·−bpXip, i = 1, . . . ,n. (2)
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Squared residuals will be considered in ascending order

u2
(1)(b)≤ u2

(2)(b)≤ ·· · ≤ u2
(n)(b). (3)

The LWS estimator of β denoted as bLWS is defined as

argmin
n

∑
i=1

wiu2
(i)(b) (4)

over b ∈ IRp for specified (given) magnitudes of nonneg-
ative weights w1,w2, . . . ,wn. We need to note that the
knowledge of these magnitudes is crucial for the estima-
tor to be properly defined (i.e. avoiding a circular def-
inition) as (3) are fixed as well allowing to assign the
weights directly to be non-increasing with respect to resid-
uals (cf. [25, 24, 23]). An adaptation of the approximate
algorithm of [20] may be used for computing the LWS al-
gorithm.

Concerning the choice of weights, a general recommen-
dation can be given to require the sequence w1, . . . ,wn non-
increasing with ∑n

i=1 wi = 1. Some choices (from the sim-
plest to the most complicated) include

• Linearly decreasing weights

wLD
i =

2(n− i+1)
n(n+1)

, i = 1, . . . ,n. (5)

• Linearly decreasing weights for a true level of con-
tamination ε ·100 %. Let us assume ε ∈ [0,1/2) and
h = dεne, where

dxe= min{n ∈ IN; n≥ x}. (6)

The weights equal

wi =

{
(h− i+1)/h, i≤ h,

0, i > h. (7)

• Data-dependent adaptive weights of [6]. With such
weights, the LWS estimator attains a 100 % asymp-
totic efficiency of the least squares under Gaussian
errors.

Weights according to (7) as well as the adaptive weights
of [6] ensure a high breakdown point of the LWS estima-
tor, which cannot be said about weights (5).

The least trimmed squares (LTS) estimator (e.g. [18])
denoted as bLT S represents a special case of the LWS with
weights equal either to zero or one. The LTS estimator
depends on the value of the trimming constant h, requiring

wh+1 = · · ·= wn = 0 and n/2 < h < n. (8)

The advantages of the LWS compared to the LTS in-
clude sub-sample robustness, more delicate approach for
dealing with moderately outlying values, robustness to
heteroscedasticity [23], the possibility to derive diagnos-
tic tools and to define a corresponding robust correlation
coefficient or estimator of σ2 [16, 17].

3 Nonparametric Bootstrap for the LWS

In this section, a new estimate of the variance for the least
trimmed squares and least weighted squares estimators is
proposed in Section 3.1. The proposal enables a system-
atic comparison of their estimation performances. An il-
lustration on a real data set is presented in Section 3.2.

3.1 Bootstrap Variance Estimation for the LWS
Estimator

The aim of this section is to apply resampling (bootstrap)
techniques to estimate varbLT S and varbLWS. The result-
ing bootstrap estimates are conceptually simple and can
be computed for real data in a straightforward (although
rather computationally demanding) way.

Let us first recall basic principles of bootstrap estima-
tion (bootstrapping), which has found a big popularity in
various statistical tasks. In general, bootstrap estimation
exploits resampling with replacement. Incorporating the
basic principles of bootstrapping, one may develop a great
variety of resampling techniques that provide us with new
possibilities of analyzing data. The range of bootstrap
methods is rather large, including residual bootstrap, non-
parametric bootstrap, semiparametric bootstrap, Bayesian
bootstrap etc. Also the terminology is not used in a unique
way. Unfortunately, not much can be said about properties
of bootstrap estimates on a general level. Interesting com-
parisons of bootstrap procedures in a regression setup (but
for the total least squares) were presented in [19], where
some bootstrap approaches are valid but some are proven
not to be consistent and thus not suitable.

In the specific task of estimating variability of regres-
sion estimators, the bootstrapping approach is very suit-
able. While the seminal work [3] described bootstrap es-
timation from a philosophical perspective, practical ap-
proaches to bootstrapping in linear regression were pro-
posed by subsequent papers [9] or [8]. Other theoretical
results were derived in [10, 11].

In this paper, we focus our attention to nonparametric
bootstrap. However, a residual bootstrap may be a suitable
alternative as well.

Under (1), we recall that

varbLS = σ2(XT X)−1. (9)

An explicit formula for varbLWS could be derived as anal-
ogy to [24]. Such result however remains impossible to be
directly computed for real data, as it depends on

• Unknown magnitudes of e1, . . . ,en,

• The asymptotic value of (XT X)/n, which can be
however hardly evaluated for a fixed sample size.

