
Collision avoidance algorithm with performance

optimization and speed control for multi-robot

autonomous system

Ismaiel Ahmed
Ural Federal University (Yekaterinburg, Russia)

Electrical Engineering in Assiut University (Assiut, Egypt)
en.ismaiel@gmail.com

Mikhail Yu. Filimonov
Krasovskii Institute of Mathematics and Mechanics (Yekaterinburg, Russia)

Ural Federal University (Yekaterinburg, Russia)
fmy@imm.uran.ru

Abstract

In this paper a collision avoidance algorithm with speed control and self-
optimization in order to improve the performance of the autonomous
system is presented. The system consists of a group of mobile robots
which move autonomously in a certain area where static obstacles are
inserted. In this paper a new term called occupancy ratio is pro-
posed with using collision density to evaluate the performance of the
autonomous system. Each robot has a start configuration point and
destination configuration and it should move to its destination without
any collisions with static obstacles or other moving robots. Simulation
was carried out with using MATLAB 2016a. It has found out that
the collision density can reflect the performance of the system, the less
collision density corresponds to a better performance.

1 Introduction

The main objectives are to move multiple robots in a common workspace to perform a certain mission that
demand that each robot find its way from start configuration to a given goal configuration without mutual collision
and collisions with obstacles. Often, movement planner approaches are characterized as coupled (centralized) or
decoupled planner. A coupled planner deals with all robots as a single combined robot and computes a path in
a combined configuration space, while decoupled planner computes a path for each robot independently. In this
approach robots find their paths and avoid collisions with obstacles or with each other. Each robot has a sensing
scope and can exchange configurations information only with other robots within its sensing scope. Autonomous
navigation has been widely investigated and many techniques and approaches were presented. One of effective
techniques is a leader-followers conception is proposed in [1] which is used with differential wheels multiple

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A.A. Makhnev, S.F. Pravdin (eds.): Proceedings of the International Youth School-conference ¡¡SoProMat-2017¿¿, Yekaterinburg,
Russia, 06-Feb-2017, published at http://ceur-ws.org

115

robots system by the mean that according to the leader position, the followers will behave. The results show
that probabilistic fuzzy approach with Adaptive Neuro-Fuzzy Inference System (ANFIS) [2] make the system
more robustly and improve the performance of the navigation system. Fuzzy perception also is used to collision
avoidance in [3] where a non-holonomic robot is used with kinematic and dynamic constraints.

In the paper in section 2 we will discuss the path planning algorithms which we propose for a system of moving
robots, in section 3 we will describe the system, taking into account the kinematics characteristics of the robot,
the different scopes of the robot, and the equations for the motion behavior, consider the collision avoidance
algorithm, the cooperative behavior and sequence of the system. Section 4 shows the results of the simulation.

Figure 1: The trajectory calculated by BUG. Figure 2: The trajectory calculated by PRM.

2 Path Planning

Path planning problem is how to find a continuous motion that will take a robot from a given initial configuration
to a desired destination configuration, subject to the constraint that a robot does not collide with any obstacle
in its workspace at any point in the motion. Different approaches have been introduced to implement path
planning for mobile robots. Approaches possible to be in accordance with the environment, type of sensor, robot
capabilities, etc. Path-planning is needed between start and end point to create a path that should be free of
collision and satisfy certain criteria such as shortest path [4].

In our model the robots use Bug and PRM algorithms to a find path to the goal configuration, and it
has minimum distance that can sense the environment around it, once obstacle or another robot appear to
collide, robots start exchange information about their current position and next position to achieve their goal
configuration without collisions.

2.1 PRM Algorithm

Probabilistic roadmaps (PRM) are an effective tool to capture the connectivity of a robot’s collision-frees pace
and to solve path-planning problems with many degrees of freedom [5]. PRM is used when we have full knowledge
of the configuration space of the robot, as it take random samples from this space and testing them, whether they
are in a free space then use local planner to connect these samples. After this, the start and goal configurations
are added and graph search algorithm (A* Algorithm) is often applied to determine a path between the start
and goal configurations.

