
Beyond Asserted Axioms: Fine-Grain
Justifications for OWL-DL Entailments

Aditya Kalyanpur1 and Bijan Parsia1 and Bernardo Cuenca Grau2

University of Maryland, USA1, University of Manchester, UK2

aditya@cs.umd.edu, bparsia@isr.umd.edu, bcg@cs.man.ac.uk

1 Motivation

The Ontology Engineering community widely agrees on the importance of helping
the user understand the output of a DL reasoner. The most recent approaches to the
problem [4] [3] are based on the notion of aMinimal Unsatisfiability Preserving Sub-
TBoxes(MUPS). Roughly, a MUPS for an atomic conceptA is a minimal fragment
T ′ ⊆ T of a TBoxT in whichA is unsatisfiable.

For example, given the TBox:

1: A t C v B u ∃R.D u E u ¬B, 2: C v Ft ≥ 1.R
3: A v E u ∀R.¬D, 4: B v ¬D t E

where the conceptA is unsatisfiable, the TBoxT ′ = {1} is a MUPS forA in T .
In our earlier work [2], we extended the notion of a MUPS to arbitrary entailments

in SHOIN and devised a non-standard inference service,axiom pinpointing, which,
givenT any of its logical consequencesα, determines the minimal fragments ofT in
whichα holds.

However, these services, though useful for debugging and explanation purposes,
suffer from a fundamentalgranularityproblem: since they work at the asserted axiom
level, they fail to determine whichpartsof the asserted axioms areirrelevant for the
particular entailment under consideration to hold. For instance, in our example, the
conjunctE in axiom1 is irrelevant for the unsatisfiability ofA. Moreover, additional
parts of axioms that could contribute to the entailment aremasked, e.g., the axioms
1, 3 can be broken down intoA v ∃R.D andA v ∀R.¬D which also entail the
unsatisfiability ofA, however, this condition cannot be captured.

In this paper, we aim at extending the axiom pinpointing service to captureprecise
justifications, which are at a finer granularity level than the original asserted axioms.
In this context, we provide a formal notion of precise justification and propose a
decision procedure for the problem. We discuss implementation details of the service

and show that it is feasible in practice. Our results are applicable toSHOIN and
hence to OWL-DL.

2 Precise Justifications

Since we aim at identifying relevant parts of axioms, we define a function that splits
the axioms in a TBoxT into “smaller” axioms to obtain an equivalent TBoxTs that
contains as many axioms as possible.

Definition 1 (split KB) Given aSHOIN conceptC in negation normal form (NNF),
the functionsplit(C) returns a set of concepts, inductively defined as follows:

split(C)← C, if C is A, ¬A,≥ n.R,≤ n.R, = n.R,>,⊥ or a nominal node{o}
split(C uD)← split(C) ∪ split(D)
split(C tD)← (split(C)⊗t split(D))
split(∀R.C)← ∀R.

∏
(split(C))

split(∃R.C ′) – we get two cases depending onC ′

if C ′ is of the formC uD,
split(∃R.C ′)← ∃R.E ∪ split(¬E t C) ∪ split(¬E tD) ∪ split((¬C t ¬D) t E), whereE is a fresh concept

else,
split(∃R.C ′)← ∃R.

∏
split(C ′)

Given a KB= {α1, α2, ...αn}, where each axiomαi is of the formCi v Di, let
Cα be the concept representingα, i.e., ¬Ci t Di, converted to NNF. Then,Ts =
split KB() =

∑> v Cs for each conceptCs ∈ split(¬C1 t D1) ∪ split(¬C2 t
D2)..split(¬Cn tDn).

The idea of the above function is to rewrite the axioms in in a convenient normal
form and split across conjunctions in the normalized version, e.g., rewritingA v
C u D asA v C, A v D.1 In some cases, we are forced to introduce new concept
names, only for the purpose of splitting axioms into smaller sizes (which prevents any
arbitrary introduction of new concepts); for example, since the axiomA v ∃R.(C u
D) is not equivalent toA v ∃R.C, A v ∃R.D, we introduce a new concept name,
sayE, and transform the original axiom into the following set of “smaller” axioms:
A v ∃R.E, E v C, E v D, C uD v E.