Such approach is also complicated because of the neces-
sity to express the weights by means of a weight function
and there is also a more restrictive assumption of normally
distributed errors. Therefore, we take resort to a bootstrap
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estimate of varbLWS. Its computation is described by Al-
gorithm 1, where the final estimate has the form of a boot-
strap covariance matrix in step 5. An analogous procedure
can be used for estimating varbLT S.

Algorithm 1 Nonparametric bootstrap for the LWS in lin-
ear regression.
Input: Data rows (Xi1, . . . ,Xip,Yi), i = 1, . . . ,n
Output: Empirical covariance matrix computed from in-

dividual estimates of γ̂LWS
1: Compute the least weighted squares estimator β̂LWS

of β in model (1)
2: for r = 1 to R do // repeat in order to obtain the em-

pirical distribution
3: Generate n new bootstrap data rows

((r)X
∗
j1, . . . , (r)X

∗
jp, (r)Y

∗
j ), j = 1, . . . ,n, (10)

by sampling with replacement from the original set
of data rows (Xi1, . . . ,Xip,Yi), i = 1, . . . ,n

4: Consider a linear regression model in the form

(r)Y
∗
j = (r)γ0 + (r)γ1(r)X

∗
j1 + · · ·+ (r)γp(r)X

∗
jp + (r)v j

(11)
with j = 1, . . . ,n and random errors v1, . . . ,vn

5: Estimate (r)γ = ((r)γ0, (r)γ1, . . . , (r)γp)
T in (11) by

the LWS
6: Store the estimate from the previous step as (r)γ̂LWS
7: end for
8: Compute the empirical covariance matrix from values

(r)γ̂LWS, r = 1, . . . ,R

3.2 Example: Linear Model for Investment Data

The aim of the following example is to compare variance
estimates of the LWS estimator with variances of other re-
gression estimators. An investment data set that considers
a regression of n = 22 yearly values of real gross private
domestic investments in the USA in 109 USD against the
GDP is used. We consider a linear model

Yi = β0 +β1Xi + ei, i = 1, . . . ,n, (12)

while the same data set was previously analyzed (consid-
ering another model) in [17].

The computations were performed in R software for the
least squares, Huber’s M-estimator (see [13]), LTS and
LWS. Table 1 presents estimates of the intercept b0 and
slope b1 together with packages of R software, which were
used for the computation. The bootstrap procedure of Sec-
tion 3.1 was used to find the covariance matrix of various
robust regression estimators and the results are also pre-
sented in Table 1. There, the standard deviation of all esti-
mates is denoted as s0 for the intercept and s1 for the slope.

For the least squares, the bootstrap estimates are very
close to the exact result (9). The number of bootstrap rep-
etitions within Algorithm 1 is chosen as 10000, which is

Estimator b0 b1 R package
(s0) (s1)

Least squares −582 0.239 base

(108.9) (0.016)
Huber’s −576 0.238 MASS

M-estimator (135.0) (0.020)
LTS −252 0.185 robustbase

(h = 13) (742.0) (0.106)
LWS −465 0.221 own code

(weights [6]) (207.2) (0.031)

Table 1: Results of the example with investment data of
Section 3.2. The classical and robust estimates of parame-
ters β0 and β1 (without brackets) are accompanied by non-
parametric bootstrap estimates of their standard deviation
(underneath in brackets) denoted as s0 and s1, which were
evaluated by the bootstrap procedure of Section 3.1.

sufficient for the asymptotics. Actually, we compared re-
sults obtained for 100 bootstrap samples and the results
were very close. This is in accordance with our experience
and a small number of bootstrap samples indeed seems to
be sufficient if a single constant is estimated rather than
the whole empirical distribution.

The smallest variance is obtained with the least squares
estimator. Huber’s M-estimator attains only a slightly
higher variance. The loss of the LTS is remarkable. How-
ever, we point out at the closeness of the LWS result (com-
puted with weights [6]) to the least squares or Huber’s M-
estimator compared to the very crude LTS result. Both the
LTS and LWS are highly robust, but their performance for
this data set without severe outliers reveals a great differ-
ence between them in terms of efficiency. The LWS can-
not be the winner and must stay behind the least squares,
but its retardation is only mild and its superiority against
the LTS shows that the LWS (perceived as a generaliza-
tion of the LTS) eliminates the main disadvantage of the
LTS, namely its low efficiency for non-contaminated sam-
ples [7].

