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Abstract. This work addresses the issue of building a free NLP pipeline
for processing Russian texts all the way from plain text to morpho-
logically and syntactically annotated conll. The pipeline is written in
python3. Segmentation is provided by our own module. Mystem with
numerous postprocessing fixes is used for lemmatization and morphol-
ogy tagging. Finally, syntactical annotation is obtained with MaltParser
utilizing our own model trained on Syntagrus, which was converted into
conll format for this purpose, with morphological tagset being converted
into Mystem/NRC tagset with numerous special fixes.

Keywords: natural language processing, dependency parsing, syntactic
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1 Introduction

This work builds upon the works of J. Nivre et al. [1] dedicated to training
MaltParser models on Syntagrus, and the research conducted by S. Sharoff in
2011, [2] which addressed an issue of building assorted NLP tools for Russian
language by utilising fully statistical approach. Our initial goal was more mod-
est and at the same time more ambitious as we were set to build a reasonably
accurate NLP pipeline including all stages from text segmentation to syntactic
annotation, resorting to whatever tools looked reasonable to use at each stage.
The point was that the pipeline in question should ideally be designed so that
any person lacking advanced programming skills would be able to use it. In the
process, we created our own rule-based segmentation module, mobilized Mys-
tem [3] to serve as both tokenizer and morphology tagger, created post-mystem
correction module to improve the results of Mystem doing its job, and trained
a bunch of models for MaltParser building upon research conducted by Kira
Droganova [4]. Fig. 1 provides the general scheme of the resulting pipeline.

The article structure is as follows. Sections 2—4 cover segmentation, mor-
phology, and syntax modules respectively, with basic outline of workflow, results
regarding accuracy, and most prominent errors for each module. Section 5 is ded-
icated to overall pipeline quality. Section 6 addresses web interface and source
code. Section 7 contains conclusions and further plans.
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Fig. 1. Pipeline workflow

2 Segmentation

MaltParser operates on a sentence-to-sentence basis. Therefore, correct segmen-
tation is crucial for correct syntactic parsing. For this task we designed our own
rule-based segmentation module, which was written in python3 with rule pat-
terns determined using perl-style regular expressions. Since MaltParser model is
trained on Syntagrus, we kept in mind that segmentation rules should mostly
stick to what is prominent for Syntagrus, yielding us, e.g., semicolons as ends of
sentences.
Segmentation module workflow is as follows:

1. Detect all potential ends of sentences:
— Always considered end of sentence:
e semicolon;
e colon followed by dash;
e line break.
— Considered candidate end of sentence:
e Any number of dots, question marks, and exclamation marks in any
combination followed by a capital letter.
2. Override special cases:
— Abbreviation patterns:

o []



e [r.e] — any lower-case/upper-case letters with dot in between.
o [r. e] — any lowercase letter after dot and whitespace.
o [II. 1. Yaiikosckuit], [Yaiikosckuit I1.1.] — dot preceded by a single
uppercase letter.
— Quoted speech and explanation patterns involving quotations and paren-
theses: «IIpexpamuls — sockaurnya Iennadut. / “Stop it!” — Gennady
ezxclaimed.

Accuracy was measured manually on 1, 000 sentences designed specifically for
testing of segmentation modules, and proved 99.5%. The test set was provided
by O. Lyashevskaya.

The most typical patterns that may cause wrong segmentation are as follows:

— addresses or amounts of money: 25 py6. 33 xon.
— emoticon and emoji patterns.

3 Morphology

Morphology module as a whole works the following way:

1. Mystem [3] provides the bulk of segmentation, morphology tagging, and
lexical disambiguation.

2. Undeclined nouns and abbreviations are detected and given special ‘nonflex’
tag in place of case and number.

3. TreeTagger [5] model trained by A. Fenogenova et al. [6] is used for case and
number disambiguation for nouns and adjectives.