Table 1 shows an algorithm to split a TBox based on the above definition. In this
algorithm, we also keep track of the correspondence between the new axioms and the
axioms inT by using a functionσ.

1Note that the⊗t operator generates a cross-product of disjunctions, e.g,split((A u B) t (C u
D)) = {(A t C), (A tD), (B t C), (B tD)}; and the

∏
operator applies the set of concepts to the

preceding universal or existential operator, e.g.,split(∀R.(B u (C tD))) = {∀R.B, ∀R.(C tD)}.

Algorithm: Split KB
Input: TBox T
Output: TBox Ts, Axiom Correspondence Functionσ
Ts ← ∅
initialize axiom correspondence functionσ
initialize substitutioncache
for eachsubclass axiomα ∈ T

from α := C v D generateCα := ¬C tD
normalizeCα to NNF (pushing negation inwards)
Ts ← Ts ∪ {> v Cα}
σ({> v Cα})← α

while there exists an axiom{> v Cα} ∈ Ts s.t. can-split(Cα) 6= ∅,
Ts ← Ts − {> v Cα}
〈T, v, π,A, B〉 ← can-split(Cα)
if Lt(〈≺t (v), v〉) 6= ∃R, then

CA ← Cα[A]π; σ(CA)← σ(CA) ∪ σ(Cα); Ts ← Ts ∪ {> v CA}
CB ← Cα[B]π; σ(CB)← σ(CB) ∪ σ(Cα); Ts ← Ts ∪ {> v CB}

else
if cache(A uB) = ∅, then

let E be a new concept not defined inTs

Ts ← Ts ∪ {E v A,E v B,A uB v E}
cache(A uB)← E

elseE ← cache(A uB)
CE ← Cα[E]π; σ(CE)← σ(Cα); Ts ← Ts ∪ {> v CE}

subroutine: can-split(Cα)
let T = (Wt,≺t, Lt) be the parse tree for the disjunctionCα

if there exists a nodev ∈Wt in T s.t.Lt(v) = u with childrenA,B
let π be the position of nodev
return 〈T, v, π,A, B〉

else return∅

Table 1: Splitting a TBox

A justification is a generalization of the notion of a MUPS for arbitrary entail-
ments:

Definition 2 (Justification) LetT |= α whereα is an axiom. A fragmentT ′ ⊆ T is
a justification forα in T if T ′ |= α, andT ′′ 6|= α for everyT ′′ ⊂ T ′.

We denote byJUST(α, T) the set of all justifications forα in T .
Finer-grained justifications can be defined as follows:

Definition 3 (Precise Justification)
LetT |= α. A TBoxT ′ is aprecise justificationfor α in T if T ′ ∈ JUST(α, split TBox(T)).

We denote byJUSTp(α, T) the set of all precise justifications forα in T .
In SHOIN , entailment can be reduced to concept unsatisfiability. As a con-

sequence, it is easy to show that the problem of finding all the justifications for an

unsatisfiable concept and the problem of finding all the justifications for a given en-
tailment can be reduced to each other. In what follows, we shall restrict our attention,
without loss of generality, to the problem of finding all the precise justifications for
an unsatisfiable concept w.r.t to aSHOIN TBox.

3 Finding Precise Justifications

The problem of finding all precise justifications for an entailmentα of a TBoxT now
reduces to the problem of finding all justifications forα in thesplit TBox(T). Thus,
we can use the algorithm listed in Table 1 to split a TBox, and then apply any decision
procedure to find all justifications for the entailment in the split version of the TBox.

We briefly sketch the algorithm we have developed in our earlier work to find all
justifications for an arbitrary entailment in a TBox. For details, we refer the reader to
the technical report [2].