To the best of our knowledge, the superiority of the
LWS compared to the LTS in terms of efficiency has never
been presented in the literature. Our result indicates a pos-
sibly strong argument in favor of the efficiency of the
LWS, at least for a single data set, while no theoretical
result on the relative efficiency of LWS compared to LWS
is available. Our result is empirical, which is obtained for
a rather simplistic data set with only a single regressor, was
obtained as an application of the nonparametric bootstrap
estimation of the robust regression estimates proposed in
Section 3.1.

80 J. Kalina, B. Peštová



4 Nonparametric Bootstrap in Robust
Nonlinear Regression

In this section, the standard nonlinear regression model is
recalled in Section 4.1 and the nonlinear least weighted
squares estimator in Section 4.2. A two-stage version of
the nonlinear least weighted squares is proposed in Sec-
tion 4.3 as an extension of the methodology of Section 3.1.
In addition, a two-stage version of the nonlinear least
weighted squares estimator is proposed and theoretically
investigated.

4.1 Nonlinear Regression Model

Let us consider the nonlinear regression model

Yi = f (β1Xi1 + · · ·+βpXip)+ ei, i = 1, . . . ,n, (13)

where f is a given continuous nonlinear function, Y =
(Y1, . . . ,Yn)

T is a continuous response and (X1 j, . . . ,Xn j)
T

is the j-th regressor for j = 1, . . . , p. By e1, . . . ,en we de-
note the model’s random errors. The classical estimator,
which is the nonlinear least squares (NLS) estimator of β ,
is vulnerable to the presence of outliers in the data.

The nonlinear least trimmed squares (NLTS) estimator
represents a natural extension of the LTS estimator to the
nonlinear model (13). The breakdown point of the NLTS
was derived already in [22], other properties were later in-
vestigated in [5]. The estimator may achieve a high robust-
ness, if of course a suitable value of h is used reflecting the
true contamination level in the data. An approximate al-
gorithm may be obtained as an extension of the algorithm
of [20]; however, it requires a tedious implementation and
we are not aware of any implementation of NLTS in sta-
tistical software.

4.2 Nonlinear Least Weighted Squares

This section recalls the definition of the nonlinear least
weighted squares (NLWS) estimator, which was proposed
as our extension of the LWS estimator from the linear re-
gression to the nonlinear model [14] and at the same time
a weighted analogy of the NLTS estimator. So far, theo-
retical properties of the NLWS have not been derived and
there is also no evidence in examples showing the robust-
ness and efficiency of the estimator.

In the model (13), let

ui(b) = Yi− f (b1Xi1−·· ·−bpXip), i = 1, . . . ,n, (14)

denote a residual corresponding to the i-th observation for
a given estimator b = (b1, . . . ,bp)

T ∈ IRp of regression pa-
rameters β = (β1, . . . ,βp)

T . Let us now assume the mag-
nitudes w1,w2, . . . ,wn of nonnegative weights to be given.
The NLWS estimator of the parameters in the model (1) is
defined as

argmin
n

∑
i=1

wiu2
(i)(b), (15)

where the argument of the minimum is computed over all
possible values of b = (b1, . . . ,bp)

T and the residuals are
arranged as in (3).

The choice of weights has a determining influence on
properties of the NLWS estimator. If it is allowed to have
zero weights for the most outlying observations, then the
estimator can be conjectured to be highly robust, which
follows directly from the assignment of implicit weights
to the observations in (15). Again, weights (7) (but not
(5)) ensure a high breakdown point. The NLWS estimator
with such weights is highly robust from the same reasons
as the LWS estimator in the linear regression. The main
reason for the robustness of the NLWS estimator is the
construction of the estimator itself, just like for the LWS
estimator in the linear regression.

An approximate algorithm for the optimization task (23)
can be obtained as a straightforward adaptation of the LTS
algorithm for the linear regression (cf. [20, 14]); neverthe-
less, its properties in this context have not been investi-
gated. Empirical investigations will be performed on real
data sets in Section 5.

4.3 Two-stage NLWS

In this section, a version of the NLWS estimator is pro-
posed, which constructs data-dependent adaptive weights.
The estimator has a two-stage structure and is inspired by
a two-stage LWS estimator of [6].

Čížek [6] proved his two-stage estimator with quantile-
based adaptive weights in the linear model to possess
a high breakdown point and at the same time a 100 %
asymptotic efficiency of the least squares under Gaussian
errors. Further, he evaluated its relative efficiency to be
high (over 85 %) compared to maximum likelihood esti-
mators in a numerical study under various distributional
models for samples of several tens of observations.