4. Multiword expressions are fixed using a dictionary obtained from Syntagrus.

5. A number of minor fixes mainly concerning correcting tokenization of punc-
tuation marks is applied.

3.1 Undeclined Nouns and Abbreviations

Undeclined nouns such as xogie / coffee are given special treatment because being
what they are they do not really have case and number based upon their word
form. In fact, their case and number can only be somewhat determined from
their relations with other words in the sentence. Since we wanted to base our
syntactical annotation on morphology and not vice versa, the decision was made
to consider case and number of undeclined nouns undetermined (using special
‘nonflex’ tag in place of case and number). The same goes for abbreviations such
as CCCP | USSR, s. (sex | century) or II. (Ilemposuw) / P. (Petrovich) in a
way that Mystem does not reconstruct the full form for the abbreviation, thus
basically rendering them as undeclined nouns.

A noun is considered undeclined using a simple heuristic. If Mystem produces
12 or more possible annotations for one word, it is ‘nonflex’ for both case and
number. If the number of annotations is less than 12 but more than 6 for either
plural or singular number, it is ‘nonflex’ for case but not for number.



3.2 Resolving Morphological Ambiguity

The issue with Mystem is that it only comes equipped with lexical disambigua-
tion feature, but not with morphological one, e.g., it can perfectly tell preposition
6 / in, into from abbreviation & (sex / century) (though it does not reconstruct
the original lemma for abbreviation), but is not designed to choose the correct
case for noun from homonymous forms, e.g., ‘S inan nom sg’ vs. ‘S inan acc sg’
for mpyn / corpse.

To address this problem, we use TreeTagger with parameter file trained by
A. Fenogenova et al. [5] on disambiguated part of RNC to choose morphological
annotation for nouns and adjectives from those provided by Mystem. This fix
provides roughly 5% increase in morphological annotation accuracy, as opposed
to just using the first morphological annotation available from Mystem.

3.3 Fixing Multiword Expressions

We also fix multiword expressions, e.g., xax 6 mo Hu 6w.ao0. Mystem gener-
ally does not recognize them as such therefore lemmatizing and annotating each
word separately. To resolve this issue, we had extracted a list of frequent mul-
tiword tokens from Syntagrus and created a dictionary. During postprocessing,
the tokens are stacked up and given morphological annotation according to this
dictionary. Honestly saying, that feature somewhat backfired on us while test-
ing the pipeline on Syntagrus as not all instances of such multiword expressions
are even annotated as multiword expressions in Syntagrus itself yielding a slight
drop in accuracy.

A number of minor fixes mainly concerning correcting the tokenization of
punctuation marks is also applied during postprocessing.

3.4 Accuracy and Common Mismatches

Common mismatches and accuracy scores for morphological tagging were mea-
sured for the partial pipeline going from plain text to morphologically annotated
conll. were obtained on the joint development and final test parts of Syntagrus
(see section 4.1 below) and converted to plain text. Strict accuracy, i.e., only
complete match of annotations for a token is a hit, is 88%. Part of speech ac-
curacy reached 97%. Most common mismatches extracted automatically using
python3 script are shown in Table 2. The first column shows the percentage of
specific mismatch among all tokens, the second shows the percentage of specific
mismatch among all mismatches. As can be clearly seen, the most prominent
mismatches can be divided into four distinctive groups:

1. Wrong case for nouns and adjectives.

2. Brevis adjective mistaken for adverb, e.g., nyorcro, doaotcho, useecmmo, mpyoHo,

HeobxoduMo.
Conjunction instead of particle, with the worst offender being u / and.
4. Conjunction instead of adverb, e.g., odnaxo, xax, noxa, xozda.

@



The third and the fourth columns refer to how particular mismatch in mor-
phological annotation directly affects syntactical labelling. LES and UES are
exact opposites of LAS and UAS (with E standing for error) meaning the third
column shows how many tokens with particular morphology error are labeled
with wrong head and/or relation type, and the fourth column shows how many
tokens with that morphology error are labeled with wrong head. For example, it
can be figured that wrong case for adjective is relatively harmless for syntactical
labelling, wrong case for noun is much worse, and erroneous CONJ instead of
PART or ADV is the most severe. Of course, wrong morphology tagging should
also have indirect impact on syntax, i.e., tokens with correctly detected mor-
phology might be affected by their less fortunate peers, but this effect is much
harder to measure.