The first part of the algorithm is based on the decision procedure for concept satis-
fiability in SHOIN [1], and it finds any one arbitrary justification for the entailment.
It keeps track of the axioms from the TBox responsible for each change in the com-
pletion graph, namely, the addition of a particular concept (or role) to the label of
a specific node (or edge), the addition of an equality (merge) or inequality relation
between nodes, or the detection of a contradiction (clash) in the label of a node.

In order to ensure correctness, our algorithm imposes an ordering among the de-
terministic rules: theunfolding andCE rules are only applied whenno otherdeter-
ministic rule is applicable. The rationale for this strategy relies on the definition of
justification that establishes minimality w.r.t. the number of axioms considered; the
new rules cause new axioms to be considered in the tracing process and additional
axioms should only be considered if strictly necessary.

The algorithm works on a treeT of completion graphs. that is incrementally built
using the set of availableexpansion rules, and the traces for the events triggered by the
rules are updated on the fly. For a full specification of the expansion rules, we refer
the reader to [2]. The application of non-deterministic rules results in the addition
of new completion graphs as leaves ofT, one for each different non-deterministic
choice. However, sinceC is unsatisfiable w.r.t.T , the algorithm detects a clash in
each of the leaves. Upon termination, the trace of the detected clash (or clashes) in
the leaves ofT yields a justification.

Once a single justification has been found, we find the remaining justifications by
employing a variation of the classical Hitting Set Tree (HST) algorithm.

Given a collectionS of conflict sets, Reiter’s algorithm constructs a labeled tree
calledHitting Set Tree(HST). Nodes in an HST are labeled with a sets ∈ S and:
1) if H(v) is the set of edge labels on the path from the root to the nodev, then
L(v) ∩H(v) = ∅; 2) for eachσ ∈ L(v), v has a successorw andL(〈v, w〉) = σ; 3)
if L(v) = ∅, thenH(v) is a hitting set forS.

In our approach, we form an HST where nodes correspond to single justification
sets (computed on the fly), edges correspond to the removal of axioms from the KB,
and in building the tree to compute all the minimal hitting sets, we in turn obtain all
the justification sets as well. The correctness and completeness of this approach is
provided in [2].

3.1 Optional Post-Processing

Having derived the justifications for the entailmentA ≡ ⊥ in the maximally split
version of KBT , we remove any term in a justification set that was introduced in the
KB in step 1 using the procedure described in Table 2. The output of this stage gives
us precise justifications for the entailment in terms of sub-axioms.

Algorithm: Remove New Terms
Input: Collection of Axiom SetsJ , Original KB T
Output: J
for eachaxiom setj ∈ J do,

while there exists a termC ′ ∈ vocab(j) s.t.C ′ /∈ vocab(T), do
S ← ∅
for eachaxiomC ′ v Ci ∈ j, do

S ← S ∪ Ci

if S 6= ∅, then
C ← C1 u C2 u ..Cn (for all Ci ∈ S)

else
C ← >

substituteC ′ with C in j

Table 2: Post-Processing

3.2 Example

We now present a detailed example to demonstrate how the algorithm finds precise
justifications correctly.

Consider a KBT composed of the following axioms:

1. A tB v ∃R.(C u ¬C) uD u E

2. A v ¬D uB u F uD u ∀R.⊥
3. E v ∀R.(¬C uG)

Note,vocab(T) = {A, B, C,D, E, F, R}, and the conceptA is unsatisfiable w.r.t
T .

GivenA, T as input, the algorithm proceeds as follows:
Step 1: After pre-processing, we obtain a maximally split equivalent KBTs:
Ts = {A v ∃R.H1; B v ∃R.H1; A v D1,2; B v D1; A v E1; B v E1; H v

C1; H v ¬C1; A v ¬D2; A v B2; A v F 2; A v ∀R.⊥2; E v ∀R.¬C3; E v
∀R.G3}.

