
Tailoring Recommendations for a Multi-Domain Environment
Emanuel Lacic
Know-Center Graz

Graz, Austria
elacic@know-center.at

Dominik Kowald
Know-Center Graz

Graz, Austria
dkowald@know-center.at

Elisabeth Lex
Graz University of Technology

Graz, Austria
elisabeth.lex@tugraz.at

ABSTRACT
Recommender systems are acknowledged as an essential instru-
ment to support users in finding relevant information. However,
the adaptation of recommender systems to multiple domain-specific
requirements and data models still remains an open challenge. In
the present paper, we contribute to this sparse line of research with
guidance on how to design a customizable recommender system
that accounts for multiple domains with heterogeneous data. Us-
ing concrete showcase examples, we demonstrate how to setup a
multi-domain system on the item and system level, and we report
evaluation results for the domains of (i) LastFM, (ii) FourSquare,
and (iii) MovieLens. We believe that our findings and guidelines
can support developers and researchers of recommender systems
to easily adapt and deploy a recommender system in distributed
environments, as well as to develop and evaluate algorithms suited
for multi-domain settings.

KEYWORDS
Recommender Systems; Multi-Domain Recommendation; Hetero-
geneous Data; Customizing Recommendation Approaches

1 INTRODUCTION
In the past decade, there has been a vast amount of research in
the field of recommender systems. Most of these systems offer
recommendations adapted for items belonging to a single domain
(e.g., movies , music , news , etc.). However, supporting different
domain-specific data models is still an open challenge, which is
neglected by many recommender systems and that has just been
recently taken up by the recommender systems’ research community.

The work of [2] has actually been the first attempt to define the
concept of a domain in the context of recommender systems. The
authors distinguish between four different domain notations, namely
(i) attribute level, where items are of the same type (e.g., movie
genres), (ii) type level, where items are of similar types but share
some attributes (e.g., movies and tv shows), (iii) item level, where
items are not of the same type and differ in most or all attributes
(e.g., movies and books) and, (iv) system level, where items and
users belong to different systems (e.g., LastFM and MovieLens).
Moreover, they distinguish between the concept of multi-domain
recommendations and cross-domain recommendations. The goal of
cross-domain recommendation is to utilize the knowledge derived

RecSysKTL Workshop @ ACM RecSys ’17, August 27, 2017, Como, Italy
© 2017 Copyright is held by the author(s).

(a) E-commerce. (b) Hotels.

(c) Scientific talks. (d) News articles.

Figure 1: Providing recommendations in multiple domains
requires supporting heterogeneous data structures, allow for
domain-specific algorithm customization, as well as to support
service isolation and fault tolerance.

from one or more source domains in order to generate predictions
for a target domain. However, they also state that multi-domain
approaches have mainly focused on the provision of cross-domain
recommendations by jointly considering user preferences for items
in various systems.

Other related works implicitly share this definition [2] and focus
on cross-domain recommendations rather than on multi-domain ones.
Thus, the main focus has been to tackle the data sparsity problem
(e.g., via active transfer learning [14]) by utilizing Collaborative
Filtering [4, 7, 10] and Content-based Filtering approaches [3, 11].

In the present paper, we build upon these works and we extend
the scope of multi-domain recommender systems by introducing
several guidelines concerning topics such as data heterogeneity and
customization that should be taken into consideration. We base
our findings on real-world applications (e.g., e-commerce1, hotels2,
scientific talks3 or news articles4 – just to name a few) and propose a
practical approach on how to support muti-domain recommendations
on both the item and system level as described by [2].

To the best of our knowledge, this is the first work which ad-
dresses the question of what design decisions should be taken into
consideration when building a recommender system for a multi-
domain environment.
1http://www.mymanou.com/
2https://www.triprebel.com/
3http://uscn.me/rr220
4http://www.clef-newsreel.org/

42

http://www.mymanou.com/
https://www.triprebel.com/
http://uscn.me/rr220
http://www.clef-newsreel.org/

Figure 2: Proposed system architecture of a multi-domain recommendation environment showing how the various modules work
together. Each module is a standalone HTTP server, which is aware of the location (i.e., URL) of its communicating partners. In case
of an item level multi-domain scenario, the same data storage is shared between the domains and customization via recommender
profiles provides the domain-specific algorithm configuration.

2 A MULTI-DOMAIN RECOMMENDATION
APPROACH

In this section, we categorize and propose guidelines to extend the
notation of a multi-domain recommender system. We base our
guidelines on our previous work [5, 6, 12], which we have already
applied in live settings in various domains (e.g., e-commerce, hotels,
conference or news as shown in Figure 1).