Fig. 2. Most Common Morphology Mismatches

% tok | % err | LES UES tagged as in syntagrus
0.49% | 4.04% | 98.30% | 76.74% | CONJ PART
0.30% | 2.45% | 78.92% | 40.05% | S m inan nom sg S m inan acc sg
0.30% | 2.44% | 66.82% | 58.59% | ADV - A - -sgbrevn-
0.29% | 2.35% | 86.59% | 35.37% | S m inan acc sg S m inan nom sg
0.26% | 2.13% | 95.15% | 91.11% | CONJ ADV -
0.23% | 1.89% | 10.00% | 7.88% | A - nom pl plen - - A - acc pl plen - inan
0.22% | 1.80% | 85.99% | 51.27% | S n inan nom sg S n inan acc sg
0.21% | 1.72% | 15.72% | 11.37% | A - nom sg plen m - A - acc sg plen m inan
0.16% | 1.31% | 10.53% | 8.33% | A - acc sg plen m inan | A - nom sg plen m -
0.15% | 1.26% | 24.55% | 19.55% | A - acc pl plen - inan | A - nom pl plen - -
0.15% | 1.23% | 5.14% | 4.21% | S f inan loc sg S f inan dat sg
0.14% | 1.12% | 85.71% | 41.84% | S n inan acc sg S n inan nom sg
0.12% | 0.95% | 22.89% | 18.67% | A - nom sg plen n - A - acc sg plen n -
0.12% | 0.95% | 80.00% | 43.03% | S m inan nom pl S m inan acc pl
0.11% | 0.86% | 75.33% | 31.33% | S m inan acc pl S m inan nom pl
0.10% | 0.83% | 37.50% | 22.22% | S m anim gen sg S m anim acc sg

4 Syntax

4.1 Training MaltParser Model

Unlike rule-based segmentation module and mish-mash morphology module, syn-
tax module is fully statistical. It utilizes MaltParser with model trained on Syn-
tagrus. For the purposes of fine-tuning training settings and testing, Syntagrus
was split into three parts: training set (80%), development test set (10%) and
final test set (10%).

A series of experiments was conducted using different types of projective
and non-projective algorithms [4]. The most valuable results have been achieved



with pseudo-projective transformations provided by MaltParser functionality
and Nivre arc-eager algorithm. Accuracy of the obtained models was measured
with MaltEval [8] using Labeled Attachment Score and Unlabeled Attachment
Score evaluation metrics.

Current model for MaltParser has labeled attachment score (LAS) of 85.0%
and unlabeled attachment score (UAS) of 90.7%, which is an improvement over
the best figures reported by Sharoff with them being 83.4% LAS and 89.4%
UAS [2]. This was achieved via improved automated conversion of Syntagrus
morphological tagset into Mystem/NRC tagset.

4.2 Tagset Conversion

For the purpose of training MaltParser, xml format of Syntagrus was conversed
into conll, which is MaltParser operational format. Syntagrus morphological tags
[9], which come from ETAP-3 [10], were converted into Mystem/NRC tags (3,
7). Each annotation was processed the following way:

1. Special fixes were applied (see 4.3 for details).

2. POS-specific tags were detected using regular expressions.

3. Detected tags were replaced by their Mystem/NRC equivalents.

4. Some tags normally omitted in Syntagrus were reinstated (e.g., non-short
form for adjectives).

5. The resulting tags were output in regular POS-specific order.

4.3 Special Fixes

A number of Syntagrus peculiarities was fixed during conversion, the most no-
table being the following:

1. Personal pronouns are treated as nouns in Syntagrus and as such are always
treated as having gender and no person due to being a legacy feature from the
times when ETAP was French—Russian. They were converted into nominal
pronouns having person with gender marked only where appropriate.

2. 3rd person possessive pronouns such as ux / their are always considered
Genitive form of corresponding personal pronouns in Syntagrus, as the forms
are homonymous in Russian. They were converted into proper adjectives
based on their relation label: quasi-agentive and attributive relations always
constitute adjective pronoun, others are personal pronouns.

3. Some frequent adverbs annotated as particles, which indeed can be the case
depending on semantics but is relatively rare, were uniformly converted into
adverbs.

