
Conjunctive Query Answering for Description
Logics with Transitive Roles

Birte Glimm∗ Ian Horrocks Ulrike Sattler
The University of Manchester, UK

[glimm,horrocks,sattler]@cs.man.ac.uk

Abstract

An important reasoning task, in addition to the standard DL reason-
ing services, is conjunctive query answering. In this paper, we present
algorithms for conjunctive query answering in the expressive Description
Logics SHQ and SHOQ. In particular, we allow for transitive (or non-
simple) roles in the query body, which is a feature that is not supported
by other existing conjunctive query answering algorithms. For SHQ, we
achieve this by extending the logic with a restricted form of ↓ binders and
state variables as known from Hybrid Logics. We also highlight, why the
addition of inverse roles makes the task of finding a decision procedure
for conjunctive query answering more complicated.

1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve instances of concepts and roles. The development of
a decision procedure for conjunctive query answering in expressive DLs is, how-
ever, still a partially open question. Grounded conjunctive queries for SHIQ
are supported by KAON2, Pellet, and Racer’s query language nRQL. However,
the semantics of grounded queries is different from the usually assumed open-
world semantics in DLs since existentially quantified variables are always bound
to named individuals.

∗This work was supported by an EPSRC studentship.
1For example, FaCT++ http://owl.man.ac.uk/factplusplus/, KAON2 http://

kaon2.semanticweb.org/, Pellet http://www.mindswap.org/2003/pellet/, or Racer Pro
http://www.racer-systems.com/

None of the existing conjunctive query answering techniques [14, 10, 4, 9, 13]
is able to handle transitive roles or nominals in the query body.2 In this paper,
we present an extension of SHQ with a restricted form of the ↓ binder operator
and state variables as known from Hybrid Logics [3]. This extended logic enables
an extension of the rolling-up technique [14, 4] to transitive roles; a feature which
was left open by Tessaris [14]. Unfortunately, the ↓ binder already makes the
DL ALC undecidable. For query answering, however, the ↓ binder occurs in
a very restricted form and, as we show in Section 4, this extension of SHQ is
decidable. Further on, we adapt the tableaux algorithm for SHOQ [7] in order
to decide conjunctive query entailment in SHQ.

Query answering for a logic that includes nominals, e.g., a logic such as
SHOQ, has the additional difficulty that cycles are no longer limited to ABox
individuals or shortcuts via transitive roles. Therefore, the non-deterministic
assignment of individual names to variables in a cycle, as suggested for the
DL DLR by Calvanese et al. [4], can no longer be applied. In Section 5,
however, we show that, by also introducing new variables, the non-deterministic
assignment of individual names to variables can be used in order to provide a
query answering algorithm for SHOQ.

Finally, we highlight why the extension of SHQ or SHOQ with inverse roles
makes the design of a decision procedure for conjunctive query answering more
complicated.

2 Preliminaries

We assume readers to be familiar with the syntax and semantics of the DL
SHOIQ (for details see [1]) and of SHOIQ knowledge bases. Therefore, we
introduce only the syntax and semantics of the ↓ binder and of conjunctive
queries here.

Let L be a Description Logic, C an L-concept, and NV a finite set of variable
names with y ∈ NV . With L↓, we denote the language obtained by allowing,
additionally, y and ↓y.C as L-concepts. For an interpretation I = (∆I ,·I), an
element d ∈ ∆I , and a variable y ∈ NV , we denote with I[y/d] the interpretation
that extends I such that yI = {d}. The L↓-concept ↓y.C is then interpreted as

(↓y.C)I = {d ∈ ∆I | d ∈ CI[y/d]}.
Let ~y be a vector of variables and ~c a vector of individual names. A Boolean

conjunctive query q has the form 〈〉 ← conj1(~y;~c) ∧ . . . ∧ conjn(~y;~c). We call
T(q) = ~y ∪ ~c the set of terms in q,3 and we call each conji(~y;~c) for 1 ≤ i ≤ n

2Although the algorithm presented by Calvanese et al. [4] allows the use of regular expres-
sions in the query (in particular the transitive reflexive closure), it has been shown that the
algorithm is incomplete [8, 5].

