
Tableau Caching for Description Logics

with Inverse and Transitive Roles

Yu Ding and Volker Haarslev

Concordia University, Montreal, Quebec, Canada
{ding yu|haarslev}@cse.concordia.ca

Abstract. Modern description logic (DL) reasoners are known to be less effi-
cient for DLs with inverse roles. The current loss of performance is largely due to
the missing applicability of some well-known optimization techniques, especially
the one for caching the satisfiability status of modal successors. In this paper,
we present a rule synthesis technique from which an estimation of the potential
back-propagation of constraints can be made. This estimation can be applied
to both the concept classifier and the satisfiability tester. This paper presents a
tableau caching technique for SHI as a first step to improving the performance
of tableau-based DL reasoners for logics offering the use of inverse roles. The
proposed techniques underwent a first empirical evaluation with a prototype DL
reasoner for SHI using a set of synthetically generated knowledge bases. The
initial results indicate an significant improvement in runtime performance once
caching is effectively enabled.

1 Motivation

Description logics (DLs) are a family of logic based formalisms for termi-
nological knowledge representation and reasoning [15]. Descending from
KL-ONE [1], they now enjoy a wide spectrum of applications. Behind this
success is a long line of research and implementation efforts in DL rea-
soners. Most modern DL systems are based on tableau algorithms. Such
algorithms are first introduced in [2] by Schmidt-Schauss and Smolka. In
spite of the high worst case complexity of the satisfiability problem [15] for
most expressive DLs (typically ExpTime-complete), highly optimized im-
plementations have been shown to work well in many realistic applications
[3, 9, 14].

DLs express unary relations in terms of concepts and binary relations
in terms of roles. To describe inverse binary relationships, inverse roles
are a necessary language element. One of the first approaches to allow the
declaration of inverse roles was in the early nineties when some DL systems
started to support very expressive DLs with inverse roles [5]. Later, the
theoretical result on elimination of inverse roles based on equi-satisfiability
was established [7].



Tableau-based DL systems typically employ a wide range of optimiza-
tion techniques, most of which were designed and established unfortu-
nately without appropriate consideration of inverse roles (which would
be reasonable if the elimination of inverse roles had become realistic in
applications). If directly applied to DLs with inverse roles, some well-
known optimizations become less efficient or even invalid (due to the two-
way propagation of universal restrictions introduced by inverse roles). The
caching technique is one such example that suddenly turns unsound when
inverse roles are considered. The current technique of inverse role elimina-
tion could introduce an overwhelming number of GCIs (General Concept
Inclusions) that are difficult for tableau algorithms. Other attempts were
tried, e.g., the dynamic blocking technique [8] which can be considered as
a successful attempt in adapting the blocking [4] technique to DLs with
inverse roles.

The literature addressing the issues caused by inverse role is not plen-
tiful, and a systematic treatment is still to be done. This paper will discuss
the soundness problem of common caching techniques for DLs with inverse
roles. We extend our previous study [16] to a more expressive description
logic, i.e., SHI, a logic with expressive role constructs (i.e., transitive
roles, inverse roles, and role hierarchies). We assume the reader’s famil-
iarity with the DL SHI and tableau algorithms. We introduce the rule
synthesis approach, discuss the use of heuristics for concept classifica-
tion, and show how to apply the same technique to obtain sound tableau
caching.

2 Synthesizing Rules

In this section, we present our rule synthesis approach in terms of a reach-
ability analysis of the underlying unfolding rules. Our reachability analysis
is based on a multi-graph G = (V, E) constructed from the syntactic struc-
ture of the given unfolding rules of T . The initial reachability relation is
represented as ε-edges and its transitive closure can be computed accord-
ing to a set of reachability extension rules that are presented in the first
subsection. The potential back propagations is contained in this closure.
After this, we show how the estimated potential back propagation can be
used to obtain sound sub-tableau caching as well as potential subsumers,
respectively.



2.1 Potential Back Propagation

Due to the interaction of universal restrictions with inverse roles, con-
straints can propagate up and down the tableau tree. We refer to this
upward propagation of constraints as back propagation. Here we present
a way to synthesize the unfolding rules [15] to determine potential back
propagation (PBP). We view PBP a reflexive and transitive relation, and
formulate it as reachability in a directed graph (containing multi-edges
and cycles). In the discourse, we use the notation G = (V, E) for a di-
rected multi-graph, where V denotes a set of nodes and E denotes a set
of edges (binary relations) for pairs of nodes in V .

