
Reasoning for A Fuzzy Description Logic with
Comparison Expressions ∗

Dazhou Kang1, Baowen Xu1,2, Jianjiang Lu3 and Yanhui Li1

1School of Computer Science and Engineering, Southeast University,
Nanjing 210096, China

2Jiangsu Institute of Software Quality, Nanjing, 210096, China
3Institute of Command Automation, PLA University of Science and

Technology, Nanjing 210007, China

Abstract

The fuzzy extensions of description logics support representation and
reasoning for fuzzy knowledge. But the current fuzzy description logics
do not support the expression of comparisons between fuzzy membership
degrees. The paper proposes ALCfc, a fuzzy extension of description
logic ALC with comparison expressions. ALCfc defines comparison cut
concepts to express complex comparisons, and integrate them with fuzzy
ALC. The challenges of reasoning in ALCfc is discussed, and a tableau
algorithm is presented. It enables representation and reasoning for ex-
pressive fuzzy knowledge about comparisons.

1 Introduction

Description logics (DLs) [1] are widely used in the semantic web. Fuzzy exten-
sions of description logics import the fuzzy theory to enable the capability of
dealing with fuzzy knowledge [5]. In fuzzy DLs, an individual is an instance of
a fuzzy concept only to a certain degree (called fuzzy membership degree); e.g.
“Tom is tall to a degree greater than 0.8,” where Tall is a fuzzy concept. It is
also a familiar description that “Tom is taller than Mike,” which can be seemed
as a comparison between two degrees without any restrictions on their exact

∗This work was supported by NSFC (60373066, 60425206 and 90412003), National Grand
Fundamental Research 973 Program of China (2002CB312000), Innovation Plan for Jiangsu
High School Graduate Student, Advanced Armament Research Project (51406020105JB8103),
Advanced Research Fund of Southeast University (XJ0609233), and High Technology Research
Project of Jiangsu Province (BG2005032). Email:swws@seu.edu.cn

values. Such comparison is important in many fuzzy information systems. For
example, people are often interested in “the cheapest goods with the highest
quality,” disregarding the exact prices and qualities. There are even more com-
plex comparison expressions, e.g. “no close friend of Tom is taller or stronger
than him.” However, the current fuzzy DLs do not support the expression of
comparisons between fuzzy membership degrees. This paper defines compar-
ison cut concepts to express complex comparisons, then presents ALCfc, and
provides its reasoning algorithm. It enables representation and reasoning for
expressive comparisons between fuzzy membership degrees.

2 Comparison expressions

In DLs, an assertion a : C is either true or false (0 or 1). But in fuzzy DLs, any
assertion is true only to a certain degree in [0, 1]. A fuzzy assertion is of the form
〈a : C ./ n〉, where n ∈ [0, 1] is a constant and ./ ∈ {=, 6=, <,≤,≥, >}. In order
to express a comparison that “Tom is taller than Mike,” the most intuitionistic
solution is 〈Tom : Tall > Mike : Tall〉. However, such fuzzy assertion is not
allowed in current fuzzy DLs [3, 5].

There are more complex comparisons, like “Tom is either taller or stronger
than Mike.” We define comparison cut concepts (or cuts for short) to express
such complex comparisons. The idea is as follows: individuals can be divided into
different classes based on basic comparisons; the classes can be represented in
basic cuts; and we can use constructors with such cuts to express more complex
comparisons. Three kinds of basic cuts are defined:

numerical cuts [C ./ n] represents a set of individuals s such that 〈s : C ./ n〉.
For example, [Tall < 0.9] refers to any person that is not very tall.

comparative cuts [C ./ D] represents s such that 〈s : C ./ s : D〉. [Absolutist
< Liberalist] refers to people who prefer liberalism to absolutism.

relative cuts [C ./ D↑] represents any s such that 〈s : C ./ t : D〉 with respect
to an individual t. [C ./] is an abbreviation of [C ./ C↑]. They describe
the comparisons between individuals.

The idea of cuts is not completely innovate. [3] and [6] defined concepts
similar to the numerical cuts. But they do not consider other cuts.

