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Abstract.  Energy efficiency is at the forefront of evaluating the performance of a 

data center in delivering green solutions for analyzing information in big data. A 

large scale distributed system is usually composed of a large number of power-

hungry components. A methodology to model data processing flows inside the 

architecture of a data center is proposed to analyze the critical power constraints at 

the level of software. The model allows obtaining system characteristic values, thus 

benefiting analysts by providing the necessary environmental information to predict 

the power-efficiency alternative with the evaluation of energy consumption. An 

apparatus is designed comprising a receiver configured to receive a plurality of 

power measurements from a plurality of power sensors, and a processor coupled to 

the receiver and configured to determine an amount of power used by a processing 

element in a data center. The functionality and capability of this method for 

quantitative energy analysis of big data are validated by benchmarks and 

measurements performed on a real data center platform. 
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1 Introduction 

Power dissipation is one of the crucial problems in the design of data intensive computing 

because big data applications need hundreds of hours of computations, consuming 

enormous amounts of energy. Large storage, many-core computing device and high speed 

network become the major choice in various big data processing platforms, the power 

consumption of such systems have been continually increasing. MapReduce/Hadoop has 

become one of the most important approaches in solving data intensive applications, 

where Hadoop Distributed File System (HDFS) works as the data storage mechanism and 

MapReduce as the computing engine. MapReduce/Hadoop does not change the nature of 

power consumption, however, much less research has been carried out to improve the 
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power performance with the integrated parallel programming paradigms in the 

architecture. Towards optimizing the power efficiency, we investigate software 

methodologies to analyze the power utilization through algorithm design and 

programming techniques. 

Many algorithm level energy-aware design methods have been studied on parallel and 

distributed platforms. A typical approach in [1] introduces an integrated power model for 

a many-core computer to predict execution times and calculate dynamic power events. By 

integrating an analytical timing model and an empirical power model, the power 

consumption of workloads is predicted. Higher level models use more indirect and 

approximate design parameters, such as the algorithm level power model that we have 

introduced in [2], [3]. The advantage of the approach is that instruction mixture 

information, pipelining structure and out of order processing information can be covered 

in the data flows that are measured. 

 

 
 

Fig. 1. An apparatus is designed to collect power usage data from data center, model the 

characterizations and tune the power efficiency. 
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2 Power Model 

2.1 Power Measurement and Modeling 

An apparatus is designed comprising a receiver configured to receive a plurality of power 

measurements from a plurality of power measurement instruments; and a processor with 

an energy measurement and estimation daemon coupled to the receiver and configured to: 

determine average power usage by a processing element in a data center by determining a 

summation of the plurality of power measurements; determine data to watt ratio that 

indicates power cost for the processing element to process that amount of data; determine 

the estimated execution time in a performance run for processing the amount of data by 

the processing element; and determine the estimated energy consumption that indicates 

the amount of energy to be used by the processing element to process the amount of data. 

In the apparatus shown in Fig.1, the plurality of power measurements are received from 

the plurality of power measurement instruments located at the device level; located at a 

circuit board level; and located at an integrated circuit level of a processing device in the 

data center. The data to watt ratio is determined by dividing data throughput of the 

processing element over a given time period by the amount of power used by the 

processing element over the given time period. 

 

 

 
 

Fig. 2. A method for tuning performance of a processing element for handling data flow, comprises 

controlling the behavior of low-level code; abstracting and modeling the behavior of the program 

for analysis and study. 
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The estimated execution time is determined by dividing amount of data to be processed 

by the processing element by maximum data throughput of the processing element.  the 

estimated energy consumption is determined by multiplying the estimated execution time 

by average amount of power used,  determined according to the summation of the 

plurality of power measurements, wherein the apparatus is disposed within a data center 

system comprising a plurality of additional apparatuses, wherein the estimated energy for 

each of the additional apparatuses is determined in a manner similar to the apparatus, and 

wherein the estimated energy for the apparatus and the estimated energy for the additional 

apparatuses are aggregated and recorded by the data center. 

