
Description Logic Reasoning for Dynamic
ABoxes

Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin,
and Adtiya Kalyanpur

Maryland Information and Network Dynamics Laboratory
8400 Baltimore Ave., College Park, MD, 20740 USA

{halasche,evren,aditya}@cs.umd.edu,bparsia@isr.umd.edu

1 Introduction

Recently, there has been interest in providing formal representation of Web con-
tent, which can then be processed using automated reasoning techniques. Due
to data sources that produce fluctuating data, there exists a variety of descrip-
tion logic reasoning use cases which require frequent updates at the assertional
level. These include prominent web services frameworks (e.g., OWL-S) that use
description logics for service discovery and matchmaking, where devices register
or deregister their descriptions (and supporting ontologies) quite rapidly. Addi-
tionally, Semantic Web portals often allow content authors to modify or extend
the ontologies which organize their site structure or page content. Lastly, one of
the common uses of description logic reasoners is in ontology editors. Most edi-
tors do not do continuous reasoning while one is editing, relying on an analogue
of the edit-compile-test loop of most programming environments.

While there exists such use cases for reasoning under update, today’s descrip-
tion logic reasoning services have been developed considering relatively static
knowledge bases. In this paper, we investigate the process of incrementally up-
dating tableau completion graphs created during consistency checking in the
expressive description logics SHOQ(D) and SHIQ(D), which correspond to
a large subset of the W3C standard Web Ontology Language, OWL-DL. We
present an algorithm for updating completion graphs under both the addition
and removal of ABox assertions; this provides a critical step towards reasoning
over fluctuating/streaming data, as it has been shown that in KBs with sub-
stantially sized ABoxes, consistency checking can dominate reasoning time. We
also provide an empirical analysis of the optimizations through an experimental
implementation in an open source OWL-DL reasoner, Pellet.

2 Background

DL tableau-based algorithms decide the consistency of an ABox A w.r.t a TBox
T (by TBox, we are additionally referring to all axioms for properties) by trying
to construct (an abstraction of) a common model for A and T, called a com-
pletion graph [5]. Formally, a completion graph for an ABox A with respect to
T is a directed graph G = (V , E ,L, ˙6=). Each node x ∈ V is labeled with a set
of concepts L(x) and each edge e = 〈x, y〉 with a set L(e) of role names. The
binary predicate ˙6= is used for recording inequalities between nodes. This graph
is constructed by repeatedly applying a set of expansion rules.

For ABox updates, we consider addition and deletion of individual equality
and inequality assertions x = y and x 6= y, concept assertions C (x) and role
assertions R(x , y). Updating ABox assertions in the presence of a TBox and
an RBox brings up several issues with the semantics. For the purposes of this
paper we use a straight-forward update semantics, which we call Edit Seman-
tics. Intuitively, Edit Semantics can be described as an update in which all
new ABox assertions are directly added (or removed) to the KB and no further
changes/revisions are made. As the above example shows removing an assertion
from the ABox under these semantics will not guarantee that the removed as-
sertion will not be entailed anymore. Furthermore, an addition of a new axiom
may cause inconsistencies in the KB as no additional changes can be made be-
sides the addition or removal invoked by the update. Formally, we desribe this
semantics as:

Definition 1 (Edit Semantics) Let S be the set of assertions in an initial ABox
A. Then under Edit Semantics, updating S with an an ABox addition (resp.
deletion) α, written as A + α (resp. A− α), results in an updated set of ABox
axioms S ′ such that S ′ = S ∪ {α} (resp. S ′ = S \ {α}).

This semantics might be a little unintuitive (especially from a belief revision
point of view) but real world use of the update semantics is directly present
in ontology editors and many document-oriented servers, e.g. Semantic Web
Service repositories. For example, an OWL-S Web Service description can be
seen as a set of ABox assertions and publishing/retracting this service descrip-
tion to/from a repository would be typically done under Edit Semantics. Edit
semantics additionally aligns with the Formula based update semantics defined
in [9].

3 Update Algorithm

The goal of the algorithm presented here is to update a previously constructed
completion graph in such a way that it is still a model of the KB (if one exists).