3For readability, we sometimes abuse our notation and refer to ~y as a set. When referring

an atom. Atoms are either concept or role atoms: a concept atom has the form
t : C, and a role atom the form 〈t, t′〉 : r, for {t, t′} ⊆ T(q), C a possibly complex
L-concept, and r an L-role.

Let K be an L-knowledge base (L-KB), I = (∆I ,·I) a model for K, and q a
Boolean conjunctive query for K. An assignment in I is a mapping ·A : T(q)→
∆I . We say that q is true in I and write I |= q if there exists an assignment
·A in I s.t. tA ∈ {tI} for every individual t ∈ ~c, tA ∈ CI for every concept atom
t : C in q, and 〈tA, t′A〉 ∈ rI for every role atom 〈t, t′〉 : r in q. We call such an
assignment a q-mapping w.r.t. I . If I |= K implies I |= q for all models I of
K, then we say that q is true in K, and write K |= q; otherwise we say that q is
false in K, and write K 6|= q.

Since answering non-Boolean conjunctive queries can be reduced to answer-
ing (possibly several) Boolean queries, we consider only Boolean queries here.

3 Reducing Query Answering to Concept Un-

satisfiability

The main ideas used in this paper were first introduced by Calvanese et al. [4]
for deciding conjunctive query entailment for the expressive DL DLRreg . Since
query answering can be reduced to query entailment, the algorithm in [4] is
capable of deciding conjunctive query answering as well. The authors show how
a query q can be expressed as a concept Cq, such that q is true w.r.t. a given
knowledge base if adding > v ¬Cq makes the KB unsatisfiable. In order to
obtain the concept Cq, the query q is represented as a directed, labelled graph.
This graph, called a tuple-graph or a query graph, is traversed in a depth-first
manner and, during the traversal, nodes and edges are replaced with appropriate
concept expressions, leading to the concept Cq after completing the traversal.

The nodes in a query graph correspond to the terms in the query and are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. For
example, let q1 be the query 〈〉 ← x : C ∧ 〈x, y〉 : s ∧ y : D and q2 the query
〈〉 ← x : C ∧ 〈x, y〉 : s ∧ 〈y, x〉 : r ∧ y : D. The query graphs for q1 and q2 are
depicted in Fig. 1 and Fig. 2 respectively.

y:Dx:C s

Figure 1: The (acyclic) query
graph for q1.

y:Dx:C

r

s

Figure 2: The (cyclic) query
graph for q2.

Since q1 is acyclic, we can build the concept that represents q1 as follows:

to a vector ~y as a set, we mean the set {yi | yi occurs in ~y}.

start at x and traverse the graph to y. Since y is a leaf node, remove y and its
incoming edge and conjoin ∃s.D to the label C of x, resulting in C u ∃s.D for
Cq1 . A given KB K entails q1 iff K ∪ {> v ¬Cq1} is unsatisfiable. Since the
graph is collapsed with each step, the technique is often called rolling-up. Full
details can be found in the original paper [4], although the description there is
slightly different since reification and name formulae are used in order to reduce
DLRreg (which allows also for roles of arity n > 2) to converse-pdl. Tessaris
[14] proposes a similar approach for the DL SHQ (without transitive roles in
the query).

This reduction is not directly extendable to cyclic queries since, due to the
tree-model property of most DLs, a concept cannot capture cyclic relationships.
However, for simpler DLs, this also means that cycles can only be enforced by
ABox assertions and hence, Calvanese et al. suggest to replace variables in a
cycle, i.e., x and y in q2, non-deterministically with individual names from the
KB (or with terms from the more specific query in the case of query entailment).

Although the technique presented by Calvanese et al. provides the basic foun-
dation of several query answering algorithms, including the extensions presented
here, it was found later that the algorithm in its original form is not a decision
procedure. Horrocks et al. [8] point out that, by identifying variables with each
other, some cyclic queries become acyclic, and hence a replacement of variables
with named individuals might not find all solutions. For example, identifying y
and y′ in the query graph depicted in Fig. 3, leads to the acyclic query graph in
Fig. 4, which can be expressed as C u ∃r.∃s.D. Clearly, the KB containing the
ABox assertion a :∃r′.(C u∃r.∃s.D) would make the query true, although in the
relevant assignments none of the variables can be bound to the individual name
a.

x:C z:Dr

r

s

s

y�

y

Figure 3: The original query
graph.

x:C z:D

r s
y=y�

Figure 4: The query graph after
identifying y with y′.