Complex cuts are constructed from basic cuts: if P, Q are cuts, then ¬P ,
P uQ and P tQ are also cuts. More expressive fuzzy concepts can be defined
by importing cuts: for any cuts P, Q and a fuzzy role R, ∃R.P and ∀R.P
are fuzzy concepts. For example, 〈Tom : ∀friend .[Tall ≤] ≥ 0.8〉 means Tom
is tallest among his close friends. Such fuzzy concepts can be used in cuts
again. We use 〈a : P (b)〉 to assert that a is in a cut P with respect to b. Then
〈Tom : Tall ≥ 0.8〉 and 〈Tom : Tall > Mike : Tall〉 can be seemed as aliases of
〈Tom : [Tall ≥ 0.8]〉 and 〈Tom : [Tall >](Mike)〉.

3 The fuzzy description logic ALCfc

Definition 1. Let NI , NC and NR be three disjoint sets of names of individuals,
fuzzy concepts and fuzzy roles respectively. ALCfc-concepts are defined as

• >, ⊥ and A are concepts, where A ∈ NC;

• if C, D are concepts, R ∈ NR, and P is a cut, then ¬C, C t D, C u D,
∃R.C, ∀R.C, ∃R.P and ∀R.P are concepts.

A fuzzy interpretation I =
〈
∆I , ·I

〉
consists a nonempty set ∆I, and a

function ·I maps every a ∈ NI to an element aI ∈ ∆I, maps every A ∈ NC

to a function AI : ∆I → [0, 1], and maps every R ∈ NR to a function RI :
∆I × ∆I → [0, 1]. For ALCfc, ·I also maps every concept C to a function
CI : ∆I → [0, 1] such that for any s ∈ ∆I,

>I(s) = 1;⊥I(s) = 0; (∃R.C)I(s) = supt∈∆I{min(RI(s, t), CI(t))};
(¬C)I(s) = 1− CI(s); (∀R.C)I(s) = inft∈∆I{max(1−RI(s, t), CI(t))};

(C uD)I(s) = max(CI(s), DI(s)); (∃R.P)I(s) = supt∈PI(s) RI(s, t);

(C tD)I(s) = min(CI(s), DI(s)); (∀R.P)I(s) = inft∈(¬P)I(s)(1−RI(s, t)).

Definition 2. The comparison cut concepts are defined as:

• if C, D are concepts, n ∈ [0, 1] and ./ ∈ {=, 6=, >,≥, <,≤}, then [C ./ n],
[C ./ D] and [C ./ D↑] are cuts;

• if P, Q are cuts, then ¬P , P uQ and P tQ are cuts.
The interpretation function ·I of a fuzzy interpretation I =

〈
∆I , ·I

〉
maps,

additionally, every cut P into a function P I : ∆I → 2∆I
:

[C ./ n]I(s) = {t|CI(t) ./ n}; (¬P)I(s) = ∆I\P I(s);

[C ./ D]I(s) = {t|CI(t) ./ DI(t)}; (P uQ)I(s) = P I(s) ∩QI(s);

[C ./ D↑]I./(s) = {t|CI(t) ./ DI(s)}; (P tQ)I(s) = P I(s) ∪QI(s).

For any cut P and a ∈ NI , P (a) is called an absolute cut, and (P (a))I =
P I(aI). If a cut P contains no ↑, then P itself is an absolute cut, and for any
a, we do not distinguish P (a) and P , since they are equivalent in semantics.

Definition 3. An ALCfc knowledge base is composed of a TBox and an ABox:
A TBox is a finite set of axioms of the form C v D or C @ D. An inter-

pretation I satisfies C v D or C @ D iff for any s ∈ ∆I, CI(s) ≤ DI(s) or
CI(s) < DI(s). I is a model of a TBox T iff I satisfies every axiom in T .

An ABox is a finite set of assertions of the form 〈(a, b) : R ./ n〉 or 〈a : P (b)〉,
where n ∈ [0, 1], C is a concept, R is a role, a, b ∈ NI , and P is a cut. An
interpretation I satisfies 〈(a, b) : R ./ n〉 iff RI(aI , bI) ./ n, satisfies 〈a : P (b)〉
iff aI ∈ P I(bI). I is a model of an ABox A iff I satisfies every assertion in A.