The approach presented here is applicable to the Description Logics SHOQ
[3] and SHIQ [4], as the difference between the two completion algorithms is
independent of the update algorithm.

3.1 ABox Additions

Conceptually, tableau algorithms for SHOQ [3] and SHIQ [4] can be thought
of as incremental in nature - expansion rules are applied in a non-deterministic
manner to labels in the completion graph. Hence, new ABox assertions can be
added even after previous completion rules have been fired for existing nodes
and edges in the graph. After the addition, expansion rules can subsequently be
fired for the newly added nodes, edges and their labels.

In order to update a completion graph upon the addition of a type assertion,
C(x), the algorithm first checks if the individual exists in the completion graph.
If x 6∈ V , then x is added to V . Then C is added to L(x), if it does not already
exist. If an individual inequality relation, x 6= y, is added to the completion
graph, the algorithm checks if x ∈ V and y ∈ V . If either do not exists, then
they are added to the graph. Additionally, if the x 6= y 6∈ x ˙6=y, then it is
added. Alternatively, if an individual equality relation, x = y, is added to the
completion graph, the algorithm checks if x ∈ V and y ∈ V . If either do not
exists, then they are added to the graph. Additionally, x and y are merged.
Lastly, if a role, R(x, y), is added to the ABox and 〈x, y〉 6∈ E , then 〈x, y〉 is
added to E and R is added to L(〈x, y〉). If however, 〈x, y〉 ∈ E but R 6∈ L(e),
then R is added to L(x).

After the graph has been updated, the completion rules are reapplied to the
updated completion graph, as the update may induce additional expansion rules
to be fired. We note here that if there has previously been a deletion update,
then previously explored branches which had a clash must be re-explored as the
deletion could have removed the axiom which caused the clash.

3.2 ABox Deletions

When updating a completion graph under ABox axiom removals, components
(nodes, edges, labels, etc.) in the graph that correspond to the removed axiom
cannot be simply removed. This is because as completion rules are applied,
newly added portions of the graph are dependent on the presence of the original
axioms in the KB. By deleting an ABox assertion, components of the graph that
are dependent on that assertion need to be updated as well.

In order to account for this, we propose using axiom pinpointing [6], which
tracks the dependencies of graph components on original source axioms from
the ontology through the tableau expansion process. More specifically, the ap-
plication of the expansion rules triggers a set of events that change the state of

the completion graph, or the flow of the algorithm. In [6] a set of change events
is defined, including adding labels to nodes and edges, etc. In order to record
the changes on the completion graph, [6] introduces a tracing function, which
keeps track of the asserted axioms responsible for changes to occur. The tracing
function, τ , maps each event e ∈ E to a collection of sets, each set containing a
fragment of K (axioms) that cause the event to occur. This tracing function is
maintained throughout the application of tableau expansion rules defined in [5].

For purpose of this work, the original set of change events has been extended
[2] to include all possible events that can occur during the application of expan-
sion rules. The extension of events includes removing nodes, edges, labels (in
case of merges), adding nodes and edge, etc. Additionally the tracing function
maintenance through expansion rule application has been extended. Although
the tracing extension has been provided for SHOIQ, it is trivial to see how they
are applied to SHIQ and SHOQ completion strategies. For brevity, further
details are omitted, however they can be found in [2].

In general, the update algorithm for deletion works as follows. When an
ABox axiom is removed, the algorithm performs a lookup in the graph for all
change events whose axiom traces include the axiom number of the deleted
axiom. These events are rolled-back if and only if their axiom trace sets only
include sets which contain the deleted axiom, possibly among other axioms.
By roll-back we refer to simply undoing (the inverse) the event (e.g., rolling
back the event Add(x,V) would be the process of removing x from V). If there
exists additional axiom traces for that particular event that do not include the
removed axiom, then only the sets including the removed axiom are deleted from
the axiom trace set; in this situation the actual event is not rolled-back. This is
intuitive as there still exists support for that particular event.

