
Using a Hybrid Algorithm for Lemmatization of a 
Diachronic Corpus 

Raoul Karimov1[0000-0003-0313-0903],  Maria Samkova1[0000-0001-6803-2701], Svetlana Ni-
kitina1[0000-0002-1975-1256], Andrei Akinin1[0000-0001-5214-6819] 

1 Chelyabinsk State University, Chelyabinsk, 454001, Russia 
raoul.karimov@hotmail.com, maria.a.samkova@gmail.com, 

sanik09@list.ru, akinin96@gmail.com 

Abstract. Lack of lemmatization often undermines the quality of concordances, 
which is especially relevant for diachronic corpora. A significant part of lem-
matizers are designed for Modern English. This paper presents MiddleEng-
lishLem, an application designed for dictionary-based lemmatization of Middle 
English texts. We use a hybrid algorithm to lemmatize the Helsinki Corpus of 
English Texts, a long-time-span diachronic corpus that includes Middle English 
texts of different genres, a total of 608 570 words. MiddleEnglishLem is capa-
ble of associating multiple inflected forms and orthographic varieties with ca-
nonical forms. Lemmatization becomes more accurate owing to comprehensive 
premade dictionaries. The competitiveness of this lemmatizer is proved by the 
low average errors – less than 2.5 percent, whereas its prebuilt stemmer has a 
strength of 0.38, a relatively high value. Accuracy of the lemmatization process 
can be improved by implementing syntagmatic analysis at the part-of-speech 
identification step. MiddleEnglishLem can be applied to diachronic corpora in 
order to research the development of English. 

Keywords: Concordance,·Lemmatization,·Diachronic Corpus,·Computer simu-
lation,·Hybrid Algorithm,·Software Development. 

1 Introduction 

The authors of this paper have carried out an experiment with the diachronic part of 
the Helsinki Corpus of English Texts [1] to verify a glottochronology-based hypothe-
sis. The hypothesis holds that diachronic changes of a vocabulary are predictable 
using a specific set of mathematical models. Such calculus-based modelling uses 
frequency rank tables [2]. The experiment is considered invalid as the original Hel-
sinki Corpus of English Texts is not lemmatized, meaning that concordances list in-
flected forms as separate words, whereas we actually have to compare the frequency 
of superlemmas in two time-separated states of the vocabulary. This is where the 
issue of lemmatization arises, as the researchers are in need of better concordances. It 
has, however, been found out that there has been so far developed no algorithm for 
lemmatization of Middle English corpora. The existing lemmatizers/stemmers for 
Modern English texts are obviously inappropriate for this task due to significant mor-
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pho-logical discrepancies between these two diachronically separate forms of the 
English language. It is therefore our additional objective to create a program that 
would allow to lemmatize the Helsinki Corpus of English Texts. 

2 Classification of Algorithms. Overview of Existing 
Software 

To begin the development of a proprietary algorithm for lemmatizing the Helsinki 
Corpus of English Texts, we first of all had to decide which algorithm suits our needs 
better and which existing software could probably be applied. V.A. Yatsko [3] states 
that inflected words can be stem-associated by means of simple stemming or lemma-
tization. Existing stemmers and their types can be classified as follows: 

Table 1. The classification of stemmers 

Stemmers per Hull 1996 [4] Stemmers per Jivani 2011 [5] 
Dictionary-
based 

Algorithmic Truncating Statistical Mixed 

Use a lexi-
con of 
lemmas 

Based on affix removal N-Gram 
and alike 

Inflectional/Derivational 
Corpus-based 
Context-sensitive 

Require a 
constantly 
updated 
lexicon 

Make errors of two types: 
Overstemming: different words stemmed to the same root 
Understemming: words that should be stemmed to the same root are 
not 

 
Lemmatization, according to Yatsko, differs from stemming in the approach to 

part-of-speech identification. Unlike stemmers of any type, lemmatizers identify parts 
of speech and take them into account when associating inflected forms with their 
respective lemmas. In the English language, words may be homographic yet belong-
ing to different parts of speech, making lemmatization a considerably more reliable 
approach when it comes to concordance-building. Besides, algorithmic stemmers are 
actually designed to reduce multiple inflected forms to their stems, and stems are not 
always identical to canonical forms. Lemmatization, on the other hand, is always 
aimed at returning such forms and not just stems. Stemming is therefore considered a 
simplified alternative to lemmatization, which can be unsuitable for some research 
objectives. S.Th. Gries and A.L. Berez, however, mention that multiple stem-
ming/lemmatization technologies can be combined to create a hybrid approach [6], 
which is going to be our case. 