2.2 Bug Algorithm

Bug algorithm is a local path planning algorithm. Bug algorithms use sensors to detect the nearest obstacle
as a mobile robot moves towards a target with limited information about the environment [6]. The algorithm
uses obstacle border as guidance toward the target as the robot circumnavigates the obstacle till it finds certain
condition to fulfill the algorithm criteria to leave the obstacle toward target point.

116

2.3 Trajectory Data

Path planning algorithm (PRM or Bug) determines a full trajectory to the robot from the initial point to the
goal point, as mentioned before, PRM algorithm is for known environment but Bug is a discovering algorithm for
unknown environment. In both cases path-planning divides trajectory into smaller parts of linear trajectories,
robot records the coordinates of the points of the start and end of each small trajectory. Such trajectories are
free of collisions in terms of static obstacles, for dynamic obstacles we use collision avoidance algorithm. Fig.1
and Fig.2 show the trajectory calculated by Bug and PRM algorithms, respectively, in order to find collision free
path to goal configuration and how it’s decremented into smaller linear trajectories.

Figure 3: A kinematics model of mobile robot. Figure 4: A circular sensing scope of a robot.

3 System Description

3.1 Kinematics of the Robots

Now, the problem how to compute the path planning to move the robot from the initial point to a target point in
the unknown environment has to be discussed. In order to control the behaviors of multi-mobile robots we need
kinematic analysis of each robot. It’s assumed each robot consist of two wheels in a two dimensional plane and
robots move without slipping on a plane. The kinematics model of mobile robot and linear movement illustrated
in Fig.3 can be represented in (x, y) Cartesian coordinates by the following: ẋ(t)

ẏ(t)

θ̇(t)

 =

 cos θ 0
sin θ 0

0 0

(v
ω

)
Kinematics during moving,

 ẋ(t)
ẏ(t)

θ̇(t)

 =

 0 0
0 0
0 1

(v
ω

)
Kinematics during turning.

It’s also assumed that the robots move according to constant predetermined acceleration (positive or negative)
till they reach maximum velocity and then move in constant speed (v = const) or till they stop (v = 0). Also,
as kinematics constraints for robots movement, they can only move in straight lines, and in order to change
their directions they need first to slow down to zero velocity then start to turning to the new direction with
predetermined angular velocity (ω). Fig.5 shows robots dynamic displacement (distance) with time (period).
Robots move in three main modes:

1) acceleration mode,
2) constant velocity mode,
3) deceleration mode.

117

3.2 Sensing Scope

We assume that the robots are provided by sensors that enable them to discover all objects (moving robots
or static obstacles) in a circular sensing scope within a radius of dsensor as shown in Fig.5, also they can find
distances between them and any object existed in a distance equal or less than dsensor. Critical distance dcritical
indicates the distance at which the robot must start to slow down till stand still if any other robot or obstacles
are in a distance less than this critical distance, robot should stop and collision avoidance algorithm will be
activated.

Figure 5: Robots dynamic displacement (distance) with time (period).

3.3 Motion scenario

A robot moves toward its destination coordinates in iterations, at each iteration, the robots calculate the next
position according to path planning sequence information. Sensor scope check for expected collisions, it returns
a value of (1) if there are any object within a distance less than dcritical or value of (0) if there are no objects
located in a distance less than dcritical radius scope. In the case of (0) feedback, it means that next position is
clear of any possible collisions and robot start to continue moving to this position, next position coordinates are
being calculated by

Kinematics during turning

xnext = xcurrent + v1 cos θ,

ynext = ycurrent + v1 sin θ,

v1 = min{v + acc, vmax}.