As in the approach for additions, the completion rules must be reapplied to
the updated completion graph as it is possible for the graph to be incomplete
for the KB. Axiom tracing additionally requires a slight modification to the
update approach for ABox additions. For example, in the case that a individual
type assertion is added to the KB, the algorithm must add a new tracing set
to the axiom trace for the affected components (this set will consist of the
new axiom number). The update algorithm (UPDATE(G, α)) is provided in
Figure 1. Note that deps (dependents) is the inverted tracing function index.
Additionally, the operator ∪∗ is defined as follows: let S1 = {S1

1 , ..., S
1
m} and

S2 = {S2
1 , ..., S

2
n} be two collections of sets, then:

S1
i (1 ≤ i ≤ m) ∈ S1 ∪∗ S2 iff S1

i 6⊂ S2
j for all j, 1 ≤ j ≤ n

S2
j (1 ≤ j ≤ n) ∈ S1 ∪∗ S2 iff S2

j 6⊂ S1
i for all i, 1 ≤ i ≤ m

Due to space limitation soundness proofs for the update algorithm are omit-
ted, however they can be found in a more detailed technical report1.

1Description Logic Reasoning for Dynamic ABoxes, UMIACS Technical Report. Available

function UPDATE(G, α)
if α is an addition then

if α is a x 6= y or x = y then
let op be the operation, such that op ∈ {=, 6=}
if x 6∈ V then
V ← V ∪ {x}

if y 6∈ V then
V ← V ∪ {y}

if op is 6= then
if x 6= y ∈ x ˙6=y then add it

if op is = then
Merge x and y

τ(x op y)← τ(x op y) ∪∗ {{α}}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α}}
τ(Add(y,V))← τ(Add(y,V)) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{x op y}{Add(x,V)}{Add(x,V)}}

else if α is a individual type addition, (C(x)) then
if x 6∈ V then
V ← V ∪ {x}
L(x)← L(x) ∪ {C}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α)}}
τ(Add(C,L(x)))← τ(Add(C,L(x))) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{Add(x,V)}{Add(C,L(x))}}

else if α is a role assertion addition, R(x,y) then
if 〈x, y〉 6∈ E then
E ← E ∪ {〈x, y〉}
L(〈x, y〉)← L(e) ∪ {R}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α)}}
τ(Add(y,V))← τ(Add(y,V)) ∪∗ {{α)}}
τ(Add(〈x, y〉, E))← τ(Add(〈x, y〉, E)) ∪∗ {{α)}}
τ(Add(R,L(〈x, y〉)))← τ(Add(R,L(〈x, y〉))) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{Add(x,V)}{Add(y,V)}{Add(〈x, y〉, E)}{Add(R,L(〈x, y〉))}}

Apply expansion rules to G
if there is a clash then

Perform backjumping
else if α is a deletion then

events← deps(α)
deps(α)← ∅
for each e ∈ events do

traces← τ(e)
for each t ∈ traces do

if α ∈ t do
traces← traces \ t

if traces = ∅ do
roll-back e

τ(e)← traces
Apply expansion rules to G
if there is a clash then

Perform backjumping
return G

Figure 1: Pseudo-code of update procedure for SHOQ(D) and SHIQ(D) ABoxes

4 Implementation and Evaluation

We have implemented the approach presented in this paper in an open source
OWL-DL reasoner, Pellet 2. In order to evaluate our update algorithm, we have
performed an emperical evaluation using two different KBs with large ABoxes -
the Lehigh University Benchmark (LUBM)3 and AKT Reference Ontology 4.

Three tests were run over three KBs consisting of one, two, and lastly three
universities from the LUBM dataset generator. First an initial consistency check
was performed and then in each test, a random update was selected which was
used to update the KB. In the regular version of the reasoner, the cached comple-
tion graph was discarded, while in the optimized reasoner the update algorithm
was utilized. For each KB size, varying sized additions and deletions were ran-
domly selected from the dataset. Update sizes include single axiom, twenty-five
axioms, and fifty axioms (individual and/or role). Each test was performed
twenty-five times and the results were averaged. Expressivity and KB statistics
are provided in Table 1. Results for additions and removals in the LUBM

Name Classes / Properties / Individuals / Assertions Expressivity
LUBM-1 Univ 43 / 32 / 18,257 / 97,281 SHI
LUBM-2 Univ 43 / 32 / 47,896 / 254,860 SHI
LUBM-3 Univ 43 / 32 / 55,110 / 295,728 SHI
AKT-1 160 / 152 / 16,505 / 70,948 SHIF
AKT-2 160 / 152 / 32,926 / 143,334 SHIF