The basic inference problem of ALCfc is consistency of ABoxes: an ABox A
is consistent w.r.t. a TBox T , iff there exists a model I of both A and T .

4 Reasoning issues

4.1 Challenges

In the current reasoning algorithms for fuzzy DLs [4, 5], they always assume
that for an element s in a model I with (∃R.C)I(s) ≥ n, there is t such that
min(RI(s, t), CI(t)) ≥ n. In [2], the author pointed out that this is an unessen-
tial error. However, it yields a serious problem in ALCfc.

Example 4. Let A = {〈a : ∃R.C ≥ 1〉 , 〈a : ∃R.[c ≥ 1] ≤ 0〉}. For any element
s in a model I with (∃R.[c ≥ 1])I(s) ≤ 0, there cannot be any t such that
min(RI(s, t), CI(t)) ≥ 1. Nevertheless, A is consistent: there can be infinite
elements t1, t2, . . . such that supi=1,2,...{min(RI(s, ti), C

I(ti))} = 1, and for any
i = 1, 2, . . . , min(RI(s, ti), C

I(ti)) < 1.

Another challenge is that current algorithms only consider a finite set of
constants in [0, 1]; but there can be infinite different degrees in ALCfc.

Example 5. Assume T = {C @ ∃R.C}, A = {s0 : C > n}. In a model I of
T and A, it holds n < CI(s0) < (∃R.C)I(s0). For any element si, CI(si) <
(∃R.C)I(si) and there is si+1 with CI(si+1) > CI(si). It also follows CI(si+1) <
(∃R.C)I(si+1). So there must be an infinite path of elements s0, s1, s2, . . . such
that n < CI(s0) < CI(s1) < CI(s2) < · · · .

Because of the above challenges, the current reasoning algorithms for fuzzy
DLs are not capable for ALCfc. The following parts firstly define a novel fuzzy
tableau for ALCfc. The essential difference from the tableau in [4] is P4 and
P6. Then presents a tableau algorithm to overcome the challenges.

Definition 6. Let A be an ABox, T be a TBox, a fuzzy tableau T of A w.r.t.
T is a quadruple T = 〈S,L, E ,V〉 such that

• S is a non-empty set of elements;

• L : S → AC maps each element of S to a set of absolute cuts;

• E : NR × [0, 1] → 2S×S maps each pair of a role name and a number in
[0, 1] to a set of pairs of elements;

• V : IA → S maps individual names occurring in A to elements in S.

P1 If [¬C = n] ∈ L(s), then [C = 1− n] ∈ L(s).
P2 If [CuD = n] ∈ L(s), then {[C = m1], [D = m2]} ⊆ L(s) and min(m1,m2) = n.
P3 If [C tD = n] ∈ L(s), then [¬C u ¬D = 1− n] ∈ L(s)
P4 If [∃R.C = n] ∈ L(s), then for any t with (s, t) ∈ E(R,m1) and m1 > n, it holds

[C = m2] ∈ L(t) and m2 ≤ n, and there are two possible cases:
• there is t ∈ S with (s, t) ∈ E(R, m1), [C = m2] ∈ L(t), min(m1,m2) = n;
• there are t1, t2, · · · ∈ S with for any i = 1, 2, . . . , (s, ti) ∈ E(R,ni), [C =

mi] ∈ L(ti), min(ni,mi) < n, and supi=1,2,...{min(ni,mi)} = n.

P5 If [∀R.C = n] ∈ L(s), then [∃R.¬C = 1− n] ∈ L(s).
P6 If [∃R.P = n] ∈ L(s), then for any t with (s, t) ∈ E(R,m) that m > n, it holds

¬P (s) ∈ L(t), and there are two possible cases:
• there is t ∈ S with (s, t) ∈ E(R, n), P (s) ∈ L(t);
• there are t1, t2, · · · ∈ S with for any i = 1, 2, . . . , (s, ti) ∈ E(R,ni), P (s) ∈
L(ti), ni < n, and supi=1,2,...{ni} = n.