(1)

Here, v is instantaneous velocity, acc is acceleration value, θ is angle between x-axis and destination point
(xdest, ydest) calculated with

θ = arctan(y − ydest)/(x− xdest). (2)

After that linear distance between robot’s position and destination point is calculated to determine if the
robot reaches its destination and ready to receive a new destination coordinates or it stills not yet reaches its
destination and have to repeat the previous calculation.

distance =
√

(xdest − xcurrent)2 + (ydest − ycurrent)2. (3)

118

Figure 6: The sequence and interaction between all system corners.

3.4 Collision Avoidance Algorithm

If the sensor data returns value of (1), it indicates the presence of obstacle or moving robots that block robot’s
path to the destination point and there is a risk of collision, hence the obstacle avoidance algorithm is activated.
This algorithm works in the following steps:

1. Slow down the moving robot till zero velocity according to its kinematics restrictions.
2. Start searching for a new free of collisions position according to sensor feedback data.
3. If the distance between the new position and the blocking objects is more than dcritical, robot’s path is

modified and robot move to this new position.
4. If the distance is equal or less than dcritical, position reserved as occupied and algorithm starts searching for

another point. The searching for a new position achieved by checking positions on the circumference of distance
equal to the critical distance, in each iteration algorithm adds radial interval (∆θ) to the default next position to
get new possible positions, the sequence of searching for alternative points indicated by numbers in Fig.7. Then
algorithm checks if the point is valid or not, this is achieved by the following sequence (n is a number of robots
and obstacles in sensing scope).

Step 1. Checking for the next position of the robot (xnext, ynext).

di =
√

(xi − xnext)2 + (yi − ynext)2, i = 1, ..., n.

if

{
(di > dcritical), (xnext, ynext) = accepted,
(di ≤ dcritical), (xnext, ynext) = refused.

Step 2. The next position is refused. Adding (∆θ) to the current theta of the robot:

(θ(new−r) = θ + ∆θ)And(θ(new−l) = θ −∆θ).

Step 3. Find new coordination of the new two positions for (θ(new−r) and θ(new−l)) as in equation (1).
Step 4. Check validity of those two positions as in Step 1, next position of the robot is set to be the accepted

position, if both positions are accepted, the nearest one to the destination is set to be the accepted position and
its coordinates is set as (xnext, ynext).

119

Step 5. Go to Step 1 (loop).

This algorithm continues in iterating till it can find positions free of collisions otherwise robot stops and repeat
these calculations after time interval ∆t.

3.5 Cooperative Behavior

In this model the robots can cooperate and exchange information with each other. For more reality we made
some restrictions for this cooperative behavior. First, the robots can only cooperate with other robots located
in their sensing scope. Robots can’t cooperate with other robots which are located in a distance more than their
sensing scope. Second, nearby robots can only interact with limited information, they can only exchange their
position coordinates with each other. When robots block the way of each other, collision avoidance algorithm
start to search for an alternative free of collision configuration, and share the resulting coordinates with all robots
within their sensing scope.

Figure 7: The main three scopes for the robot in shape
of three circles.

Figure 8: The number of collisions between robots
with and without optimization.

3.6 System Sequence Algorithm

Fig.6 shows the sequence and interaction between all parts of the system. Mission consists of many paths and
conditions that determine if the mission completed or not, missions are stored in Mission sequence controller
which send start and goal configurations to path planner algorithm, this start to find suitable path point sequence
that used to guide and drive the robot. At each step sensor checking for collision and according to sensor data
collision avoidance algorithm is activated or not, this sequence is repeated till robot reaches its goal and waits
for a new mission.

4 Simulation Results

In this simulation using MATLAB R2016a, we simulate the dynamics of a group of robots (2 till 5) moving
autonomously through start and goal configurations, which chosen randomly using collisions avoidance algorithms
then calculate collision density as a number of collisions per minute. Then each robot configures its own velocity
and accelerating parameters to reduce the number of collisions and raise the efficiency of the autonomous system.