Table 1: LUBM and AKT Portal Dataset Statistics

test are presented in Figure 2 (timing results are shown in milliseconds and the
scale is logarithmic). We note that the ’0’ axiom value represents the initial
consistency check. In both versions of the reasoner, initial consistency checks
are comparable. However for both update types, performance improvements
ranging from one to three orders of magnitude are achieved under updates in
the reasoner with the optimized update algorithm. This is due to the avoidance
of re-firing of completion rules by maintaining the previous completion graph;
therefore very few (if any in some cases) completion rules must be refired. This
provides direct empirical evidence for the effectiveness of the update algorithm.
In a second evaluation, two datasets5 adhering to the AKT Reference ontology
were used (statistics shown in Table 1). The tests were structured in the same
manner as the LUBM test. Again, each test was performed twenty-five times
and the results are averaged over these iterations. All timings are in milliseconds
and the scale is logarithmic. Similar to the LUBM test, update performance is

at http://www.mindswap.org/papers/2006/aboxUpdateTR2006.pdf
2Pellet OWL-DL Reasoner: http://www.mindswap.org/2003/pellet/
3LUBM Ontology: http://swat.cse.lehigh.edu/projects/lubm/
4AKT Ontology: http://www.aktors.org/publications/ontology/
5Hyphen-REA: http://www.hyphen.info/rdf/hero complete.zip

Figure 2: Addition and Removal Updates of LUBM and AKT datasets

improved between one to three orders of magnitude. Note that the performance
of the update is better in the LUBM test cases; this is primarily due to the in-
creased complexity of the AKT Reference Ontology. Therefore, a larger number
of expansion rules are applied after the update. However the update algorithm
greatly outperforms the regular reasoner, again demonstrating the effectiveness
and overall impact of the update algorithm.

5 Related Work and Conclusion

To our knowledge there has been no previous work in DL reasoning algorithms
for incremental maintenance of completion graphs. We do note that this work
can be paralleled to view maintenance and truth maintenance; however we deal
with a more expressive logic and a different proof theory. There has also been
recent work in optimizing incremental instance retrieval in expressive description
logics [1]; however previous work has not addressed the notion of updating the
completion graphs for consistency checking. Additionally, in [7, 8] the authors
specify update semantics for descriptions logics; however this work is less related
to belief revision and is independent as we are concerned with maintaining the

internal state of the reasoner.
In this paper, we have presented an algorithm for updating completion graphs

for the Description Logics SHIQ(D) and SHOQ(D) under both the addition
and removal of ABox assertions, providing a critical step towards reasoning
procedures for fluctuating or streaming data. We have provided an empirical
analysis of the algorithm through an experimental implementation in the Pellet
reasoner. Our initial results are very promising as they demonstrate orders of
magnitude performance improvement.

References

[1] Volker Haarslev and Ralf Moller. Incremental query answering for imple-
menting document retrieval services. In International Workshop on Descrip-
tion Logics, pages 85–94, 2003.

[2] Christian Halaschek-Wiener, Aditya Kalyanpur, and Bijan Parsia. Extend-
ing tableau tracing for abox updates. In UMIACS Tech Report, 2006.
http://www.mindswap.org/papers/2006/aboxTracingTR2006.pdf.

[3] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description
logic. In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[4] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Proc. of the 6th Int. Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes
in Artificial Intelligence, pages 161–180. Springer-Verlag, 1999.

[5] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005).
Morgan Kaufman, 2005.

[6] Aditya Kalyanpur, Bijan Parsia, Bernardo Cuenca-Grau, and Evren Sirin.
Tableau tracing in shoin. UMIACS Tech Report.

[7] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic
aboxes. In International Conference of Principles of Knowledge Representa-
tion and Reasoning(KR), 2006.

[8] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward updates in de-
scription logics. In International Workshop on Knowledge Representation
meets Databases, 2002.

[9] M. Winslett. Updating logical databases. In Updating Logical Databases.
Cambridge University Press, 1990.