Another problem arises through the regular expressions in DLRreg , which
are, for example, capable of expressing inverse roles in the query. Let q3 be the
query 〈〉 ← 〈x, y〉 : r ∧ 〈y, x〉 : s− (see Fig. 5). Identifying x and y still leaves us
with a cyclic query graph. Let K be a knowledge base containing the role axiom
r v s and the ABox assertion a : ∃r′.∃r.>. Clearly, we have that K |= q3 (see
Fig. 6), although again in the relevant assignments none of the variables can
be bound to the individual name a. Similar examples can be given for regular
expressions that use the Kleene star for expressing the transitive closure. These
discoveries motivated the work presented in the following sections, which in
particular targets the problems arising with cyclic queries.

x y

s-

r

Figure 5: The query
graph for q3.

a r� r, s

r -,s-r� -

Figure 6: A representation of the canonical
model of K. The parts that make q3 true
are highlighted.

4 The Rolling-Up Technique with ↓ Binders

An extension of the rolling-up technique to cyclic queries is not directly possible,
as we have tried to explain in the previous section. Due to the tree-model
property of most DLs, a concept cannot capture cyclic relationships, but it is
also not always correct to replace variable names in a cycle with individual names
from the knowledge base. In this section, we show how cyclic queries for an L-KB
can be rolled-up into L↓-concepts. The ↓ binder can label elements in a model
with a variable, and this variable can be used to enforce a co-reference. Consider
again the query q2〈〉 ← x : C ∧〈x, y〉 : s∧〈y, x〉 : r∧y : D (see Fig. 2). Using the ↓
binder, we can construct the following concept Cq2 for q2: ↓x.(Cu∃s.(Du∃r.x)).
In order to obtain this concept, we still traverse the query graph (see Fig. 7):
we start at x, traverse to y, then we reach x again and replace the r-edge by
conjoining ∃r.x to the label of y, now y is a leaf node and we replace y and
its incoming s-edge by conjoining ∃r.↓y.(D u ∃r.x) to the label of x, since x is
the last node, we obtain Cq2 as ↓x.(∃r.↓y.(D u ∃r.x). Since y never occurs as
a variable, we can omit the ↓ binder for y. Now we have again that K |= q2 iff
K ∪ {> v ¬Cq2} is unsatisfiable. Further details and a proof that Cq2 indeed
captures q2 can be found in a technical report [6].

y:Dx:C

r

s y:Dx:C

r

s y:Du9r.xx:C s x:Cu9s.#y.(Du9r.x)

Figure 7: The graph traversal for the query graph of q2 step by step. Parts
already seen during the traversal are highlighted.

Even for cyclic queries, the rolling-up is now straightforward. If, however,
the logic L under consideration does not provide for inverse roles, then this
technique is only applicable in case each component in the query graph is also
strongly connected. In the presence of weakly connected components, we would
need inverse roles in order to roll-up a query. For example, let q4 be the query
〈〉 ← x : C ∧ 〈x, y〉 : s∧ 〈x, y〉 : r∧ y : D, i.e., both edges go now from x to y and x
is not reachable from y. Therefore, the query graph is composed of two weakly
connected components and a traversal of the query graph would get stuck at y.
With inverse roles, q4 could easily be expressed as ↓x.(C u ∃s.(D u ∃Inv(r).x)).
Tessaris [14] shows how arbitrary conjunctive queries for SHQ can be rolled-up

even without inverse roles, and an extension of this technique might work for ↓
binders and variables as well.

y:Dx:C

r

s

Figure 8: The query graph for q4.

Unfortunately, there are no decision procedures for expressive DLs with the
↓ binder operator. It is even known that ALC extended with binders and state
variables is undecidable [2]. However, we can observe some interesting properties
for our query concepts. (1) After the rolling-up, all variables occur only posi-
tively. (2) Only existential restrictions are introduced in the rolling-up. Hence,
negating the query concept for q2 and transforming it into negation normal form
yields ↓x.(¬Ct∀s.(¬Dt∀r.¬x)) and we observe that all variables occur negated
and are under the scope of universal quantifiers. For ALC, these restrictions are
enough to regain decidability [11].