We propose a two-stage estimator denoted as 2S-NLWS
which can be described as an improved version of the
NLWS estimator which contains a construction of data-
dependent adaptive weights. The model (13) is consid-
ered. The computation of the 2S-NLWS starts with an ini-
tial highly robust estimator β̂ 0 of β and proceeds to pro-
posing values of the weights based on comparing the em-
pirical distribution function of squared residuals with its
theoretical counterpart assuming normality.

In the first stage, it is crucial to choose a suitable initial
estimator, because it influences the properties of the re-
sulting 2S-NLWS estimator. Therefore, it is recommend-
able to use a consistent estimator which is highly robust,
i.e. NLTS with h between (say) n/2 and 3n/4 or NLWS
with weights (7). Residuals of the initial fit will be de-
noted as u0

1, . . . ,u
0
n. We will need the notation

(
G0

n
)−1 for

the empirical quantile function computed from these resid-
uals, F−1

χ for the quantile function of χ2
1 distribution and

bn = min
{m

n
; u2

(m) > 0
}
. (16)
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In the second stage, the weights for the 2S-NLWS es-
timator are constructed. They are defined by means of
a weight function w̃(t) for t ∈ [0,1], where

w̃(t) =
F−1

χ (max{t,bn})
(G0

n)
−1 (max{t,bn})

. (17)

In other words, weights for a fixed number of observa-
tions n are given as

w̃(t) =
F−1

χ (t)

(G0
n)
−1 (t)

for t ∈
{

1
2n

,
3

2n
, . . . ,

2n−1
2n

}
.

(18)
The computation of the 2S-NLWS estimator is straight-

forward. In a non-contaminated model, the 2S-NLWS es-
timator can be easily proven to have a full efficiency of the
least squares, just like in the linear case [6].

Theorem 1. Random vectors X1, . . . ,Xn are assumed to be
independent identically distributed. Let e1, . . . ,en be inde-
pendent identically distributed, independent on X1, . . . ,Xn
and fulfilling ei ∼ N(0,σ2) for each i. Let the initial es-
timator β̂ 0 be consistent with a corresponding consistent
estimator of σ2. Then it holds

w̃(t) P−→ σ2 for each t ∈ (0,1), (19)

where P−→ denotes the convergence in probability.

Proof. Analogy of [6].

Corollary 1. Under the assumptions of Theorem 1, the
2S-NLWS estimator β̂2S−NLWS fulfils

β̂2S−NLWS
P−→ β . (20)

Concerning other properties of the 2S-NLWS estimator,
the breakdown point seems to require much more effort
to be derived. Nevertheless, it remains clear that robust-
ness properties of the 2S-NLWS are strongly influenced
by those of the initial estimator.

5 Examples on Robust Estimation in
Nonlinear Regression

This section presents three examples investigating the per-
formance of various estimators in the nonlinear regres-
sion, especially focused on the soundness of the pro-
posed methodology of Section 4. An example illustrat-
ing the performance of the NLWS estimator in both non-
contaminated and contaminated data is presented in Sec-
tion 5.1. The next example in Section 5.2 investigates
the tightness of an approximate algorithm for computing
the NLWS estimator. The final example presented in Sec-
tion 5.3 exploits the nonparametric bootstrap estimation of
the variance of various estimators in the nonlinear regres-
sion model.

Estimator b1 b2

Original data set
NLS 190.8 0.060

NLTS (h = 18) 191.6 0.061
NLWS (weights [6]) 191.4 0.061

Contaminated data set
NLS 193.9 0.067

NLTS (h = 18) 191.8 0.060
NLWS (weights [6]) 191.6 0.061

Table 2: Results of example with real data of Section 5.1.
Classical and robust estimators of β1 and β2 in the nonlin-
ear regression model are computed in the original as well
as contaminated version of the data set.

5.1 Example: Puromycin Data

This example has the aim to compare the performance
of classical and robust estimators in the nonlinear model.
This will be performed on a real data set without appar-
ent outliers. To show the sensitivity of the NLS and on
the other hand the robustness (resistance) of the NLTS and
NLWS, the computations are repeated on a modified ver-
sion of this data set, which contains one outlier.