Thus, we propose four issues that should be addressed when
providing multi-domain recommendation, i.e., (i) service isolation,
(ii) data heterogeneity, (iii) recommender customization, and (iv)
fault tolerance. While we focus on item and system level domain
notations, our findings can be adapted for both the attribute and
type level by means of additional recommender customization (e.g.,
filtering by the item category).

2.1 Service Isolation
When supporting multi-domain recommendations on the system
level, effective hardware utilization is crucial. Actually, as each
domain has different requirements with respect to the request load,
the hardware utilization rate can be improved by sharing the same
hardware resources across multiple domains. Additionally, in such
a scenario, performance isolation is crucial. Specifically, a high
request load in combination with possible performance-intensive
operations needed for one domain should not impact the performance
in another domain. For example, news recommender systems usually
have a requirement of providing session-based recommendations
within 100 milliseconds and need to cope with challenging load
peaks during morning hours and the lunch break at working days
[13]. Thus, in cases where the request load is too large for a particular
domain, it should be possible to dynamically scale the system and
handle such performance intensive load peeks.

Correspondingly, we propose to separate a recommender system’s
logic into several microservices by adopting the Microservices ar-
chitecture design pattern5. An example of such an architecture is
shown in Figure 2. Here, five different modules take care of (i) data
handling, (ii) calculating recommendations, (iii) balancing incom-
ing recommendation requests, (iv) domain-specific customization,
and (v) evaluating recommendations. To support horizontal scaling
and to coordinate all deployed modules, as well as the correspond-
ing system level domain assignments, we use Apache ZooKeeper6.
This overall approach can be extended with virtualization and con-
tainer technologies such as Docker7 or LXC8. These lightweight re-
source containers provide features such as portability, more efficient
scheduling and resource management, as well as less virtualization
overhead, which are beneficial when implementing a multi-domain
recommender on the system level.

2.2 Heterogeneous Data
As the amount of data is doubled approximately every 40 months
[8], most recommender systems migrate from traditional databases
to distributed systems that can scale more easily and handle massive
streams of heterogeneous data. As such, a multi-domain recomm-
ender system needs to handle a diverse set of data (e.g., ratings,
views, likes, check-ins, etc.), while at the same time enabling an
easy integration of new types by modifying the underlying schema.

In our case, we leverage the Apache Solr search engine and found
its schema-less mode9 to be a great fit to support multi-domain
recommendations on an item level, as it allows dynamic schema
construction by indexing data without the need to edit it manually.

5http://microservices.io/patterns/microservices.html
6http://zookeeper.apache.org/
7http://www.docker.com
8https://linuxcontainers.org/
9https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode

43

http://microservices.io/patterns/microservices.html
http://zookeeper.apache.org/
http://www.docker.com
https://linuxcontainers.org/
https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode

{
”id”: ”e12c4fb−ba85−46d5−896d−af65d1f3b48c”,
”item”: ”5a2bc423−15dc−47d3−8a8c−f543dc267a7c”,
”users listened”: [3907, 57017]
”users listened count”: 2
”domain”: ”LastFM”

},
{

”id”: ”8fe89bab−9631−4e87−81a0−a8dd3ffba774c”,
”user”: ”23861”,
”item”: 4105,
”rating”: 1.0
”domain”: ”MovieLens”

}

Listing 1: Example of different schema strategies to
store data in the same place for item level multi-domain
recommendations.

For example, as shown in Listing 1, we could easily derive different
data structures to store and generate recommendations in the corre-
sponding music and movie domain. Moreover, we found that the
capability for horizontal scaling (i.e., creating shards and replicas) is
extremely important when integrating new domains on an item-level
(see Figure 2) as such a strategy easily increases the amount of data
that needs to be stored and processed.

2.3 Customizing Recommendation Approaches
An important aspect of a multi-domain recommender system is cus-
tomization. Typically, different application domains have different
domain-specific data features, which means that, for example, a
music recommender could solely use implicit user interactions (e.g.,
listened songs), whereas an e-commerce recommender could use
explicit ones (e.g., ratings). On top of that, one would also need
to separately determine and setup the correct algorithmic param-
eters for each domain. For example, in case of the Collaborative
Filtering algorithm, the similarity function (e.g., Cosine or Jaccard
similarity) and the neighbourhood size need to be determined for
each domain. For other domains, one may need to setup custom
filtering criteria (e.g., recommend items that are suited for minors or
are part of a specific category). Thus, a multi-domain recommenda-
tion approach should be aware of the underlying data structures and
domain-specific parameters.

As such, we propose to outsource the domain-specific algorithm
setup into so-called recommender profiles. In our applications, we
defined a customizer module (see Figure 2), which enables to set
domain-specific algorithm configurations and to transfer it to mod-
ules utilized in a specific domain environment. This way, we can
manage domain-specific configurations and dynamically integrate
additional domains. An example of such recommender profiles for
the music domain is given in Listings 2, 3 and 4.

