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Abstract. In many real world applications of influence maximization,
practitioners intervene in a population whose social structure is initially
unknown. We formalize this problem by introducing exploratory influence
maximization, in which an algorithm queries individual network nodes to
learn their links. The goal is to locate a seed set nearly as influential as
the global optimum using very few queries. We show that this problem
is intractable for general graphs. However, real world networks typically
have community structure, in which nodes are arranged in densely con-
nected subgroups. We present the ARISEN algorithm, which leverages
community structure to find an influential seed set by querying only a
fraction of the network. Experiments on real world networks of home-
less youth, village populations in India, and others validate ARISEN’s
performance.

1 Introduction

In contexts ranging from health, to international development, to education,
practitioners have used the social network of their target population to rapidly
spread information and to change behavior in socially desirable ways. The chal-
lenge is to identify the influential members of the population. While previous
work has delivered many computationally efficient algorithms for this influence
maximization problem [7, 21, 12], this work assumes that the social network is
given explicitly as input. However, in many real-world domains, the network is
not initially known and must be gathered via laborious field observations. For
example, collecting network data from vulnerable populations such as homeless
youth, while crucial for health interventions, requires significant time spent gath-
ering field observations [19]. Social media data is often unavailable when access
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to technology is limited, for instance in developing countries or with vulnera-
ble populations. Even when such data is available, it often includes many weak
links which are not effective at spreading influence [2]. For instance, a person
may have hundreds of Facebook friends who they barely know. In principle, the
entire network could be reconstructed via surveys, and then existing influence
maximization algorithms applied. However, exhaustively reconstructing the net-
work is very labor-intensive and considered impractical in many situations [22].
For influence maximization to be relevant to many real-world problems, it must
contend with limited information about the network, not just limited computa-
tion.

The major informational restriction is the number of nodes which may be
surveyed to explore the network. Thus, a key question is: how can we find influ-
ential nodes with a small number of queries? Existing field work uses heuristics,
such as sampling some percentage of the nodes and asking them to nominate in-
fluencers [22]. We formalize this problem as exploratory influence maximization
and seek a principled algorithmic solution, i.e., an algorithm which makes a small
number of queries and returns a set of seed nodes which are approximately as
influential as the the globally optimal seed set. To the best of our knowledge, no
previous work directly addresses this question from an algorithmic perspective
(we survey the closest work in Section 3).

We show that for general graphs, any algorithm for exploratory influence
maximization may perform arbitrarily badly unless it examines almost the en-
tire network. However, real world networks have useful structure. In particular,
social networks often have strong community structure, where nodes are ar-
ranged into groups which are connected tightly internally, but only weakly to
the rest of the network [10, 16]. Consequently, influence mostly propagates in a
local fashion. Community structure has been used to develop more computation-
ally efficient influence maximization algorithms [23, 8]. Here, we use it to design a
highly information-efficient algorithm. We make three main contributions. First,
we introduce exploratory influence maximization and show that it is intractable
for general graphs. Second, we present the ARISEN algorithm, which exploits
community structure to find an influential seed set. Third, we show experimental
results on a variety of networks(both synthetic and real) that verify ARISEN’s
performance. Our focus here is on introducing the algorithm and showing exper-
imental results; theoretical analysis of ARISEN’s performance will be presented
in future work. In this paper, we focus on the description of the problem and
survey related work. We then briefly present the high-level idea of our algorithm
and give an example of experimental results.

2 Exploratory influence maximization

As a motivating example, consider a homeless youth shelter which wishes to
spread HIV prevention information [19]. It would try to harness the youths’
social network and select the most influential peer leaders to spread information,
but this network is not initially known. Constructing the network requires a
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laborious survey [19]. Our motivation is to mitigate this effort by querying only
a few youth. Such queries require much less time than the day-long training peer
leaders receive. We now formalize this problem.

Influence maximization: The influence maximization problem [13], starts
with a graph G = (V,E), where |V | = n and |E| = m. We assume through-
out that G is undirected; social links are typically reciprocal [20]. An influencer
selects K seed nodes with the aim of maximizing the expected size of the re-
sulting influence cascade. We assume that influence propagates according to the
independent cascade model (ICM), which is the most prevalent model in the
literature. Initially, all nodes are inactive except for the seed set. When a node
becomes active, it makes one attempt to activate each neighbor. Each attempt
succeeds independently with probability q, where q is typically assumed to be the
same for all edges [7, 13, 25]. Let f(S) denote the expected number of activated
nodes with seed set S ⊆ V . The objective is to compute arg max|S|≤K f(S).

Local information: The edge set E is not initially known. Instead, the
algorithm explores portions of the graph using local operations. We use the
popular “Jump-Crawl” model [5], where the algorithm may either jump to a
uniformly random node, or crawl along an edge from an already surveyed node
to one of its neighbors. When visited, a node reveals all of its edges. We say that
the query cost of an algorithm is the total number of nodes visited using either
operation. Our goal is to find influential nodes with a query cost that is much
less than n, the total number of nodes.