We say C (also D) is non-modally used by C uD and C tD; and say
∀R.(AtB) (resp. ∃R.(AtB)) modally uses A (also B) through ∀R (resp.
∃R). Note we are not using the transitive use relation, for details please
see [13].

Definition 1. Given a SHI expression in NNF (negation normal form),
its reachability graph is a multi-graph G = (V, E) formed according to a
function f such that: (1) for every concept literal C, there is a node f(C) ∈
V ; (2) for every SHI (sub-)expression s, there is a unique node f(s) ∈
V ; (3) if expression s1 non-modally uses s2, then ε ∈ E(f(s1), f(s2));
if s1 modally uses s2 through ⊗R for some role name R, then ⊗R ∈
E(f(s1), f(s2)), where ⊗ stands for the connective ∃ or ∀.

Recursively an expression could be decomposed into concept literals and
correspondingly G is constructed.

Definition 2. Given T, a SHI TBox of unfolding rules each of which
is of the form CL v D, where CL is a concept literal and D is in NNF,
a reachability graph G = (V, E) for T is formed such that for each rule
CL v D: (1) there is a node f(CL) ∈ V ; (2) there is a node f(D) ∈ V ;
(3) ε ∈ E(f(CL), f(D)).

The initial reachability graph G is built upon the syntactic structure
only. A non-modal use relationship is represented by an ε-edge, a modal use
relationship is represented by an edge tagged with the modality connective
concatenated with the corresponding role name. The unfolding operation
is represented by connecting the concept literal with an ε-edge to the root
of the graph representation of its right-hand side.

In Table 1 three rules are given for extending the reachability relation
from the initial G = (V, E). We use E∗ to denote the transitive closure of
E over ε-edges.



∃∀-rule: if there exist nodes x, y, z such that ∃R1 ∈ E∗(x, y)
and ∀R2 ∈ E∗(y, z)
and R1 v∗ Inv(R2)

then E(x, z) := E(x, z) ∪ {ε}
∀∀-rule: if there exist nodes x, y, z such that ∀R1 ∈ E∗(x, y)

and ∀S ∈ E∗(y, z) (for short let Inv(S) be R2)
and there exists R3 ∈ R s.t. R3 v∗ Ri for i ∈ {1, 2}

then E(x, z) := E(x, z) ∪ {ε}
∀∃-rule: if there exist nodes x, y, z such that ∀R1 ∈ E∗(x, y) and ∃R2 ∈ E∗(y, z)

and there exists Trans(S) s.t. R2 v∗ S v∗ R1

then E(y, y) := E(y, y) ∪ {∀S}
Table 1. Reachability Extension Rules over R for SHI.

Initially, the reachability graph G = (V, E) is constructed according to
all unfolding rules in T . Then, an extension of G is based on a simulation
of the ∀-rule in tableau algorithms w.r.t. R. For a given TBox T and a role
hierarchy R in DL SHI, the PBP is contained in the final reachability
relation in E∗.

To see how PBP is obtained, we compare the tableau expansion with
the reachability extension. In tableau algorithms, both decomposition and
selection are done by the u-rule and the t-rule; on the other hand, in
the reachability graph, only decomposition is simulated. Also, in tableau
algorithms, the firing of ∃-rule is subject to conditions, whereas in reach-
ability graph, we make a simplification and assume it can be always fired.
Furthermore, in tableau algorithms, the firing of ∀-rule depends on the
existence of an edge (e.g., might be provided by a sibling expression),
but in a reachability graph, we simplify that condition to only consider
its predecessors and successors (as if that sibling always exists). In sum-
mary, by making these simplification and discarding inessential factors,
the reachability graph is constructed in a very conservative way to grasp
every potential back propagation. The essence for the reachability graph
is that if PBP (ε-edge in the final G = (V, E∗)) is impossible, then it is
guaranteed that no back propagation will take place in the corresponding
application of the tableau algorithm.

