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Abstract. With an eye towards the development of systems for common every-
day tasks — that operate in a manner that is cognitively-compatible with the ar-
gumentative nature of human reasoning — we present mechanisms for reasoning
with and learning cognitive programs: common sense, symbolically represented
in the form of prioritized association rules. The FLASH mechanism supports a
fast argumentation-flavored type of reasoning, while sidestepping the rigidness
of traditional proof procedures in formal logic. The NERD mechanism supports
the never-ending acquisition of cognitive programs, without human supervision.

1 Introduction

The dawn of the era of cognitive systems and human-computer symbiosis replaces the
heretofore prevalent metaphor of “a computer as a multi-purpose tool” with the much
more apt metaphor of “a computer as a cognitive assistant”. Humans no longer use their
computing-enabled devices, but rather collaborate with them to solve certain cognitive
tasks, with each collaborator being expected to learn, and adapt to, the way of thinking
of the other. Importantly, communication and decision-making happens at a level that
is transparent to, and cognitively-compatible with, human abilities and limitations.

The framework of cognitive programming [Michael et al., 2015] was proposed to
study such considerations in the context of everyday cognitive tasks, with symbolically-
represented common sense capturing phenomenologically the reasoning from percepts
to inferences. Unlike certain work in logic-based AI that effectively treats symbolically-
represented knowledge as a set of (possibly defeasible) constraints to be satisfied, and
approaches reasoning as a proof procedure towards that end, the framework emphasizes
the need to acknowledge psychological evidence on the looser form of reasoning that
is used for common sense [Evans, 2002], and embraces recent theories suggesting that
human reasoning is at its foundation argumentation-driven [Mercier and Sperber, 2011].

The focus of cognitive programming is not on the development of general-purpose
cognitive architectures [Anderson and Lebiere, 1998; Laird, 2012] or languages [Gi-
arratano and Riley, 2004; Gelfond and Kahl, 2014] that are able to support decision-
making and problem-solving in complex situations. Rather, the framework strives to
examine how to best draw useful, and convincing to a human, inferences in everyday
scenarios that would generally fall under the auspices of what Kahneman [2011] calls
System 1, or the fast thinking system. This focus allows one to shift the emphasis from
deep and elaborated reasoning to richly-structured knowledge [Michael et al., 2015],
where the cognitive assistant undertakes shallow reasoning, “jumps to conclusions”
while “knowing when to think twice” [Bach, 1984], and relies on an interaction with a



human collaborator, or some other mechanism that supports knowledge acquisition, to
enrich the structure of its knowledge towards drawing appropriate inferences.

Indeed, the appropriateness or convincingness of the drawn inferences ultimately
rests on the mechanism that acquires the knowledge that supports those inferences. The
cognitive programming proposal suggests that a central mechanism of knowledge ac-
quisition is an autodidactic [Michael, 2008] learning process, operating continuously in
the background without human supervision. The proposal adopts natural language text
as a knowledge source (see, e.g., [Mitchell et al., 2015]), and argues that learned knowl-
edge should capture the structure not of the surface text, but of the reality “between the
lines” [Michael, 2009], which will have to be inferred when reasoning (cf. [Dagan et al.,
2013]). For our purposes, this argument points to a learning process that can cope with
arbitrarily partial information, from which it seeks to approximate (to the extent possi-
ble) the structure of the underlying reality [Michael, 2010]. To ensure guarantees on the
quality of the acquired knowledge, the proposal points to the probably approximately
correct semantics [Valiant, 1984; 2000] for guidance, and to recent extensions that es-
tablish certain benefits for “simultaneous learning and prediction” [Michael, 2014].

Following these guidelines, we present in this work the FLASH and NERD mecha-
nisms, which we have developed and implemented to reason with and learn cognitive
programs. The remainder of this section discusses how these mechanisms fit into the
big picture of related works in Artificial Intelligence. The sections that follow introduce
the two mechanisms and their central components in more detail, making connections
mostly with areas outside Artificial Intelligence to show how terminology and knowhow
from those disciplines translates to concrete formal terms and computational processes.