Stochastic Block Model: In our formal analysis, we assume that the graph
is drawn from the SBM. The SBM originated in sociology [9] and lately has
been intensively studied in computer science and statistics (see e.g. [1, 15, 18]).
In the SBM, the network is partitioned into disjoint communities C1....CL. Each
within-community edge is present independently with probability pw and each
between-community edge is present independently with probability pb. Notice
that each community is an Erdős-Rényi random graph with additional random

edges to other communities. We assume that pw ≥ log |Ci|
|Ci| for all Ci, since this is

necessary for Ci to be internally connected [11]. While the SBM is a simplified
model, our experimental results show that ARISEN performs well on real-world
graphs. ARISEN takes as input the parameters n, pw, and pb, but is not given
any prior information about the realized draw of the network. It is reasonable to
assume that the model parameters are known since they can be estimated using
existing network data from a similar population (in our experiments, we show
that this approach works well).

Objective: We compare to the globally optimal solution, i.e, the best per-
formance if the entire network structure were known in advance. Let fE(S) give
the expected number of nodes influenced by seed set S when the set of real-
ized edges are E. Let A(E) be the (possibly random) seed set containing our
algorithm’s selections given edge set E. Let OPT be the expected value of the
globally optimal solution which seeds K nodes. We measure the algorithm’s per-
formance by the ratio OPT/E[fE(A(E))], where the expectation is over both
the randomness in the graph and the algorithm’s choices.

Proceedings of the 3rd International Workshop on Social Influence Analysis (SocInf 2017)
August 19th, 2017 - Melbourne, Australia

4



3 Related work

First, Yadav et al. [25] and Wilder et al. [24], studied dynamic influence maxi-
mization over a series of rounds. Some edges are “uncertain” and are only present
with some probability; the algorithm can gain information about these edges in
each round. However, the majority of potential edges are known in advance. By
contrast, our work does not require any known edges. Mihara et al. [17] also
consider influence maximization over a series of rounds, but in their work the
network is initially unknown. In each round, the algorithm makes some queries,
selects some seed nodes, and observes all of the nodes which are activated by its
chosen seeds. The ability to observe activated nodes makes our problem incom-
parable with theirs because these activations can reveal a great deal about the
network and give the algorithm information that even the global optimizer does
not have (in their work, the benchmark does not use the activations). Thus, we
emphasize that our algorithm uses strictly less information. Further, in many
applications, activations correspond to private behaviors (e.g. getting tested for
HIV) and cannot be observed for practical or legal reasons.

Another line of work concerns local graph algorithms, where a local algorithm
only uses the neighborhoods around individual nodes. Borgs et al. [3] study
local algorithms for finding the root node in a preferential attachment graph
and for constructing a minimum dominating set. Other work, including Bressen
et al. [6] and Borgs et al. [4], aims to find nodes with high PageRank using
local queries. These algorithms are not suitable for our problem since a great
deal of previous work has observed that picking high PageRank nodes as seeds
can prove highly suboptimal for influence maximization [14, 7, 12]. Essentially,
PageRank identifies a set of nodes that are individually central, while influence
maximization aims to find a set of nodes which are collectively best at diffusing
information. We also emphasize that our technical approach is entirely distinct
from work on PageRank.

4 Proposed algorithm and results

We now provide a brief overview of our algorithm for exploratory influence max-
imization. The main idea is to sample a set of T random nodes {v1...vT } from G
and explore a small subgraph Hi around each vi by taking R steps of a random
walk. We discard the first B steps of each walk as burn-in. R, T and B are inputs
set by the user according to the size of the network and the number of seeds
they wish to select. Intuitively, T should be greater than K so we can be sure
of sampling each of the largest K communities. The subgraphs Hi are used to
construct a weight vector w where wi gives the weight associated with vi. The
algorithm then independently samples each seed from {v1...vT } with probabil-
ity proportional to w. Further details will appear in an extended version of the
paper.

Figure 1 shows experimental results on a network of households in a village in
rural india. We compare our algorithm (in blue with diagonal hatches) to a series
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of baselines. From left to right, the baselines are (1) selecting K random node
and seeding their highest degree neighbor (2) starting at a random node and
iteratively seeding the highest degree neighbor of the previous node (3) selecting
K seeds at random. The y axis plots the fraction of the optimal value (assuming
that the true network were known) attained by each algorithm. We see that the
proposed algorithm outperforms all baselines.
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Fig. 1. Influence spread compared to OPT as K varies with q = 0.15.

5 Conclusion

We introduced exploratory influence maximization to study influence maximiza-
tion when the network is initially unknown. We presented a novel algorithm,
which exploits the community structure present in many real world social net-
works. Experimental results on a real world network show that our algorithm is
competitive with the global optimum and outperforms several baselines.
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13. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD. pp. 137–146. ACM (2003)

14. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Finding influential nodes in a social
network from information diffusion data. In: Social Computing and Behavioral
Modeling, pp. 1–8. Springer (2009)

15. Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., Zhang, P.:
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