4. Which | womopwii annotated as noun was converted into adjective.

5. Single number numeral odur / one, which is the only Russian numeral to
retain number, is converted into noun for the purpose of not accounting for
number for other numerals.

6. Participles are converted into separate part of speech as their syntactical
behavior is much closer to adjectives than verbs.



7. Undeclined nouns were detected using the same procedure as in 3.1 and given
exactly the same treatment.
8. The same as above goes for abbreviations.

4.4 Common Mismatches

Common mismatches in syntactic labeling for the whole pipeline going from plain
text to fully annotated conll were obtained on joint set of development and final
test parts of Syntagrus. As can be seen from the Table 3, they are quite usual
for MaltParser models trained on Syntagrus. The most prominent types are:

1. Mixed up predicative and 1-completive relations.

2. Mixed up quasi-agentive and 1-completive relations.
3. Mixed up circumstantial and completive relations.
4. Wrong positional number for completive relation.

Errors of the first type exist mostly due to wrong case detection for nouns,
specifically ‘acc’ instead of ‘nom’ and vice versa, i.e., it is basically the question
of subject vs. direct object. Errors of the second type are almost exclusively
nouns in Genitive with other noun as head. The distinction is mostly semantic,
resulting in confusion for MaltParser. The third type consists mostly of prepo-
sitions with verb as head. The distinction is also largely semantic with such
relation considered completive if corresponding semantic role is considered part
of verb frame, and circumstantial otherwise, e.g., nepeesorcas na dawy / moved
to the villa vs. nepeesoican na aemo |/ moved for summer. Errors of the fourth
type have their roots in the fact that positional number for completive relation
in Russian is mostly determined by the semantics of verb frame, and as such is
easily messed up by MaltParser and even by annotators of the corpus themselves.

5 Overall Pipeline Quality

Total accuracy of the whole pipeline was also estimated, and though the figures
are not shocking high being 76.7% LAS and 84.1% UAS, their increase over the
course of development looks promising. It should also be noted that the authors
of this work are unaware of any other tool offering NLP pipeline for Russian
going from plain text to syntactic annotation working out of the box and at
the same time being free to use. The only one that might be comparable is the
pipeline put together by Sharoff himself in 2011, but it works out of the box
only for Linux-based systems, and we could find no reported results regarding
its overall accuracy.

6 Web Interface and Source Code

A deliberately simplistic web interface has been implemented on top of the
pipeline, which basically allows the user to upload plain text file in Russian



Fig. 3. Most Common Syntax Mismatches

% tok | % err | tagged as | in syntargus
0.55% | 7.45% | quasi-agent | 1-compl
0.48% | 6.44% | 1-compl predic
0.43% | 5.74% | 1-compl 2-compl
0.38% | 5.12% | predic 1-compl
0.37% | 4.97% | circ 1-compl
0.32% | 4.33% | 1-compl quasi-agent
0.32% | 4.26% | circ 2-compl
0.26% | 3.51% | 1-compl cire

0.25% | 3.41% | 2-compl 1-compl
0.22% | 3.00% | quasi-agent | attr

0.22% | 2.92% | 1-compl attr

0.18% | 2.42% | attr 1-compl
0.15% | 2.05% | 2-compl circ

0.11% | 1.45% | circ restr
0.09% | 1.18% | 2-compl 3-compl
0.09% | 1.15% | attr quant

and get it annotated in conll. It is available for unconditional use at http:
//web-corpora.net/wsgi3/ru-syntax/.

Offline version is supplied as a python3 library with command line inter-
face. The source code can be obtained from github at https://github.com/
tiefling-cat/ru-syntax. In order to use it, one would also need to down-
load our MaltParser model at http://web-corpora.net/wsgi3/ru-syntax/
download. Other requirements, as well as the detailed installation process, are
listed on the github page readme.

7 Conclusions

In this work, we have presented NLP pipeline for Russian going from plain text
to morphologically and syntactically annotated conll that does not require any
specific technical knowledge to use, is free to use and (mostly) open-source.

Concerning future research and development, the following directions might
be considered. First, segmentation module calls for more tests. Second, conjunc-
tion vs. particle and conjunction vs. adverb problem should be addressed due to
their dramatic impact on the quality of syntactical annotation.
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