As shown in Fig. 2, a method for tuning performance of a processing element for 

handling data flow is introduced in this work. It  comprises controlling the behavior of 

low-level code of a program executing on the processing element; abstracting and 

modeling the behavior of the program for analysis and study; determining an estimate of 

energy used by the processing element in performing computational tasks; determining an 

overall power model for a multiprocessing platform; determining computational capacity 

of a parallel processing device; optimizing coding strategies according to the overall 

power model; and tuning the processing element to increase a power efficiency level of 

the processing element. In the method, determining the estimate of energy used by the 

processing element in performing computational tasks comprises multiplying an estimated 

execution time for executing the computational tasks by an average amount of power 

expected to be used in performing the computational tasks. The average amount of power 

expected to be used in performing the computational tasks is determined according to the 

amount of power used by the processing element while operating in a steady-state. The 

computational capacity of the parallel processing device is determined according to 

micro-processors of the parallel processing device, programming language used in the 

parallel processing device, and characteristics of the computation performed on the 

parallel processing device. Tuning the processing element to increase power efficiency 

level comprises at least one of domain partitioning, load parallelization, dynamic 

frequency scaling, or workload scheduling.  The overall power model is determined 

according to the accumulation of power measurements for each component in the 

processing element. The method operates in both time domain and at hardware domain, 

frequency of each component is varied, computing capacity and power consumption vary 

according to the frequency of each component, and wherein the frequency of each 

component is varied to tune the processing element to satisfy the performance 

requirement. The method facilitates prediction of power usage, and comprises energy 

model that is based on workload characteristics of the processing element. 
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Fig. 3. Combined CPU usage, physical memory usage, disk IO read and write rate for all 6 nodes 

in the cluster, when executing K-means clustering with iterations I = 25. 
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Fig. 4. Combined CPU usage, physical memory usage, disk IO read and write rate for the cluster, 

when executing K-means clustering with iterations I = 25. 
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2.2  Energy Consumption Characteristics 

An application can be modeled based on the computing patterns and characteristics of its 

workload. The energy approximation is the summation of the products of each component 

power and its execution time [2]. An overall power model can be built for the entire multi-

processing platform based on the same. Computation capability of a parallel processing 

device, e.g. many-core compute device and storage device, is determined by its micro-

architecture, programming language and characteristics of the computation performed on 

it [4], [5]. The methodology imports hardware power parameters to the software algorithm 

study, then estimates power consumption with program analysis. One of the advantages is 

that it allows obtaining design characteristic values at the early programming stage, thus 

benefiting programmers by providing necessary environment information for choosing the 

best power-efficient alternative. 

3 Workload Analysis  

3.1 K-means Clustering 

K-means clustering is one of the most popular flat clustering algorithms and can be 

configured to match the complexity of real-world use cases [5]. It is an unsupervised 

clustering technique comprising the following steps:  Given total objects n, and a number 

of clusters k, repeat calculating and regrouping the n objects into k (≤ n) sets so as to 

minimize the sum of squares (WCSS) (i.e. variance) within each cluster. The algorithm is 

repeated until desired convergence level is achieved. 

3.2 Power Measurement 

Energy is consumed by each device in a System Under Test (SUT). A total power is the 

summation of each power source
1

i

i m

P p
 

  , where m is the total number of devices, 
ip

is the power measurement of each device i. In real measurement, power results in each 

sampling period can be plotted together to obtain a power chart for the program, and the 

chart shows the power usage against time during the execution. For each device or 

subsystem, the calculation defined for Energy metrics is
0

( ) 
T

E P t dt  , where T is the 

elapsed time for the performance run, ( )P t is the power measured at time t. 

Proceedings of the 3rd International Workshop on Social Influence Analysis (SocInf 2017)
August 19th, 2017 - Melbourne, Australia

63



  

 

 
 

Fig. 5. CPU usage for the cluster, when executing K-means clustering with iterations I=10; I=15; and 

I=25. 

 

 

 
 

Fig. 6. Energy consumption model of K-means clustering with three phases. 
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Table 1.  The experiment results by compared the estimated energy consumption and the real 

measurement values.  

 

  
Energy consumption of K-means Cluster 

Phases Estimation(J) Measurement(J) Errors 

 

 

 

 

 

K=10 

CPU 

Generation 407,971.00 0.000% 

Clustering 1,712,980.00 1,867,599.00 9.026% 

Writeback 299,213.00 0.000% 

Overall 2,420,164.00 2,574,783.00 6.389% 

Server 

Generation 408,879.00 0.000% 

Clustering 2,108,040.00 2,298,417.00 9.031% 

Writeback 299,176.00 0.000% 

Overall 2,816,095.00 3,006,472.00 6.760% 

 

 

 

 

 