The superscript of each axiom inTs denotes the corresponding axiom inT that
it is obtained from. This correspondence is captured by the functionσ in the Split-
KB algorithm (see Table 1). Notice that the superscript of the axiomA v D in Ts

is the set{1, 2} since it can be obtained from two separate axioms inT . Also, we
have introduced a new conceptH in the split KB, which is used to split the concept
∃R.(C u ¬C) in axiom1.

Step 2:Now, we obtain the justifications for the unsatisfiability ofA w.r.tTs. This
gives us the following axiom setsJ :

J = {{A v ∃R.H1, H v C1, H v ¬C1}; {A v D1,2, A v ¬D2}; {A v
∃R.H1, H v C1, A v E1, E v ∀R.¬C3}; {A v ∃R.H1, A v ∀R.⊥2}}

Step 3: Finally, we remove the conceptH introduced inTs from the justification
sets inJ to get:
T ′ = {{A v ∃R.(Cu¬C)1}; {A v D1, A v ¬D2}; {A v D2, A v ¬D2}; {A v

∃R.C1, A v E1, E v ∀R.¬C3}; {A v ∃R.>1, A v ∀R.⊥2}}
As can be seen, the final output is the complete set of precise justifications for

A ≡ ⊥ in T .

4 Implementation Issues

We have shown in [3], [2] that the axiom pinpointing service used to find all justi-
fications for an entailment of aSHOIN KB performs reasonably well on a lot of
real-world OWL-DL ontologies.

The main additional overhead incurred for capturing precise justifications is due to
the pre-processing phase where we split the KB. The concern here, from a reasoning
point of view, is the introduction of GCIs during the splitting process, e.g.A ≡
B u C is replaced by (among other things)B u C v A. Even though these GCIs are
absorbed, they still manifest as disjunctions and hence adversely affect the tableau
reasoning process.2

Alternately, a more optimal implementation is the following: instead of splitting
the entire KB beforehand, we can perform alazy splittingof certain specific axioms
(on the fly) in order to improve the performance of the algorithm. The modified
algorithm with lazy splitting becomes:

• Given A unsatisfiable w.r.tT , find a single justification set,J ∈ JUST(A ≡
⊥, T)

• Split axioms inJ to giveJs. PruneJs to arrive at a minimal precise justification
setJp

2In this case, it is possible to introduce a new absorption rule in the reasoner which would transform
axioms of the formB v A,C v A,B u C v A to A ≡ B u C internally. This obviously seems odd
given that we split the KB initially and re-combine axioms back in the reasoner, but note that the goal
here is finding precise justifications.

• ReplaceJ by Js in T .

• Form Reiter’s HST usingJp as a node, with each outgoing edge being an axiom
α ∈ Jp that is removed fromT

The advantage of this approach is that it only splits axioms in the intermediate
justification sets in order to arrive at precise justifications, and re-inserts split axioms
back into the KB dynamically. For details of the procedure, see [2]

5 Conclusion and Future Work

We have implemented the axiom pinpointing service in the OWL-DL reasoner, Pel-
let, and exposed it in the OWL Ontology Editor, Swoop. We are in the process of
extending it to capture precise justifications.

From a UI perspective, maintaining the correspondence between the subaxioms
in the precise justification and the original asserted axioms is useful, as it allows us
to strike out irrelevant parts of the axioms directly, which is helpful to understand the
entailment better. (see Figure 5).

As future work, we plan to optimize the implementation and do a thorough per-
formance and usability evaluation.

Figure 1:Justification forMaleStudentWith3Daughters v Person in the Koala OWL Ontology

References

[1] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of IJCAI 2005, 2005.

[2] Aditya Kalyanpur, Bijan Parsia, Bernardo Cuenca, and Evren
Sirin. Axiom pinpointing: Finding (precise) justifications
for arbitrary entailments in OWL-DL, 2006. Available at
http://www.mindswap.org/papers/2006/AxiomPinpointing.pdf.

[3] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging
unsatisfiable classes in OWL ontologies.J. of Web Semantics, Vol 3, Issue 4,
2005.

[4] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. InProc. of IJCAI, 2003, 2003.