As of today, two popular stemmers used for English corpora are the Porter Stem-
ming Algorithm by Martin Porter and the Lancaster Stemmer by Chris Paice and 
Garth Husk. While comparable in terms of stemming strength when applied to Mod-
ern English, none of these stemmers functions for Middle English, which is explicitly 
stated by Mr. Porter himself on his webpage. Yet capable of automatic normalization 
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of Early New English texts, i.e. correcting their orthography in accordance with the 
modern standards, the Porter stemmer will not cope with the complex morphology 
and non-codified writing of Middle English. The same applies to MorphAdorner, a 
popular lemmatizer which includes both the Porter stemmer and the Lancaster stem-
mer as importable modules. Thus, no piece of software we have been able to test 
could be used for our research, and an algorithm of our making has become a necessi-
ty. 

3 Research Material: The Helsinki Corpus of English 
Texts 

The experiment mentioned in the introduction used data extracted from the Helsinki 
Corpus of English Texts, which has a diachronic part covering the period of 730-
1710, i.e. from late Old English till Early Modern English. The total volume of the 
corpus is about 1.5 million words (or word occurrences), which breaks into circa 450 
texts belonging to philosophical, religious, scientific, fictional, educational and in-
structive writing as well as private correspondence. Dialectal division is present as 
well, with four dialects distinguished for Old English and five distinguished for Mid-
dle English. However, the main criterion used to group text samples together is their 
time of origins. 

The Helsinki Corpus of English Texts uses the COCOA tagging standard and is 
therefore compatible with the Oxford Concordance Program. However, tagging is 
only used in corpora files to indicate some non-linguistic or extra-linguistic parame-
ters of text samples, i.e. the date of creation, the date of manuscript-making, the au-
thor and their status, the dialect, etc. Within sentences, tags are used to distinguish 
Latin citations and editorial commentaries from the main text. That being said, the 
corpus as available via the Oxford Text Archives is neither syntactically parsed nor 
lemmatized. Due to the lack of lemmatization, the Oxford Concordance Program 
counts each inflected or orthographically different word form as a separate lexeme, 
which is why it returns incorrect statistical counts. 

For our main experiment, we chose two diachronically separate sections of the 
corpus, Sections MEI and MEII (see [7] for the explanation of such choice). There-
fore, we have a smaller corpus of approximately 210 thousand words to lemmatize, 
which is still a too significant amount, rendering any attempts of manual lemmatiza-
tion unfeasible. For automatic lemmatization, we decided to use the same sections as 
experimental samples to check the actual functionality and appropriateness of our 
lemmatizing script. If properly programmed, it should return a lemma list that can be 
imported in the Oxford Concordance Program so that the latter can build appropriate 
and accurate concordances for the same sections. 
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4 Challenges of Middle English Lemmatization. 
Methodology 

The linguistic nature of Middle English is very challenging when it comes to language 
processing; this paragraph is to analyze what kind of challenges we are facing and 
how we can cope with them while developing our lemmatization algorithm. 

The first and most obvious challenge is the phenomenon of suppletion, i.e. use of 
“inflected forms” that do not share any stem with their canonical forms. For instance, 
we had such forms as us, ur(e), which were not morphological derivatives of the dic-
tionary form. Suppletion has existed since Proto-Germanic into Old English, changed 
a little in Middle English [8] and is present in Modern English as well, most strikingly 
in pronouns. 

While manual lemmatization of suppletive forms is certainly not that difficult due 
to the small number thereof, this issue is further complicated by another peculiarity of 
Middle English, which is its non-codified orthography. Essentially, the graphical rep-
resentation of many consonantal and vocalic clusters was not standardized until the 
18th century, resulting in single words having multiple orthographic varieties. Those 
were not dialectal or even author-dependent, as even one text could contain, for in-
stance, both scylde and scilde (these are the same word, shield). C could be written 
instead of K and vice-a-versa, ou and u were mutually replaceable as well, and the 
same applies to such clusters as y/ge/i/ȝ/ghe (the prefix of the Participle II form). 
Gradually, th came to replace letters “thorn” and “eth”, but such replacement was not 
consistent until much later [9]. A simple solution would be to consider such mutually 
replaceable elements of writing as equivalent character combinations, but there might 
have existed some instances where the use of one such element had a differential 
effect. Non-codified orthography, however, is not limited to non-standardized use of 
some clusters; there are cases where versions of a single word are barely recogniza-
ble, e.g. bringen, the past (simple) form of which could be abrouhte and bryggte, 
further complicating any attempts at automatic processing of such texts. 