K=15 

CPU 

Generation 408,031.00 0.000% 

Clustering 2,644,470.00 2,851,399.00 7.300% 

Writeback 298,970.00 0.000% 

Overall 3,351,471.00 3,558,400.00 5.800% 

Server 

Generation 409,612.00 0.000% 

Clustering 3,162,060.00 3,282,625.00 3.813% 

Writeback 299,891.00 0.000% 

Overall 3,871,563.00 3,992,128.00 3.114% 

 

 

 

 

 

 

K=25 

CPU 

Generation 407,280.00 0.000% 

Clustering 4,512,413.00 4,718,772.00 4.573% 

Writeback 299,170.00 0.000% 

Overall 5,218,863.00 5,425,222.00 3.954% 

Server 

Generation 408,311.00 0.000% 

Clustering 5,130,147.00 5,411,022.00 5.200% 

Writeback 299,771.00 0.000% 

Overall 5,838,229.00 6,119,104.00 4.600% 
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3.3 Program Segments 

The K-means clustering computation includes three major phases as the follows [5]: 1) 

data generation phase: to generate  random  object  data  and  store the data in storage;  2) 

clustering phase: to drop outliers, scale observations, distance measure,  clustering, adjust 

parameters, repeat multiple iterations and finally choose representative components; 3) 

writing phase: marking data with the cluster information and write the data back to 

storage. Let 
DataGenT represents the time for data generation in phase 1; 

iterationT

represents the time for clustering computation in phase 2;  and 
WritebackT  represents the 

time to write the data in phase 3. The estimated energy consumption for completing the 

program is the average power multiplied by the execution time, as shown in Equation (1). 

 

                (1)phase phase

estimation AveragePowerE P T   

 

where E is the energy estimation, 
phase

AveragePowerP  is the average power consumption while 

the application run in each steps, 
phaseT is the computation time for the K-means 

clustering phases of data generation, clustering and writing. 

3.4 Equations and Measurements 

Power consumption of a computing platform is measured or calculated for each node 

separately.   The total power consumption can be modeled as 

 

 

1 1

        ( ) ( ) ( ) ( )   (2)
N M

i i j

Compute Storage Network

i j

P w P w P w P w
 

     

 

where ,   ,  and  Compute Storage NetworkP P P P represent the power of the total, computing device, 

storage device and network devices, respectively. N and M are the numbers of computing 

devices and storage devices involved in the computation of workload w. w  and wi j

represent the workload assigned to _ iCompute device  and _ jCompute device  respectively. 

The power consumption of computing device is dominant among all the entities 

consuming power in each node. The analysis and prediction of the power consumption of 

a Hadoop cluster are introduced below, by using the benchmark results of K-means 

clustering. 
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3.5 Power Model 

While data size and a computing platform and configuration are fixed, the time for data 

generation 
DataGenT will take an approximate identical time in each run of K-mean 

clustering on the platform. According to the conditions of convergence and the accuracy 

threshold setup, a K-means clustering may take a different number of iterations to 

complete. Based on the algorithm, the time to complete each iteration 
iterationT  can be 

considered as a fixed value [5]. After finished the last iteration, the time to write the data 

back 
WritebackT can be assumed as the same since the data size will not be changed. 

Assuming the total number of iterations is k, the total computing time can be represented 

in Equation (3). 

 

+ +         (3)DaraGen iteration write

TotalT T kT T  

And the total energy consumption can be represented in Equation (4). 

 

+ +         (4)DaraGen iteration write

TotalE E kE E  

 

4 Performance Results 

4.1 Power Consuming Experiments 

For the experiments in this work, we use six HUAWEI Tecal RH2288 V2 Rack servers, 

each with 2 Intel Xeon Processor E5-2680 (Sandy Bridge-EP) running at 2.7 GHz [6]. 

Each processor has 8 cores (16 hyperthreaded) and a 20MB L3 cache. They are connected 

through two QuickPath links, each providing a unidirectional transmission rate of up to 

8.0 GT/s. Each server has 24 8GB double data rate 3 (DDR3) at 1066Mhz dimms of main 

memory with a total ot 192GB. Each server is configured with eight 2.5” SAS HDDs with 

7.2TB capacity. One SAS disk hosts the OS and the remaining 7 are configured for 

HDFS. The server provides four onboard gigabit Ethernet (GE) ports, of which two were 

bonded to double bandwidth.  Our system runs CDH 5 on centos 6.5.  Cloudera is 

configured as one master node and five worker nodes. Each of the nodes has 189.1GBytes 

of memory. We use Apache Hadoop 2.6 and open source HiBench K-means that is 

popular for processing large datasets built for distributed applications. The power analyzer 

used in this test is HIOKI 3600.      
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4.2 Power Consuming Characterization 

The low level processing is finally turned to be a sparse metrics production to computer 

the vector distances. It makes the computing devices to execute the input data follow 

inside each K iteration Single Instruction Multiple Data (SIMD), i.e. multiply and plus 

operations repeatedly in a streaming way. Therefore, when the data size, the processor’s 

frequency and temperature are invariant, the CPU power can be modeled as a constant 

value inside each K-iteration.  