4.1 A Tableaux Algorithm for SHQ Query Concepts

Our algorithm is based on the tableaux algorithm for SHOQ [7], which obviously
decides KB satisfiability for SHQ. Using this algorithm has the advantage that
we can use nominals for the constants in the query. Alternatively, representative
concepts and additional ABox assertions for each constant in a query could be
used [14]. A tableaux algorithm builds a finite representation of a model, which
is called a completion graph. The nodes in the completion graph represent
elements in the domain and are labelled with a set of concepts. Labelled edges
represent the relational structures among the elements. An initial completion
graph is expanded according to a set of expansion rules. The expansion stops
when an obvious contradiction, called a clash, occurs, or when no more rules
are applicable. In the latter case, the completion graph is called complete.
Termination is guaranteed by a technique called blocking. A complete and
clash-free completion graph can be “unravelled” into a model for the given KB.

In order to handle query concepts that may contain binders and state vari-
ables, some adaptations of the existing algorithm are necessary. In order to store
the bindings of variables, we modify the node labels s.t. they contain tuples of
the form 〈C, B〉, where C is a concept and B is a (possibly empty) set of bind-
ings of the form {y1/v1, . . . , yn/vn}, where y1, . . . , yn are the free variables in C
and v1, . . . , vn are nodes. The next obvious addition is a rule to handle concepts
of the form ↓y.C: if 〈↓y.C, B〉 is in the label of a node v, we add 〈C, {y/v}∪B〉
and 〈y, {y/v}〉 to the label of v. The latter states that y is bound to v at v, and
the former that the free variable y in C is bound to v. All other existing rules

have to propagate the bindings as well, e.g., the ∀-rule applied to 〈∀r.C, B〉 in
the label of a node v adds 〈C, B〉 to the labels of v’s r-successors. The set B
contains all and only the bindings for the free variables in C. Another obvious
consequence is the addition of a new clash condition: if both 〈y, {y/v}〉 and
〈¬y, {y/v}〉 are in the label of the node v, then this is a clash.

A more challenging task is the extension of the blocking condition. For SHQ,
however, we argue that we can simply ignore the bindings, i.e., if 〈C, B〉 is in
the label, we consider only C in the blocking condition. This clearly ensures
termination. But why does this guarantee that we can unravel a complete and
clash-free completion forest into a model? Obviously, in SHQ, there is no
way for a node to propagate information “back” to its ancestors, and clashes
according to the new clash condition can only occur through a cyclic structure.
This is so because a node v is only labelled with 〈y, {y/v}〉 by an application of
the new ↓-rule to some concept 〈↓y.C, B〉 in the label of v. Furthermore, the
only way ¬y can occur with v as a binding is when 〈C, {y/v} ∪B〉 is expanded
to 〈¬y, {y/v}〉 via a cyclic path back to v. This is obviously only possible among
individual nodes in SHQ and, therefore, no clash in the tableau can by caused
by unravelling. Hence, transitive roles alone are not causing major problems.

An interesting consequence is, however, that we loose the finite model prop-
erty. For example, let K contain the axioms > v ∃r.> and > v ¬Cq with r
a transitive role and ¬Cq := ↓x.(∀r.¬x). The first axiom enforces an infinite
r-chain for every individual. Normally, a finite model could contain an r-cycle
instead of an infinite chain, but this would clearly violate ¬Cq. Hence, every
model of K must be acyclic and therefore contain an infinite r-chain.