A standard data set called Puromycin with n = 23 ob-
servations, which is available in the package datasets of
R software, is considered. The reaction velocity (rate) Y is
explained as a response of the substrate concentration X in
the nonlinear regression model

Yi =
β1Xi

β2 +Xi
+ ei, i = 1, . . . ,n, (21)

where the aim is to estimate regression parameters β1
and β2.

The results of the least squares and NLWS estimators
are shown in Table 2. The NLWS estimator turns out to
perform reliably on a data set contaminated by outlying
measurements as well as on data without such contami-
nation. In addition, we verified the constant R = 10000
in Algorithm 1 to be more than sufficient in the nonlinear
regression model and a moderate sample size.

Further, we also consider a contaminated data set, ob-
tained by modifying the value of the observation in the
Puromycin data set. Particularly, the substrate concentra-
tion (i.e. the regressor) of the first observation was modi-
fied from 0.02 to 0.05 to become the only outlier in the data
set. This reveals the influence of a (local) change of one
observation on the results and reveals the true advantage
of the robust estimators. Robust estimates namely remain
almost unchanged, while the contamination is revealed on
the NLS estimator. In other words, the NLS starts to differ
from the robust estimators, while all estimates were much
more similar for the original data set.
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Figure 1: Data in the example of Section 5.2.

Figure 2: Results of the example of Section 5.2. The
NLS (circles) and NLWS (triangles) in the example of Sec-
tion 5.2.

5.2 Example: Simulated Data

The performance of the NLWS estimator will be now illus-
trated and investigated on a numerical example with simu-
lated data. The data set consisting of 8 data points is shown
in Figure 1. The nonlinear regression model is used in the
form

Yi = β0 +β1(Xi−β2)
2 + ei, i = 1, . . . ,n, (22)

where Y1, . . . ,Yn are values of the response, X1, . . . ,Xn val-
ues of the only regressor, β0, β1 and β2 are regression pa-
rameters and e1, . . . ,en are random errors. Figure 2 shows
fitted values corresponding to the NLS fit and also the

Loss function
Estimator (23) (24) (25)
NLS 23.44 2.47 1.21
NLTS (h = 5) 46.06 1.93 1.11
NLWS (weights (5)) 70.94 6.82 0.67

Table 3: Results of the example with simulated data of
Section 5.2. Values of various loss functions computed for
the NLS, NLTS and NLWS estimators.

NLWS fit with the linearly decreasing weights. The NLS
fit has the tendency to fit well also influential data points.
The robust fit better explains a subset of data points, while
it considers data points corresponding to larger values of
the regressor to be outliers.

Table 3 gives values of loss functions

n

∑
i=1

u2
i (b), (23)

h

∑
i=1

u2
(i)(b) (24)

and
n

∑
i=1

wiu2
(i)(b) (25)

corresponding to the NLS, NLTS and NLWS, respectively.
These are evaluated for all of the three estimates.

The NLS estimator minimizes (23) as expected and thus
can be expected to yield also a rather small value of (25).
The NLWS estimator has a much larger value of (23) com-
pared to the NLS fit. However, the algorithm used for com-
puting the NLWS has found even a much smaller value
of (25) than the NLS. On the whole, the results of Table 3
thus give a clear evidence in favor of the reliability of the
algorithm for computing the NLWS estimator.

5.3 Example: Nonlinear Model for Investment Data

The bootstrap based variance estimation procedure de-
scribed in Section 3.1 can be also utilized in the context of
nonlinear regression models. The following example in-
corporates such an approach in order to compare the vari-
ances of the NLS, NLTS, and NLWS estimators.

The validity of the nonparametric bootstrap in linear re-
gression model (i.e., Algorithm 3.1) is, however, going to
be verified only via a simulation study. Theoretical jus-
tification of the nonparametric bootstrap procedure needs
to be provided by a formal proof with properly stated as-
sumptions. In general, bootstrapping should be used with
caution, because the nonparametric bootstrap algorithm
does not always provide a consistent estimate.

The same data set is used as in Section 3.2. This time,
a nonlinear regression model

Yi = β1(Xi− X̄)2 +β2Xi +β3 + ei, i = 1, . . . ,n, (26)

is considered, where the centering of the regressor using
its mean X̄ is done for the sake of numerical stability.