P7 If [∀R.P = n] ∈ L(s), then [∃R.¬P = 1− n] ∈ L(s).
P8 If [C ./ n] ∈ L(s), then [C = m] ∈ L(s) and m ./ n.
P9 If [C ./ D] ∈ L(s), then {[C = m], [D = n]} ⊆ L(s) and m ./ n.

P10 If [C ./ D↑](t) ∈ L(s), then [C = m] ∈ L(s), [D = n] ∈ L(t) and m ./ n.
P11 If (P uQ)(t) ∈ L(s), then {P (t), Q(t)} ⊆ L(s).
P12 If (P tQ)(t) ∈ L(s), then P (t) ∈ L(s) or Q(t) ∈ L(s).
P13 If 〈(a, b) : R ./ n〉 ∈ A, then (V(a),V(b)) ∈ E(R,m) and m ./ n.
P14 If 〈a : P (b)〉 ∈ A, then P (V(b)) ∈ L(V(a)).
P15 If C v D ∈ T , then for any s ∈ S, {[C = m], [D = n]} ⊆ L(s) and m ≤ n.
P16 If C @ D ∈ T , then for any s ∈ S, {[C = m], [D = n]} ⊆ L(s) and m < n.
P17 If [c = n] ∈ L(s), then there is no [c = m] ∈ L(s) such that n 6= m.
P18 If (s, t) ∈ E(R,n), then there is no (s, t) ∈ E(R,m) such that n 6= m.

All concepts and cuts are transformed into negation normal form, where ¬
can only occur in front of a concept name, by pushing negations inwards: ¬[C ./
W] → [C ./	 W];¬(X t Y) → ¬X u ¬Y ;¬(X u Y) → ¬X t ¬Y ;¬(∃R.X) →
∀R.¬X;¬(∀R.X) → ∃R.¬X; where W ∈ {n,D, D↑}, X, Y are concepts or cuts,
and >	= ≤, <	= ≥, ≥	= <, ≤	= >. All elements satisfy [> = 1] and [⊥ = 0].
So >,⊥,¬P are not considered here. It is easy to prove that the existence of a
fuzzy tableau is equivalent with the existence of a model: ∆I = S, AI(s) = n
iff [A = n] ∈ L(s), and RI(s, t) = n iff (s, t) ∈ E(R, n).

Theorem 7. An ALCfc ABox A is consistent w.r.t. a TBox T , iff there is a
fuzzy tableau T of A w.r.t. T .

4.2 A tableau algorithm

Here presents an algorithm to decide the existence of a fuzzy tableau by con-
structing a completion graph. There are three key points in the algorithm:

1. All degrees such as C(x) and R(x, y) are not constants but variables. The
relations between degrees are recorded in a set δ, which is a partially
ordered set (V,≤, 6=). The set of degrees V can be easily mapping to [0, 1].

2. In P4 and P6, there can be infinite elements. We just generate one node
to represent them with a new relation l added into δ by R5 and R8.

3. It is clear that the construction of a completion graph may not terminate if
T 6= ∅. A cycle detection technique called blocking is employed to unravel
a finite completion graph into an infinite fuzzy tableau.

Definition 8. A completion graph is T = 〈S, E, L, δ〉, where

• S is a set of nodes in the graph.

• E is a set of edges (pairs of nodes) in the graph.

• L is a function: for every node x ∈ S, L(x) is a set of concepts or absolute
cuts; for every edge (x, y) ∈ E, L(x, y) is a set of roles.

• δ is a set of formulas of the form X ≤ Y , X 6= Y or X l Y , where
X, Y ::= n|C(x)|R(x, y)|1−X such that n ∈ [0, 1], C is a concept, R is a
role, x, y ∈ S, and for any X, 1− (1−X) = X.