5 A Rolling-up Technique for SHOQ
In this section, we show how the rolling-up technique can be extended to the
DL SHOQ, i.e., SHQ plus nominals. We do not use ↓ binders here, but rather
propose an extension of the guessing technique as sketched in Section 3. In the
presence of nominals, a simple non-deterministic assignment of individual names
to variables that occur in a cycle is not sufficient. For example, Fig. 9 represents a
model for the KB containing the axioms {a} v ¬Cu¬Du∃s.(Cu∃r.(Du∃s.{a}))
and trans(s). The query 〈〉 ← x : C∧y : D∧〈x, y〉 : r∧〈y, x〉 : s (see Fig. 10) would
clearly be true, although in the relevant assignments a cannot be bound to either
x or y. Since the query graph for this query contains just one strongly connected
component, no inverse roles are required in the rolling-up and we should be able
to deal with this query.

For SHOQ, our main argument for the correctness of an extension of the
guessing of variable assignments is that a cycle among new nodes can only occur
due to a transitive role that provides a shortcut for “skipping” the nominal.

n1:Ca:¬Cu¬D

s

s n2:Dr

s

Figure 9: The dashed line indicates the relationship added due to s being tran-
sitive. Therefore, there is a cycle not directly containing the nominal a.

Hence, a nominal is always at least indirectly involved in a cycle. In this case, we
have only one nominal a, and we may guess that it is either in the position of x,
in the position of y, or it is “splitting” the (transitive) role s (see Fig. 11). In each
case, we can roll-up the query graph into the nominal, obtaining the three query
concepts C1

q := {a}uCu∃r.(Du∃s.{a}), C2
q := {a}uDu∃s.(Cu∃r.{a}), C3

q :=
{a} u ∃s.(C u ∃r.(D u ∃s.{a})). Identifying x with y gives the additional forth
query concept C4

q := {a} u C uD u ∃r.{a} u ∃s.{a}. The query is true just in
case one of these query concepts is entailed by the KB. Clearly, in our example,
only the concept C3

q that corresponds to the “new” guess is entailed. If we had
n nominals, then we would need to try 4n guesses.

x:C y:Dr

s

Figure 10: The original
query graph.

x:C y:Dr

s sa

Figure 11: An alternative query graph
in which the nominal a is assumed to be
involved in the cycle.

Since it was, to the best of our knowledge, not even known if conjunctive
query answering for logics with nominals and transitive roles is decidable, this
technique is clearly valuable, although it is, due to its highly non-deterministic
nature, not very practical.

6 The Challenges of Inverses and Nominals

Neither the arguments used for the extension of SHQ with binders (i.e., blocking
can ignore different bindings), nor the extended guessing strategy for SHOQ,
can be used with inverse roles. Fig. 12 shows a representation of a model for
the concept {a} u ∃r.(∃s.>) for s a transitive and symmetric role. The query
〈〉 ← 〈x, x〉 : s is obviously true in this model. The nominal a is, however, not
even indirectly involved in the cycle.

n1a r n2s

ss s

Figure 12: The dashed lines represent the additional relationships added for s
being transitive and symmetric.

Since completion graphs are finite representations of models, the question is
how far do we have to expand a completion graph before blocking is “safe”, i.e.,
unravelling into a tableau does not lead to a clash.

In order to see the same problem from another perspective, we briefly sketch
a different query answering algorithm in the style of CARIN [10]. CARIN
provides a conjunctive query answering algorithm for the DL ALCNR. Recall
from Section 2 that a query q is true in a knowledge base K, if there is a q-
mapping for every model I = (∆I ,·I) of K. Similarly, we define a mapping
φ from terms in a query to nodes in a completion graph G and we call φ a
q-mapping w.r.t. G if, for each constant t in q, {t} is in the label of φ(t) (i.e.,
constants are mapped to the corresponding nominal nodes), for each concept
atom t : C in q, C is in the label of φ(t) and, for each role atom 〈t, t′〉 : r in q, φ(t′)
is an r-descendant of φ(t), where r-descendant implicitly closes the transitive
roles. Since φ is purely syntactic, we extend the KB with an axiom > v C t¬C
for each concept C s.t. t : C is a concept atom in q. Hence, we obtain a decision
procedure for conjunctive query answering if we can show the following:

Claim 6.1
For each model I of K, there is a q-mapping w.r.t. I iff for each completed and
clash-free completion graph G of K, there is a q-mapping w.r.t. G.