The resource usage and the consumption of K-means clustering computations for 25 

iterations are shown in Fig.3 and Fig. 4 for the whole cluster and one single node, 

respectively. This status is true in all Hadoop nodes, the total energy used to complete the 

K-means clustering task is linearly related to the input data size, I iterations and K number 

of clusters. For experimental purposes, a random sample of 1.2 billion records with 20 

variables was used. Power characterization and stress testing was done by varying the 

number of K for a fix data set of 225GB. 

5 Energy and Estimation 

5.1 CPU Usage and CPU Power 

For estimating the relationships between the CPU usage and the energy consumption, we 

first plotted the CPU usage and power against time.  Visual inspection indicates a strong 

relationship between CPU usage and power. For the SIMD character of this experiment, 

the relationship is considered to be linear, allowing us to use statistical methods to predict 

power by CPU usage. 

5.2 Workload Characters, Performance and Power 

Fig. 5 shows the computation steps include data generation; clustering phase; and data 

marking and writing back for K-mean iteration I=10, I=15 and I=25, respectively.   Fig. 6 

shows the energy measurement of one worker node for K-mean iteration I=25. While the 

total data size is identical, the time for data generation can be fixed as a constant, 

therefore the corresponding energy consumption is determined. The clustering 

computation follows the SIMD rule, the time taken is linear to the number of computing 

iterations. If a single iteration takes time T and consumes energy E, the total energy 

consumption during K-means with I=25 can be modeled as by one E energy multiplied by 

number of iterations, i.e. 25E.  Because the number of objects N will not change at the 

marking and writing back stage, the corresponding time and energy consumption can be 

identically determined. A detailed energy consumption is listed in Table 1.  
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6 Error Analysis 

Power modeling and estimation at software level is relative accurate because of the 

integration between resource usage, the platform and physical measurement. However, the 

errors in power estimation of K-means clustering algorithm lies in the throughput to 

power ratio displacement. It causes the power values to not precisely fix to the same 

throughput when the workload size is small. This can be seen in the measurement of the 

peak dynamic power where the curve is not a straight line. The K-means R/W overheads 

and under-foots may also slightly change at each time when a new iteration of clustering 

launches. The power phase leg to the assembly execution will cause the calculation error, 

especially when the data size is small. 

The clustering phase of K-means has two stages, namely iteration (CPU-bound) and 

regrouping (I/O-bound). On the platform, CPU dominate the overall power consumption. 

The overhead introduced by storage devices, network devices are negligible compared 

with CPU. A linear model was developed to predict the power consumption based on 

CPU usage. The results of modeling are shown in Table 1.   The energy consumption 

during clustering was calculated in multiple ways. The energy can simply be calculated 

from power using area under the curve. From Table.1, when iteration number I=10 the 

energy used by one server node during actual computation was  2,816,095 J, while the 

same energy calculated from the model is  found to be 3,006,472 J,  with an error of 

6.76%.  When  iteration number I=15  and   I =25,  the energy used by one server node 

estimated using the model is  found with an error of 3.11% and 4.60% compared with the 

real measurement values, respectively. All calculations verify the results despite having 

synchronization between measurements and process runtime. This is significant because it 

allows a programmer to tune the power efficiency of an application by simply tune the 

CPU usage such as frequency, etc. 

7 Conclusion and Future Work 

A general approach is introduced for quantitative power estimation and analysis on 

Hadoop clusters for big data computing. The workload characteristics have been analyzed. 

Based on this, power parameters are captured by measuring the power of each component 

in a PE on a real system. The Hadoop PE’s power feature in executing the K-means 

clustering program can then be analyzed and concluded. The power consumption of a K-

means program with same computational characteristics of any size that is running on the 

PE can be predicted based on the power consumption feature. Finally the approach is 

validated by measuring real computation power on the target hardware. The power 

analysis method can be refined to enhance its precision by including more components, 

and based on it the power parameters can be tuned for obtaining the best power 

performance for given problems. These will be considered in our future work. 
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