Several abbreviations are defined below:

X ≤δ Y =def X ≤ Y ∈ δ, or X ≤δ Y, Y ≤δ Z, or 1− Y ≤δ 1−X

min(X, Y) =δ Z =def Z ≤δ X, Z ≤δ Y,W ≤δ Z for some W ∈ {X, Y };
X 6=δ Y =def X 6= Y ∈ δ; X lδ Y =def X l Y ∈ δ;

X ≥δ Y =def Y ≤δ X; X =δ Y =def X ≤δ Y, Y ≤δ X;

X <δ Y =def X ≤δ Y, X 6=δ Y ; Xδ > Y =def Y ≤δ X, X 6=δ Y.

The completion graph T of an ABox A w.r.t. a TBox T initializes with:
S = {a ∈ NI |a occurs in A}; for any 〈a : P (b)〉 ∈ A, P (b) ∈ L(a); for any
〈(a, b) : R ./ n〉 ∈ A, R ∈ L(a, b) and R ./δ n. Let V0 = {v1, v2, . . . , vk} =
{0, 1, 0.5} ∪ {n ∈ [0, 1]|n or 1− n occurs in A or T }, where 0 = v1 < v2 < · · · <
vk = 1. For any vi < vj, let vi <δ vj.

Then the graph grows up by applying the expansion rules showed in Fig. 1.
If a rule applied to x creates a new node y, then y is a successor of x. Let
descendant be transitive closure of successor.

The lδ relation is used to simulate the infinite supreme. For any a ∈ NI ,
lev(a) = 1. If lev(x) = i, y is a successor of x by updating lδ, then lev(y) = i+1.
For any X of the form C(x), 1 − C(x), R(y, x), or 1 − R(y, x), if lev(x) = i,
then X ∈ Vi. If X lδ Y and Y ∈ Vi, then for any Z ∈ Vj such that j ≤ i,
Z <δ Y → Z <δ X and Z >δ X → Z ≥δ Y . So X lδ Y means X is greater
than any Z < Y such that Z ∈ V0 ∪ V1 ∪ · · · ∪ Vi and Y ∈ Vi. It ensures that
for any given constant ε, we can assign values to the variables in V such that
X − Y < ε without inducing any conflict.

Since there are variables, the blocking condition in ALCfc is different from
classical DLs. It has to consider the comparisons between degrees.

Definition 9. For any x, let δ(x) = {X ./ Y |X ./δ Y , X, Y are of the form
C(x), 1−C(x), or vi. A node x is blocked by y, iff x is an descendant of y, and
δ(x) = [x/y]δ(y), where [x/y]δ(y) means to replace any y in δ(y) by x. Then we
call y blocks x. When x is blocked, all descendants of x is also blocked.

No rules in Fig. 1 can be applied to blocked nodes. T is said to contain a
clash if {X 6=δ Y,X =δ Y } ⊆ δ, or X >δ 1, or X <δ 0. T is said to be clash-free

R1 if ¬C ∈ L(x), and not C(x) =δ 1− (¬C)(x)
then L(x) → L(x) ∪ {C}, and C(x) =δ 1− (¬C)(x)

R2 if C uD ∈ L(x), and not min(C(x), D(x)) =δ (C uD)(x)
then L(x) → L(x) ∪ {C,D}, and min(C(x), D(x)) =δ (C uD)(x)

R3 if C tD ∈ L(x), and not (C tD)(x) =δ 1− (¬C u ¬D)(x)
then L(x) → L(x) ∪ {C tD}, and (C tD)(x) =δ 1− (¬C u ¬D)(x)

R4 if ∃R.C ∈ L(x), and there is y with R ∈ L(x, y)
but not X ≤δ (∃R.C)(x) for some X ∈ {R(x, y), C(x)}

then L(y) → L(y) ∪ {C}, and X ≤δ (∃R.C)(x)
R5 if ∃R.C ∈ L(x), and there is no y with X =δ (∃R.C)(x)

or X lδ (∃R.C)(x), for some X ∈ {R(x, y), C(x)}
then add a new node y with L(x, y) = {R}, L(y) = {C},

and X =δ (∃R.C)(x) or X lδ (∃R.C)(x)
R6 if ∀R.C ∈ L(x), and not (∀R.C)(x)δ = 1− (∃R.¬C)(x)

then L(x) → L(x) ∪ {∃R.¬C}, and (∀R.C)(x) =δ 1− (∃R.¬C)(x)
R7 if ∃R.P ∈ L(x), and there is y with R ∈ L(x, y)

but not R(x, y)δ ≤ (∃R.C)(x) nor ¬P (x)δ ∈ L(y)
then R(x, y) ≤δ (∃R.C)(x), or L(y) → L(y) ∪ {¬P (x)}