In order to take the length of the paths in the query into account, blocking
must be delayed appropriately. In CARIN (i.e., for a logic without transitive
roles) this is achieved by using two isomorphic trees (instead of two isomorphic
pairs as it is the case for normal pairwise blocking as in SHIQ) s.t. the depth
of the trees corresponds to the longest path in the query.

The “if” direction of Claim 6.1 is relatively straight forward but, for the
“only if” direction, we have to show that (in contrapositive form), if there is a
completion graph G for K s.t. there is no q-mapping φ w.r.t. G, then there is a
model I of K s.t. there is no q-mapping σ w.r.t. I. We now give an example that
shows that, even if we find such a completion graph G, we cannot guarantee
that there is no mapping σ w.r.t. the canonical model I of G, if q contains
a cycle with a transitive role occurring in it. Of course there may be another
completion graph, for which this problem does not occur, but it is hard to prove
that there is always a canonical counter-model for the query.

Let K be a KB containing the axiom > v ∃r.> t ∃s.> for r a transitive
and symmetric role and let q be the query 〈〉 ← 〈x, x〉 : r ∧ 〈x, y〉 : s ∧ 〈y, z〉 : r ∧
〈z, z〉 : r ∧ x : C ∧ z : C, see Fig. 13 right. The upper part of Fig. 13 shows a
possible (simplified) completion graph G for K, where C or ¬C is added to the
node labels to allow for a purely syntactic mapping φ. The grey underlying
triangle shapes illustrate the two isomorphic trees used for blocking, and clearly
there is no q-mapping w.r.t. G. The partial representation of a model depicted
in the lower part of Fig. 13, however, shows that, by unravelling G, we would get

a model I of K s.t. there is a q-mapping w.r.t. I. This is the case because there
is no longer only one element in the extension of C, and all role relationships
for q are satisfied since r is transitive and symmetric (inferred relationships are
only pictured where they are relevant for the mapping). Even choosing a larger
depth for the two trees would allow this to happen, since the decision for C or
¬C and for an r- or s-successor was purely non-deterministic.

r r r r r r r r rsr r r rsr

x:C

s

z:C

r

¬C

r

¬C

r

¬C

r

¬C

r

¬C

r

¬C C ¬C

r

¬C

r

¬C

r

¬C

r

¬C

r r

y

sr

¬C ¬C ¬C ¬C ¬C ¬C C ¬C ¬C ¬C ¬C ¬C C ¬C ¬C ¬C

r rr

Figure 13: A completion graph G with trees for blocking (top), a partial un-
ravelling of G (bottom), and a query graph (right).

Therefore, the absence of a q-mapping for the completion graph does not
prove that there is a model for which there is no q-mapping. Requiring several
isomorphic trees or pairs before blocking occurs obviously does not help either
since only one part between the isomorphic trees/pairs could contain the twice
required C in the node label. The problem is that, by repeating the unique part
between the blocking and the blocked node, we can produce a structure that
allows for a q-mapping.

A tempting solution for “safe” blocking conditions would be to require a path
of n isomorphic sequences directly following each other, where n is the length
of the longest path in the query. However, this will not guarantee termination,
as the following argument shows: we could interpret each path from a root
or nominal node as a word over the edge labels, e.g., the above example would
produce a word starting with rrrrrrsrrrr. For the suggested blocking condition,
such a path must contain a substring of the form W n, i.e., n repetitions of the
word W , where W is any sequence of letters over our alphabet of roles. The
additional blocking conditions for the node labels are irrelevant here. In 1944
Morse and Hedlund [12] showed that the so called Thue-Morse sequence, which
forms a word over an alphabet of only two letters, is cube-free, which would
correspond to a path of unbounded length in which no blocking occurs. Hence,
the algorithm would not terminate for n > 3. For a three letter alphabet, this
holds already for n > 2.

We encounter similar difficulties when using ↓ binders and variables for a logic
like SHIQ or SHOIQ. It is difficult to determine how “deep” the completion
graph has to be before blocking is safe. If the completion graph is not “deep
enough”, unravelling does not yield a model.

Although for the CARIN technique, some canonical models with a q-mapping
have completion graphs without a q-mapping, it seems as if by testing all possi-

ble completed and clash-free completion graphs, one would always find at least
one completion graph such that also its canonical model does not provide for a
q-mapping. However, this is only an observation, which could support the view
that the problem is, despite all these problems, decidable. A different proof
technique might be necessary to show this, and our future work is aimed at
investigating this.