Strong verbs represent another significant challenge, as some of their forms have 
the root vowel changed, e.g. the past (simple) plural form of riden is roden. It should 
be taken into account, however, that unlike weak verbs, strong verbs did not have 
dental suffixes as markers of their past forms, a fact that may help enhance the algo-
rithm. The aforementioned participle II form of many verbs is another hereto related 
problem, as it often had a y/ge/i/ȝ/ghe prefix (a similar phenomenon is observable in 
Standard (or High) German of modern times). For instance, y-sungen was the Partici-
ple II for syngen [10]. Therefore, the morph-truncating algorithm should also include 
a verb-exclusive function to remove the prefix. This, however, may malfunction for 
verbs like yelden, where y is not a prefix but a part of the root. 

The primary issue, however, is part-of-speech determination. On the one hand, 
Middle English was rather rich in terms of morphology, and nominal parts of speech 
had specific sets of morphs. On the other hand, many morphs did coincide for nouns 
and adjectives. Finally, even having a very accurate preset list of morphs will not 
enable appropriate differentiation of morphs and morph-like letter clusters. For in-
stance, for weorde, which is a verb, -de is a suffix, but for Franclonde, which is a 
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proper noun, it is not. Therefore, part-of-speech tagging is not always possible by 
means of simple morph-truncating, meaning that the algorithm will require a preset 
dictionary listing already PoS-tagged lemmas. 

So far, we have come to a simple yet labor-intensive solution to combine both 
truncating and dictionary-based stemming, resulting in the creation of a dictionary-
dependent lemmatizer. This is a very conventional and somewhat obsolete approach, 
as modern algorithms mostly rely on finite-state transducers. However, we simply do 
not have sufficient volumes of data to train and refine an automaton-based machine. 
Besides, such an algorithm is far more difficult to develop, and we currently believe 
that even the manual preparation of a PoS dictionary makes more sense in our case. A 
dictionary like Mayhew and Skeat’s [11] can be used to build such lemma dictionary 
("the lexicon") listing both canonical forms and possible orthographic varieties. Using 
the lexicon will help distinguish nouns and verbs ending in similar letter combina-
tions, like the aforesaid Franclonde and weorde. The program will therefore have a 
number of premade files, one of which will list possible morphs for the morph-
truncating script, and others will list actual lemmas and their orthographic varieties. 
That being said, the program should be capable of: 

x searching for isolated (tokenized) words from Middle English samples in the pre-
made lexicon files; 

x truncating morphs at a length of 1 to 3 symbols from the last character of a word; 
x checking whether truncated morphs are found in the preset morph lists and whether 

they correspond to parts of speech as per the lexicon; 
x correct association of inflected forms and lemmas and further registration of such 

associations in the output file, which is to be imported in the Oxford Concordance 
Program for further analysis of the Helsinki Corpus of English Texts; 

x dealing with the strong verbs and overall inflectional peculiarities of verbs as a 
grammatical class; 

x returning an error log containing all the words that could not be lemmatized for the 
subsequent manual lemmatization thereof. 
The next paragraph describes the implementation of these functions. 

5 Computational Implementation. Experiments 

For the purpose of automatic lemmatization of Middle English texts, we have devel-
oped our own program titled MiddleEnglishLem using Python 2.7.9 as the program-
ming language. We have chosen this language because it provides well-developed 
high-level data structures as well as a simple and efficient approach to object-oriented 
programming. Besides, Python is perfect for script-making and fast development of 
multi-platform applications for various purposes. 

The application we have developed uses a set of input files, one of which is a plain 
text file that contains the corpus to process; another one is an .xslx file that enumer-
ates morphs and their respective PoS properties; the rest files are PoS-specific tabular 
dictionaries, i.e. noun.xlsx, verb.xslx, etc., containing pre-associated lemmas and their 
orthographic varieties as listed in Mayhew and Skeat’s (collectively, “the lexicon”). 
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The output of the application is recorded in two separate files, one for lemmatized 
words and their forms/varieties and one for errors (words the algorithm cannot pro-
cess). 