Here, we define a configuration by a unique reference id, a ref-
erence to the algorithm implementation (e.g., class name) and the
specific domain-relevant parameters. In case a recommender profile
is created or updated for a particular domain at runtime, the changes
need to be propagated throughout the whole system to every domain-
dependant module. As such, each module from the same domain
will be informed about the changes and the updated profile will be
used as soon as a new recommendation request is received.

id: ktl mp lastfm
reference for a MP implementation
algorithm: MostPopularGeneric

algorithm specific parameters
parameters:

item−level domain?
domain: lastFM
on what do I calculate the popularity ?
count fields : [users listened count]
user action fields : [users listened]

Listing 2: A MostPopular recommender profile for the LastFM
domain.

id: ktl ub cf lastfm
reference for a user−based−CF implementation
algorithm: GenericUBCF

algorithm specific parameters
parameters:

item−level domain?
domain: lastFM

How to calculate user similarity ?
similarity function : OVERLAP # JACCARD, COSINE, etc.
neighbourhood size: 40
user action fields : [users listened]

Listing 3: A Collaborative Filtering recommender profile for
the LastFM domain.

id: ktl hybrid cs lastfm
reference for a hybrid implementation
algorithm: CrossSourceHybrid

algorithm specific parameters
parameters:

item−level domain given by combining profiles
profile ids : [ktl mp lastfm , ktl ub cf lastfm]
recommender weights: [0.1, 0.9]

Listing 4: A Cross-Source Hybrid recommender profile for the
LastFM domain.

2.4 Fault Tolerance
Deploying multiple modules in a distributed manner increases the
probability of unexpected behaviour (e.g., hardware shutdown, I/O
problems, software bugs, etc.). As we have proposed to use mi-
croservices, it is not necessary to cope with central node failures as
it is the case with a master-slave architecture. In case a module fails,
ZooKeeper, or any other orchestration service like Eureka or Consul,
should remove the faulty module from its list of “live nodes” and no
further requests will be redirected to it.

Thus, the module will not necessarily cause any major problems
as long as there is another module of the same type available. When
experiencing a high request load, it should be possible to deploy and
register an additional module to ZooKeeper on the fly. To further
improve the reliability of the system, multiple ZooKeeper instances
can be used in a cluster in order to overcome the outage of single
instances. In such a way, the runtime performance can be guaranteed
for both item and system level multi-domain recommendations.

44

3 DOMAIN EXPERIMENTS
In order to demonstrate the application of our guidelines for pro-
viding recommendations in multiple domains, we performed sev-
eral experiments on well-known datasets used in recommender sys-
tems research, (i.e., LastFM10, Foursquare11 and MovieLens20M12).
The LastFM dataset consists of 359,348 users, 268,736 artists and
17,559,530 implicit user interactions that denote the listening rela-
tionship between users and artists. Foursquare provides 2,809,581
ratings on a 5-star scale for different venues (i.e., restaurants) and
contains 2,153,471 users as well as 1,143,092 venues in general.
The MovieLens20M dataset has 138,493 users, 27,032 movies as
well as 19,999,603 movie reviews on a 5-star rating scale with a step
size of 0.5 (i.e., a 10-star scale).

We focused on providing recommendations for cold-start users
and as such, we removed all users that interacted with more than 20
items. Next, we split the remaining data in two different sets (i.e.,
training and test sets) using a method similar to the one described
in [9]. Thus, for each user, we withheld 10 items that were used
for testing and the rest was used for training. This has resulted
in an evaluation set of 2,409 users for LastFM, 41,628 users for
FourSquare and 4,486 users for the MovieLens20M dataset. On
these datasets, we evaluated a simple MostPopular (MP) approach
(e.g., Listing 2), a user-based Collaborative Filtering (CF) approach
(e.g., Listing 3) as well as a hybrid combination [1] of both (e.g.,
Listing 4). Additionally, we evaluated different neighborhood sizes
N for the CF approach in order to optimize the results. For reasons
of simplicity, we used a naive item overlap metric to measure the
similarity between users (i.e., OV (ut ,uc) = |∆(ut) ∩ ∆(uc) |, where
∆(u) corresponds to the set of items some user u has interacted with
in the past). However, as shown in Listing 3 this is a domain-specific
parameter that could be easily adapted.

The results of our evaluation are shown in Table 1 by means of the
nDCG@10 and User Coverage (UC) metrics. The aim of this simple
experiment was to show how different parameter setups can impact
the performance in different domains. As shown, the neighbourhood
size is one example of a parameter that needs to be optimized for a
specific domain. By choosing the best parameter combination for
the hybrid approach, we can provide more robust recommendations
for all users in each domain.