Three robust estimators are computed together with
bootstrap estimates of their variances. The results are
shown in Table 4. The conclusions are analogous to those
of the example in Section 3.2, namely the NLTS estima-
tor loses its efficiency very much compared to the NLS.
The NLS remains to be the most efficient, i.e. retains the
smallest variance for the data set which does not contain
severe outliers. Still, the NLWS loses relatively little com-
pared to the NLS while it is able to outperform the NLTS
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Estimator β1 β2 β3
(s1) (s2) (s3)

NLS 3.7 ·10−5 0.22 98
(3.4 ·10−5) (0.07) (74)

NLTS 4.1 ·10−5 0.25 112
(h = 13) (1.8 ·10−4) (0.36) (381)
NLWS 4.0 ·10−5 0.25 107

(weights (5)) (6.7 ·10−5) (0.13) (140)

Table 4: Results of the example of Section 5.3. The classi-
cal and robust estimates of parameters β1, β2, β3 computed
for (26) are shown without brackets and accompanied by
bootstrap estimates of their standard deviation denoted as
s1, s2 and s3 shown in brackets.

strongly. Thus, we can say that the NLWS estimator is
able to combine the robustness with efficiency reasonably
well, in comparison to the non-efficient (but much more
renowned) NLTS estimator.

6 Conclusions

This paper investigates robust estimator for the linear and
nonlinear regression methods and nonparametric bootstrap
approaches to estimating its variance. Implicitly weighted
estimators are considered, which include the least trimmed
squares and least weighted squares (in linear and nonlinear
versions).

After recalling the state of the art on implicitly weighted
robust estimation in Section 2, a bootstrap method for es-
timating the variance of the LWS estimator is proposed in
Section 3. A numerical example shows the LWS to have
a much smaller variance compared to the more popular
LTS estimator, which reveals another strong argument in
favor of the LWS estimator and questions whether the LTS
estimator deserves to be the most common highly robust
regression estimator.

Considerations for the linear regression are further gen-
eralized to nonlinear regression. Thus, the main contribu-
tion can be found in Section 4 on the NLWS estimation,
which has not been much investigated in the references
so far. Our work is devoted to a bootstrap estimate suit-
able for estimating the variance of the NLWS estimator.
In addition, a new version of the estimator is proposed,
which computes data-dependent adaptive weights. Their
construction allows to define the 2S-NLWS, which is im-
proved compared to the basic NLWS in terms of efficiency.

Several examples reveal the suitability of the idea of the
NLWS for modelling a nonlinear trend in the data. It also
follows from the set of examples that an approximate al-
gorithm, which is available for the NLWS, turns out to be
reliable. The examples also give a warning that the NLWS
estimator behaves in a rather intricate way and the estima-
tor is much more complex compared to linear regression.

We also computed nonparametric bootstrap estimate of
the variance of nonlinear estimators. These empirical re-
sults allow us to conclude that there seems a major advan-
tage of the NLWS compared to the NLTS, although the
NLS remains to be recommendable for data without se-
vere outliers. The NLWS seems to be close to a reason-
able combination of the efficiency (for normal regression
errors) with high robustness (for models with contamina-
tion), which represents a dream of robust statisticians since
the dawn of robust statistical inference.

The examples investigated in this paper lead us also to
formulating the following disadvantages of robust estima-
tors in nonlinear regression:

• They require various tuning constants with a difficult
interpretation;
• Various robust methods yield rather different results;
• Computational intensity;
• Robustness only with respect to outliers but not to

a misspecification of the model.

Important limitations of the robust nonlinear estima-
tion include a non-robustness to small modifications of the
nonlinear function f in the model (see [2]). Robust non-
linear estimators also require rather tedious proofs of their
properties.

Some of the properties of robust estimators valid in the
linear regression are not valid in the nonlinear model at
all. As an example let us mention diagnostic tools, which
can be derived for robust estimators in linear regression,
but would be rather controversial in the nonlinear model
[15]. The results on simulated data in Section 5.2 reveal
that the residuals are far from homoscedasticity, even if
the assumption of homoscedastic disturbances in the re-
gression model is fulfilled. Thus, we find residuals to be
unsuitable for making conclusions about the disturbances
(random errors). While tests from the linear regression are
no longer valid for the NLWS estimator, we do not rec-
ommend to use residuals even for a subjective diagnostics
concerning the disturbances.

We intend to apply the robust regression methods of this
paper within a future research in the area of metalearning,
which aims at comparing the suitability of various ma-
chine learning methods for different data. Robustifying
metalearning for regression methods is however not only
a matter of using robust regression methods, but the pro-
cess of metalearning itself suffers from instability [21] and
a robust analogy of the whole process of metalearning is
highly desirable to be performed in a complex and system-
atic way.
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