7 Conclusions

In the previous sections, we have presented two ideas that allow an extension of
the rolling-up technique also to cyclic conjunctive queries for SHQ and SHOQ.
For SHQ, we achieved this by extending the logic with a restricted form of
↓ binders and state variables as known from Hybrid Logics. This allows the
expression of cyclic queries as concepts since, with ↓ binders and variables we
can express a co-reference. Query entailment can then be reduced to deciding
concept satisfiability for the extended DL. However, adding the ↓ binder, even in
the very restricted form needed for query answering, has a notable impact on the
resulting logic; e.g., for SHQ, this extension leads to the loss of the finite model
property. In Section 4.1, we illustrate how a tableaux algorithm for SHQ can
be extended in order to handle query concepts. Although each ↓ introduces a
fresh nominal on the fly, we show that, for SHQ, termination can be regained by
ignoring them in the blocking condition. Thus we have shown how conjunctive
queries with transitive roles in the query body can be answered.

In Section 5, we extend the work by Calvanese et al. [4] to SHOQ, i.e., to
a logic that allows for nominals. We do this by proposing a more sophisticated
guessing technique, which then again enables the rolling-up of a query into a
SHOQ-concept.

In Section 6, we highlight why none of the proposed techniques extends easily
to a logic with inverse roles. We also show this for a query entailment algorithm
in the style of CARIN [10]. The main problem is to decide when a completion
graph is expanded “far enough” in order to safely predict that the query is also
not entailed in its possibly infinite canonical model.

The rolling-up technique with binders and variables integrates seamlessly into
the existing tableaux algorithms, whereas, for the CARIN-style algorithms, the
search for a q-mapping is an additional and completely separated step. Moreover,
the added axioms > v Ct¬C for every concept C in the query, can significantly
increase the amount of non-determinism. This makes binders and variables the
more attractive choice from an implementation point of view.

Our future work will include efforts to show that answering arbitrary con-
junctive queries for SHIQ and SHOIQ is decidable. If that is the case — and
we believe it is — we aim at extending the rolling-up technique with binders

and state variables to SHIQ, SHOQ and SHOIQ. This would provide a
(hopefully practical) decision procedure for arbitrary conjunctive queries over
OWL-DL knowledge bases.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P.F̃. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and
Information, 4(3):251–272, 1995. Special issue on decompositions of first-order
logic.

[3] P. Blackburn and J. Seligman. Advances in Modal Logic, volume 1, chapter What
are hybrid languages?, pages 41–62. CSLI, 1998.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS’98, pages 149–158. ACM, 1998.

[5] B. Glimm and I. Horrocks. Handling cyclic conjunctive queries. In Proc. of
DL’05, Edinburgh, UK, July 26–28 2005. CEUR.

[6] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answering for the
description logic SHOIQ. Technical report, The University of Manchester, 2006.
Available online at http://www.cs.man.ac.uk/∼glimmbx/download/GlHS06b.pdf.

[7] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ description logic.
In Proc. of IJCAI’01, pages 199–204. Morgan Kaufmann, 2001.

[8] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query contain-
ment under constraints using a description logic. In Proc. of LPAR’00, LNAI.
Springer, 2000.

[9] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision proce-
dures by resolution-based calculi. In Proc. of LPAR’04, volume 3452 of LNCS.
Springer, 2004.

[10] A. Y. Levy and M.-C. Rousset. CARIN: A representation language combining
horn rules and description logics. In European Conf. on Artificial Intelligence,
pages 323–327, 1996.

[11] M. Marx. Narcissists, stepmothers and spies. In Proc. of DL’02, volume 53.
CEUR, 2002.

[12] M. Morse and G. A. Hedlund. Unending chess, symbolic dynamics, and a problem
in semigroups. Duke Mathematical Journal, 11(1):1–7, 1944.

[13] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. In Proc. of the 21st
Nat. Conf. on Artificial Intelligence (AAAI’06), 2006. to appear.

[14] S. Tessaris. Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester, 2001.