4 CONCLUSION
In this work, we presented our approach on providing recommen-
dations in a multi-domain environment. Specifically, we introduced
the concept of recommender profiles in order to customize existing
algorithms with domain-specific configuration. Apart from that, we
provided guidelines with respect to service isolation, heterogeneous
data and fault tolerance. Finally, we provided customization exam-
ples as well as evaluation results for the domains of (i) LastFM, (ii)
FourSquare, and (iii) MovieLens. We believe that our findings and
proposed guidelines are of use for developers and researchers of
recommender systems to tailor and develop recommendations for
multi-domain and distributed environments.

10http://mtg.upf.edu/node/1671
11https://archive.org/details/201309 foursquare dataset umn
12https://grouplens.org/datasets/movielens/20m/

Approach nDCG@10 UC

L
as

tF
M

MP .0180 100%

C
F

N = 20 .1113

93.70%
N = 30 .1129
N = 40 .1135
N = 50 .1120
N = 60 .1112

Hybrid .1005 100%

Fo
ur

sq
ua

re

MP .0256 100%

C
F

N = 20 .0364

49.58%
N = 30 .0403
N = 40 .0426
N = 50 .0440
N = 60 .0452

Hybrid .0339 100%

M
ov

ie
L

en
s

MP .0658 100%

C
F

N = 20 .0910

100%
N = 30 .0945
N = 40 .0981
N = 50 .0965
N = 60 .0984

Hybrid .0999 100%

Table 1: Evaluation results of our multi-domain experiment.

For future work, we plan to perform a more elaborate study using
the proposed recommender profiles to study differences in domain-
specific configurations (e.g., does a semantic relationship impact
the choice of domain-specific parameters like the similarity metric
or different filtering criteria?). Moreover, we plan to investigate
datasets with textual contents in order to further explore how hybrid
weightings may impact the performance in a specific domain with
respect of not only accuracy but also diversity.

Acknowledgment. This work was funded by the Horizon 2020
project MoreGrasp (643955).

REFERENCES
[1] S. Bostandjiev, J. O’Donovan, and T. Höllerer. Tasteweights: a visual interactive

hybrid recommender system. In Proc., RecSys ’12, pages 35–42. ACM, 2012.
[2] I. Cantador, I. Fernández-Tobı́as, S. Berkovsky, and P. Cremonesi. Cross-domain

recommender systems. In Recommender Systems Handbook. Springer, 2015.
[3] A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for

cross domain user modeling in recommendation systems. In Proc. WWW’15.
[4] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo. Cross-domain recom-

mendation via cluster-level latent factor model. In Proc. of ECML-PKDD’13.
[5] E. Lacic, D. Kowald, and C. Trattner. Socrecm: A scalable social recommender

engine for online marketplaces. In Proc. of the ACM Hypertext 2014.
[6] E. Lacic, M. Traub, D. Kowald, and E. Lex. Scar: Towards a real-time recomm-

ender framework following the microservices architecture. In Proc. of LSRS’15.
[7] B. Loni, Y. Shi, M. Larson, and A. Hanjalic. Cross-domain collaborative filtering

with factorization machines. In ECIR, pages 656–661. Springer, 2014.
[8] A. McAfee and E. Brynjolfsson. Big Data: The management revolution. Harvard

Business Review, 90(10):60–68, 2012.
[9] D. Parra-Santander and P. Brusilovsky. Improving collaborative filtering in social

tagging systems for the recommendation of scientific articles. In Proc. of WI-IAT
’10, pages 136–142. IEEE Computer Society.

[10] S. Sahebi and P. Brusilovsky. It takes two to tango: An exploration of domain
pairs for cross-domain collaborative filtering. In Proc. of ACM RecSys 2015.

[11] S. Sahebi and T. Walker. Content-based cross-domain recommendations using
segmented models. In CBRecSys@ RecSys, pages 57–64, 2014.

[12] M. Traub, D. Kowald, E. Lacic, P. Schoen, G. Supp, and E. Lex. Smart booking
without looking: Providing hotel recommendations in the triprebel portal. In Proc.
of i-KNOW ’15.

[13] S. Werner and A. Lommatzsch. Optimizing and evaluating stream-based news
recommendation algorithms. In CLEF (Working Notes), pages 813–824, 2014.

[14] L. Zhao, S. J. Pan, E. W. Xiang, E. Zhong, Z. Lu, and Q. Yang. Active transfer
learning for cross-system recommendation. In AAAI, 2013.

45

http://mtg.upf.edu/node/1671
https://archive.org/details/201309_foursquare_dataset_umn
https://grouplens.org/datasets/movielens/20m/

	Abstract
	1 Introduction
	2 A Multi-Domain Recommendation Approach
	2.1 Service Isolation
	2.2 Heterogeneous Data
	2.3 Customizing Recommendation Approaches
	2.4 Fault Tolerance

	3 Domain Experiments
	4 Conclusion
	References