The algorithm functions by simple morph truncation. It truncates a sequence of one 
symbol, adding one more if a single end symbol is not sufficient for processing. Trun-
cated morphs are searched for in the morph set, the remainder of the token is searched 
for in the lexicon. As soon as the morph-associated part-of-speech tag matches that of 
the stem as indicated in the dictionary, the application records the token from the 
corpus in the tabulated output file under the lemma (if the latter is not present in the 
output file, it is copied from the lexicon). If the PoS tag is V (verb), the algorithm 
checks whether the participle II prefix is present and removes it. Verbal ablauts are 
not dealt with specifically as the lexicons list past tense forms for strong verbs. If the 
token cannot be processed after all steps are taken, it is written in the error log and 
skipped; the application then proceeds to the next token. 

To test the efficiency of our script, we decided to use Zipf’s law as an indicator of 
statistical representativeness: 
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where f is the relative frequency of a word in a corpus, 
k is the rank of the word, 
H is nth generalized harmonic number, 
N is the number of words in the corpus, 
s is the exponent value characterizing the Zipfian distribution of the text [12]. 
The exponent was found by least squares calculations in the R programming envi-

ronment, where we used the lzipf package. It is believed that the value should be as 
closed as possible to 1 for natural languages. For the raw (unprocessed) text of the 
MEI subcorpus, it was 0.8546697, which does not meet the requirement above. 
Whether the word frequency distribution in the sample matched or did not match 
Zipf’s law was verified by Pearson’s chi-square test: 
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where Oi is the total of all actual frequencies in the ith interval, 
Ei is the total of projected (Zipfian) frequencies in the same interval [13]. For cal-

culations, we divided the entire frequency table into 20 intervals with each subsequent 
interval being shorter under the harmonic principle; thus we had 18 degrees of free-
dom; at a 0.95 confidence interval, the chi-square distribution quantile for 18 degrees 
of freedom equals 28.8693. The chi-square value we obtained per formula (2) for the 
non-lemmatized sample was 68.5504 which meant that the sample did not match 
Zipf’s law. 
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The sample was then lemmatized using MiddleEnglishLem; exclusive of Latin ci-
tations and proper names, the application returned 550 words, which amounted to 
circa 3% of the number of ranks in the pre-lemmatization frequency table. Lemmati-
zation also reduced the number of such ranks by 34%, i.e. a third of the entire volume 
became associated with other lexemes in the table. The s value for Zipf’s law was 
recalculated and found equal to 0.9625564. The chi-square was recalculated as well 
and equaled 26.52005. As this value was less than the quantile in our case, post-
lemmatization word frequency distribution in the sample was confirmed to be in line 
with Zipf’s law, a fact we believe proves that MiddleEnglishLem can help improve 
the statistical representativeness of MiddleEnglishTexts. 

6 Conclusion: Unresolved Issues and Further 
Development 

We have so far developed an algorithm allowing to lemmatize Middle English texts at 
a relatively low error rate; the built-in stemmer of our own making is considerably 
strong due to the natural morphological complexity and relatively poor vocabulary of 
Middle English. However, it will take more time and effort to prepare a full-fledged 
lexicon and apply the algorithm to the Helsinki Corpus of English Texts Middle Eng-
lish sections in their entirety. Besides, the algorithm still does not deal with some 
orthographic ambiguities of this language, i.e. it is not capable of recognizing charac-
ter clusters with graphical varieties like c/k or u/ou. This may result in significant 
understemming, if such varieties are not included in the input lexicon files. On the 
other hand, some grammatical forms of different lexemes can be homographic, e.g. fet 
as a 3SGPresInd form of a verb, and fet as a noun. This issue, which in rare cases may 
lead to overstemming, can be solved by implementing syntagmatic analysis at the 
part-of-speech identification step, as non-functional parts of speech naturally tend to 
occur in certain syntactic structures [14]. The morphological complexity of verbs, 
especially strong verbs, is also a problem to be solved; we can further address the way 
it is dealt with in lemmatization algorithms for Standard German, where similar com-
plexity exists. These three issues will be our main priorities when attempting to en-
hance the algorithm further. 

One more challenge we are facing that will require very thorough analysis is the 
non-codified orthography of Middle English. While adding multiple orthographic 
varieties to the lexicon is a suitable solution, it means our program is only semi-
automatic and still requires a lot of manual preparations. Use of finite-state transduc-
ers, a completely different approach, could be a solution to this problem if we had 
larger text samples for proper supervised machine learning. However, the approach 
will be discussed in further works. 
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