R8 if ∃R.P ∈ L(x), and there is no y with P (x) ∈ L(y),
R(x, y) =δ (∃R.C)(x) or R(x, y) lδ (∃R.C)(x)

then add a new node y with L(x, y) = {R}, L(y) = {P (x)},
and R(x, y) =δ (∃R.C)(x) or R(x, y) lδ (∃R.C)(x)

R9 if ∀R.P ∈ L(x), and not (∀R.P)(x) =δ 1− (∃R.¬P)(x)
then L(x) → L(x) ∪ {∃R.¬P}, and (∀R.P)(x) =δ 1− (∃R.¬P)(x)

R10 if [C ./ n] ∈ L(x), and not C(x) ./δ n
then L(x) → L(x) ∪ {C}, and C(x) ./δ n

R11 if [C ./ D] ∈ L(x), and not C(x) ./δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) ./δ D(x)

R12 if [C ./ D↑](y) ∈ L(x), and not C(x) ./δ D(y)
then L(x) → L(x) ∪ {C}, L(y) → L(y) ∪ {D}, and C(x) ./δ D(y)

R13 if (P uQ)(y) ∈ L(x), and not {P (y), Q(y)} ⊆ L(x)
then L(x) → L(x) ∪ {P (y), Q(y)}

R14 if (P tQ)(y) ∈ L(x), and {P (y), Q(y)} ∩ L(x) = ∅
then L(x) → L(x) ∪ {X} for some X ∈ {P (y), Q(y)}

R15 if C v D ∈ T , and there is x with no C(x) ≤δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) ≤δ D(x)

R16 if C @ D ∈ T , and there is x with no C(x) <δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) <δ D(x)

R17 if C ∈ L(x) or R ∈ L(x, y), and let X = C(x) or R(x, y)
there is no i such that vi <δ X <δ vi+1, or X =δ vi

then vi <δ X <δ vi+1 for some vi, vi+1, or X =δ vi for some vi

Figure 1: Expansion rules for ALCfc

if it contains no clash. If none of the expansion rules can be applied to T , then
T is said to be complete.

From the blocking condition and the number of concepts in any L(x) is
finite, the algorithm terminates. There is a fuzzy tableau T of A w.r.t. T , iff a
complete and clash-free completion graph can be constructed from A w.r.t. T .
So the above algorithm is a decision procedure for consistency of ALCfc ABoxes
w.r.t. empty TBoxes.

5 Conclusion

This paper presents ALCfc, a fuzzy extension of description logic ALC with
comparison expressions. New challenges of reasoning withinALCfc are discussed
and a reasoning algorithm for ALCfc is proposed to overcome the challenges.
It enables representation and reasoning for expressive fuzzy knowledge about
comparisons. The future work is to extend comparison expressions in more
expressive fuzzy description logics and design their reasoning algorithms.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[2] Petr Hajek. Making fuzzy description logic more general. 2005.

[3] Yanhui Li, Baowen Xu, Jianjiang Lu, Dazhou Kang, and Peng Wang. A
family of extended fuzzy description logics. In Proceedings of the IEEE
29th Annual International Computer Software and Applications Conference,
pages 221–226, Edinburgh, Scotland, 2005.

[4] Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan, and Ian
Horrocks. The fuzzy description logic f-shin. In Proceedings of the Interna-
tional Workshop on Uncertainty Reasoning for the Semantic Web, Galway,
Ireland, 2005.

[5] Umberto Straccia. Reasoning within fuzzy description logics. Journal of
Artificial Intelligence Research, 14:137–166, 2001.

[6] Umberto Straccia. Transforming fuzzy description logics into classical de-
scription logics. In Proceedings of the 9th European Conference on Logics in
Artificial Intelligence, number 3229, pages 385–399, Lisbon, Portugal, 2004.