For a given TBox T (of a set of unfolding rules) and a role hierarchy
R, there is a corresponding reachability graph G = (V, E∗). For a concept
literal C, we define a function Reach(C) = {y ∈ V | ε ∈ E∗(f(C), y)}. In
the following, we use the function Reach without mentioning its T and R.



2.2 Heuristic for Sound Sub-tableau Caching

Based on Reach(C), we define the function Watch applicable to a concept
literal C: Watch(C) =

⋃
x∈Reach(C){Inv(R) | ∃y ∈ V s.t. ∀R ∈ E(x, y)},

where R is a (inverse) role. For a set of concept literals Cs, we define
CWatch(Cs) =

⋃
C∈Cs

Watch(C). Let Rs be a set of (inverse) roles, we use
Rs↓ to denote the union of subroles for each r ∈ Rs w.r.t. role hierarchy R.
At this point, we are able to define a boolean function Safe(Cs, R) that can
be used to guarantee caching soundness by excluding potential unsound
situations: Safe(Cs, R) = true iff R /∈ CWatch(Cs)↓. The following lemma
follows naturally from the previous analysis.

Lemma 1 (Sound Caching). Given the TBox T and the role hierarchy
R, let Cs and Cw be two sets of concept literals, R be a (inverse) role, The
set Cs can be cached at the position of R-successor if: (1) Cs ⊆ Cw; and
(2) Safe(Cs, R); and (3) Cw has a model.

Proof (sketch). (1) Assume Cw has the model Iw. The construction process
for Iw can be used to guide that of Cs, and Cs has a model Is inside which
each node’s label is a subset of that of Iw; (2) The condition Safe(Cs, R)
guarantees the root of Is has no Inv(R) predecessor, even if Iw needs a
Inv(R) predecessor.

2.3 Heuristic for Potential Subsumer

Classification is the process of computing the most-specific subsumption
relationships (i.e., parents and children) of each concept name to other
concept names mentioned in a TBox. The parents and children of a certain
concept name are computed in the so-called top-down and bottom-up
traversal phases, respectively. For large knowledge base, it is particularly
important to avoid as many traversal as possible. A typical optimization
is to use a heuristics-guided traversal which exploits information about
told subsumers [3] or potential subsumer [12] to restrict the search space.

However, even the better potential subsumer technique considers only
the transitive non-modal use relation [12] among concept names. For DLs
with inverse roles, potential subsumers could appear in modal-use rela-
tions. For example, given a simple TBox T = {A v ∃R.B, B v ∀R−.C}
(note that T has only primitive definitions and no cyclic rules). The sub-
sumption of A v C holds, and the subsumer C is neither explicitly told
nor non-modal discernible.



For DLs with inverse roles, the potential subsumer technique remains
useful if we take those concept names appearing in Reach(A) into con-
sideration. Similarly, this estimation is also applicable to related ABox
reasoning tasks [15].

3 Discussion and Related Work

As a first step to evaluate the proposed techniques, i.e., caching and back-
propagation estimation for DLs with inverse roles, a experimental tableau-
based reasoner has been developed in Java. It employs several optimization
techniques such as lexical normalization, semantic branching, backjumping
(in a weak form), and a optimized version of dynamic blocking (tailored
to DLs free of number restrictions). Besides the basic platform, two com-
ponents were implemented, one for back-propagation estimation, and one
for caching (the latter relies on the former). The proposed techniques were
then evaluated with a set of synthetically generated satisfiability tests.
These preliminary benchmarks indicated a performance gain of a factor
of 2 to 10. A more realistic benchmark using RacerPro is in preparation.

The following papers in the literature are relevant in our context to
caching and blocking. DeGiacomo et. al. [6] demonstrated for the DL ALC
that the tableau caching technique (especially unsatisfiability caching) is
necessary for obtaining a worst case optimal tableau algorithm. For super-
set and sub-set caching see [12]. For various blocking techniques for DLs
with inverse roles see [11, 8]. Papers which systematically addressed the
classification problem include [3, 12]. However, they commonly focused on
DLs without inverse roles. Recent papers focusing on the optimization of
classification did not address the anomaly when inverse roles are present
in the TBox.