Simulation Parameters.
Robot relative dimensions are 2.4 cm x 2.4 cm, area occupied by each robot is 5.76 cm2, dimension of the

configuration space is 30 cm x 30 cm, occupancy ratio is the percentage of space occupied by robots and obstacles
to the total area of the configuration space, so the occupancy ratio of 3 robots autonomously moving without
the any obstacles is (3 x 5.76 cm2)/(900 cm2)=1.92% , acc=0.01 cm/sec2, vmax=0.1 cm/sec, ω=0.1 rad/sec, and
the sensor scope dcritical=5 cm (the critical distance that each robot start to action to avoid collision while any
other object are near by less than this distance).

Optimizing process
Robots record its maximum sensing scope dsensor and automatically optimize its maximum velocity vmax and

critical distance dcritical according to the braking distance which is the distance that robot needs to reach the
standstill. dbrake=(v2f − v2max)/2a), vf is a final velocity and equals to zero, vmax is an initial velocity, a is a

120

Figure 9: The snapshots of the system simulation model for multi-robot system.

negative acceleration, dbrake is a braking distance and in this case dcritical ≥ 2dbrake so that robot can calculate
vmax which ensure that robot will stop safely without any object that may suddenly appears in its sensing scope.
Fig. 7 shows the main three scopes for the robot in shape of three circles. Robot is in the center. The outer
circle represents the sensing scope dsensor of the robot. Robot can be aware of any object exist in the range of
this circle and measure the distance between its position and the object’s position. The middle circle represents
the critical distance dcritical, any object in the range of this circle represent a danger of collision with the robot.
In such case robot starts to brake. The inner circle represents the brake distance dbrake that the robot needs to
reach zero velocity.

Fig. 8 and Table 1 show the occupancy ratio and collision density. Collision density can be integrated with
other factors like duration to evaluate the autonomous systems. It’s clear that optimizing the velocity of robots
enhance the performance of the system by decrease collision density to zero value. Fig.9 shows snapshots of the
system simulation model for multi-robot system on MATLAB.

Table 1: Results. Number of collisions.

No. of Robots Occupancy ratio (%) Collision density (no. of collision /min)
Robot without optimization Robots with optimization

2 1.28 0.33 0
3 1.92 0.33 0
4 2.56 0 0
5 3.2 0.67 0

5 Conclusion

In this paper simulation of autonomous system for a group of decoupled multi robots is presented, this simulation
take in mind the dynamics restrictions of mobile robots or a group of vehicles. An approach to evaluate the
performance of autonomous system by using occupancy ratio and collision density is proposed. Each robot in

121

this system can optimize its own velocity, search for free configurations and in the same time it collaborates with
nearby robots to avoid collisions and achieve the demanded mission. This system is tested with robots up to
group of 5 robots using MATLAB. It has found out that the collision density can reflect the performance of the
system, the less collision density corresponds to a better performance while occupancy ration has inverse effect
on system performance. In case of optimizing the velocity of the robots it is possible to improve the performance
of the system as collision density equal to zero.

References

[1] Rami Al-Jarrah, Aamir Shahzad and Hubert Roth. Path Planning and Motion Coordination for Multi-Robots
System Using Probabilistic Neuro-Fuzzy. IFAC-PapersOnline, 48(10):46-51, 2015.

[2] J.-S. R. Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man
and Cybernetics, 23(3):665-685, May/June 1993.

[3] Byoung-Kyun Shim, Won-Jun Hwang. A Study on Real-Time Implementation of Obstacle Avoidance for
Autonomous Travelling Robot. 12th International Conference on Control, Automation and Systems, Jeju
Island, Korea, 2012.

[4] N. Buniyamin, W.A.J. Wan Ngah, N. Sariff, Z. Mohamad. A Simple Local Path Planning Algorithm for
Autonomous Mobile Robots, International Journal of Systems Applications, Engineering & Development,
2(5):151-159, 2011.

[5] L.E. Kavraki, P. Svestka, J.-C. Latombe, M.H. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

[6] V.J. Lumelski, A.A. Stepanov. Dynamic Path Planning for a Mobile Automaton with Limited Information
on the Environment. IEEE Transactions On Automatic Control, 11:1057-1063, 1986.

122