1.1 Discussion on Reasoning

Reasoning with cognitive programs is tackled in this work through the introduction of
the FLASH mechanism, a natural algorithm that iteratively applies implication rules on
an externally provided percept to derive the inferences that follow. Each rule captures
a defeasible regularity in the domain of interest, and the FLASH mechanism resolves
conflicts that arise when applying these rules by having weaker rules yield to stronger
ones, and all rules yield to externally provided evidence. Much like the Chase algorithm
in database theory [Abiteboul et al., 1995], each drawn inference is ultimately grounded
on the given percept. Unlike the Chase algorithm, the inferences are not drawn mono-
tonically, not only in the inter-percept sense that a certain percept may yield more in-
ferences than another more complete one, but also in the intra-percept sense that while
computing the inferences of a particular percept, the inferences that are drawn are pro-
visional (as a result of jumping to conclusions), and may be retracted (as a result of
thinking twice) as the computation progresses. Further, the representation and reason-
ing are such that no computationally hard satisfiability problems need to be solved to
draw inferences. In particular, the bodies of rules are assumed to be read-once formulas,
which can be evaluated on partial percepts efficiently; even only slightly more expres-
sive classes of formulas are known to lead to intractable reasoning [Michael, 2010].

On some level, the FLASH mechanism performs a form of structured argumenta-
tion, like the one found, for instance, in the ASPIC+ framework [Prakken, 2010]. The
FLASH mechanism deviates, however, from the typical argumentation requirement that



an acceptable argument (which determines the drawn inferences) must defend all its at-
tacks. Rather, the operational semantics of the FLASH mechanism considers only those
rules that happen to be “ready to fire” at each iteration, and seeks to defend only those
attacks that are thus generated. This more shallow type of reasoning avoids the typically
intractable task of determining acceptability in formal argumentation. Unlike syntactic
restrictions (e.g., on the rule sizes, or on the number of rules included in an argument)
that one could impose in formal argumentation to reinstate tractability, our approach
can be thought of as a pragmatic semantic restriction on the notion of acceptability.

Any deficiencies of this pragmatic restriction on reasoning are expected to be over-
come with the expansion of a knowledge base with additional rules that would offer new
arguments towards the expected inference. It is by acknowledging the central role of this
feedback from a human to a cognitive assistant that the cognitive programming frame-
work supports a shift from deep elaborated reasoning to richly-structured knowledge.
We prove later that including new rules is always sufficient as an updating mechanism.

One could argue that the FLASHmechanism is subsumed by well-established cogni-
tive architectures such as ACT-R [Anderson and Lebiere, 1998] and Soar [Laird, 2012],
or that the mechanism can be easily implemented using declarative programming lan-
guages like CLIPS [Giarratano and Riley, 2004] and ASP [Gelfond and Kahl, 2014].
This point is uncontested, if only because these architectures and languages offer suffi-
cient expressivity to implement any computable mechanism that would be of interested
in our context. Despite sharing our motivation of cognitive-compatibility, and the under-
lying mechanism of a production system, these approaches are typically geared towards
the development of complex expert systems, with the experts having at their disposal
tools such as means-ends analysis and hill-climbing to search a problem space.

Our interpretation of cognitive-compatibility in this work explicitly seeks to exclude
such problem-solving types of reasoning that would generally fall under the auspices of
what Kahneman [2011] calls System 2, or the slow thinking system. One could adopt
the view that the knowledge representation and the reasoning mechanism we propose
aim to isolate a fragment of existing cognitive architectures or declarative programming
languages, without committing to their extra features (which might be necessary for
System 2 reasoning), so that the fragment would be understandable to a “person in the
street”, who would be able (perhaps through a natural language interface; cf. [Michael
et al., 2015]) to cognitively program their smart device, and be able to make sense of the
arguments their device presents in support of, or against, a certain inference or action.

1.2 Discussion on Learning

Choosing an appropriate fragment of existing frameworks is not a trivial task, as it must
balance the expressivity of representation, the tractability of reasoning, the cognitive-
compatibility with ordinary humans, and ultimately the ability to offer guarantees on the
learned knowledge. The NERD mechanism that we introduce has been designed with
existing PAC learnability results in mind [Valiant, 1984; Kearns and Vazirani, 1994].
Although formally establishing that it, or any algorithm for that matter, is a PAC learner
in our context of shallow reasoning with prioritized rules remains an open problem,
evidence from the literature highlights that the balance we seek to strike is a fine one.