Satisfiability tests for DLs with inverse roles are empirically hard for
tableau-based reasoning systems. For instance, it is required that the
blocking technique (i.e., the cycle detection mechanism) dynamically guar-
antees soundness. Furthermore, witness nodes are restricted to be ances-
tor nodes only. This dynamic behavior together with a limited choice of
witness nodes generally makes the tableau-based procedures less efficient
than necessary. Our preliminary experiments show that the proposed ap-
proach can be feasibly implemented as part of a one-pass parsing phase for
tableau-based DL reasoners. The availability of the caching technique dra-
matically speeds up the reasoning process. First, the witness space is no
longer restricted to ancestor nodes. Second, the caching technique requires



no re-checking and thus it is safe to discard nodes once they are success-
fully cached. By doing this, the tableau algorithm is more space-economic.
Our approach can successfully deal with a set of (possibly cyclic) unfold-
ing rules and a role hierarchy, thus it well meets the typical requirement
from real applications.

4 Conclusion

The common caching techniques are no longer applicable in the presence
of inverse roles, since information can be pushed backwards, which might
invalidate the cache. Closely related to known techniques of knowledge
compilation, we presented in this paper a technique for synthesizing the
unfolding rules (of the terminological box) to estimate potential back prop-
agations. This technique is currently applied to terminological knowledge
bases with cyclic axioms and expressive roles in the expressive DL SHI.
The presented solution computes a reachability graph before testing the
satisfiability of a concept in order to determine, when backpropagation
is impossible and hence caching is safe. Based on this, a sound tableau
caching technique was obtained in a relatively straightforward way. As
was expected, better run-time performance was observed in our prelimi-
nary experiments due to the use of cache. We also pointed out that the
estimation could be used for other purposes such as in locating poten-
tial subsumers during concept classification. We are aware that further
refinement is possible for the technique presented here.

References

1. Brachman, R., McGuinness, D., Patel-Schneider, P., Resnick, L.,
Borgida, A.: Living with CLASSIC: When and how to use a KL-ONE-
like language. Principles of Semantic Networks, edited by John Sowa,
Morgan Kaufmann, (1991) 401-456

2. Schmidt-Schauss M., Smolka G.: Attributive concept descriptions with
complements. Artificial Intelligence, Vol 48, (1991) 1-26

3. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.:
An Empirical Analysis of Optimization Techniques for Terminological
Representation Systems - or - Making KRIS get a move on: KR-92,
(1992) 270-281



4. Buchheit M., Donini F., Nutt W., Schaerf A.: Decidable Reasoning in
Terminological Knowledge Representation Systems. Journal of Artifi-
cial Intelligence Research, Vol 1 (1993) 109-138.

5. Paolo Bresciani, Enrico Franconi, and Sergio Tessaris: Implementing
and testing expressive description logics: a preliminary report. DL-95
(1995).

6. De Giacoma, G., Donini, F., Massacci, F.: EXPTIME Tableaux for
ALC: DL-96, (1996)

7. Diego Calvanese, Giuseppe De Giacomo, Riccardo Rosati: A Note on
Encoding Inverse Roles and Functional Restrictions in ALC Knowledge
Bases. DL-98 (1998).

8. I. Horrocks and U. Sattler. A Description Logic with Transitive and
Inverse Roles and Role Hierarchies. Journal of Logic and Computation,
9(3), (1999) 385-410

9. Ian Horrocks: Using an expressive description logic: FaCT or fiction?:
KR-98 (1998)

10. Volker Haarslev, Ralf Möller: Consistency Testing: The RACE Expe-
rience: Proc. of TABLEAUX’2000, (2000) 57-61

11. F. Baader, U. Sattler: An Overview of Tableau Algorithms for De-
scription Logics. Studia Logica, 69, (2001) 5-40

12. Volker Haarslev, Ralf Möller: High Performance Reasoning with Very
Large Knowledge Bases: A Practical Case Study. Proc. of IJCAI’2001
(2001) 161-166

13. Volker Haarslev: Theory and Practice of Visual Languages and De-
scription Logics: Habilitation Thesis, Computer Science Department,
University of Hamburg, September (2001)

14. Volker Haarslev, Ralf Möller: RACER System Description: Proc. of
IJCAR’2001 (2001)

15. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider: The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge University Press
(2003)

16. Yu Ding, Volker Haarslev: Towards Efficient Reasoning for Description
Logics with Inverse Roles. DL-05 (2005) 208-215