The NERD mechanism can be roughly thought to perform association rule mining
[Agrawal et al., 1993], seeking to identify a collection of rules, each with sufficiently
high support (i.e., its body is often true) and confidence (i.e., its head is often true when
its body is true). It diverges from this view in that it works in an online fashion, identifies
priorities between rules, deals with arbitrarily missing information in its percepts, and
learns rules that can be meaningfully reasoned with using the FLASH mechanism.

Its online nature is inspired by the Winnow algorithm [Littlestone, 1988] for learn-
ing linear thresholds in a noise-resilient fashion. The NERD mechanism associates a
weight with each rule under consideration, which is promoted or demoted with each
percept that, respectively, confirms or contradicts the rule. Only when (and as long as) a
rule’s weight exceeds a certain threshold is the rule considered as having been learned.
Weights are updated multiplicatively, since this is known to support attribute-efficient
learning [Littlestone, 1988]. The weight promoting / demoting scheme that we adopt
differs from that of Winnow only in that it moves towards / away from a given upper
bound, rather than moving away / towards a given initial value. The change aims only to
help humans interpret a weight as a real-valued confidence level, without meaning that
a weight formally corresponds to a probability or some other predetermined notion.

The NERDmechanism eventually seeks to produce a collection of rules, each a loose
association of the form “A offers evidence for B”. An individual rule is, by itself, not
qualified by any explicit degree of confidence, and its qualification happens through its
interaction with other rules. In particular, the weight associated with a rule is used only
as a learning aid to capture succinctly the evidence that the NERD mechanism has found
in favor of and against that rule, and to decide when this rule is sufficiently favored.

This distinguishes our approach from linear thresholds, and probabilistic logics such
as Markov Logic Networks [Richardson and Domingos, 2006] and Bayesian Networks,
where weights associated with formulas or atoms are part of the their intended represen-
tation and meaning, and are used explicitly by the reasoning mechanism. Interestingly,
Conditional Preference Networks [Boutilier et al., 2004], in a sense the “weightless” or
discrete analogue of Bayesian Networks, can be viewed as a collection of prioritized im-
plication rules, and their PAC learnability has been demonstrated formally [Dimopoulos
et al., 2009] and empirically [Michael and Papageorgiou, 2013]. We expect that line of
work to prove useful in the investigation of PAC learnability in our context.

In terms of learning priorities, the NERD mechanism is inspired by the class of de-
cision lists, which is known to be both learnable [Rivest, 1987] and evolvable [Michael,
2012]. Typically, learning decision lists proceeds by identifying the strongest condition
first, or, roughly, the rule with the fewest exceptions. Accordingly, the NERD mecha-
nism considers rules whose weight first reaches the threshold as being the strongest,
and proceeds to assign to them a higher priority than subsequently learned rules. Previ-
ous attempts to combine multiplicative weight updating and the learnability of decision
lists [Nevo and El-Yaniv, 2003] — although without dealing with the additional compli-
cations that reasoning brings into our work — show this approach to be tractable and to
retain the attribute-efficiency of Winnow, when the depth of the exceptions is bounded.

We are unaware of learning algorithms that learn partially-ordered decision lists or
rules under the PAC semantics. We later prove, in fact, that the learnability of partially-
ordered rules relates to certain negative PAC learnability results under standard com-



plexity assumptions. Such computational evidence suggests that the extra expressivity
afforded by the partial ordering of rules, as supported by the FLASH mechanism, might
go beyond what one should consider. It also suggests that the totally-ordered rules that
are necessarily returned by the NERD mechanism might be the best one could hope for
if one expects to eventually prove that the mechanism is a PAC learner. A recent study
[Diakidoy et al., 2015a] has identified corroborating psychological evidence, showing
that human participants that were asked to produce and then curate rules in the con-
text of story understanding [Diakidoy et al., 2014; 2015b], have rarely invoked the use
of priorities between rules. Other works that have investigated the learnability of de-
fault concepts [Schuurmans and Greiner, 1994] or exceptions in logic programming
[Dimopoulos and Kakas, 1995] have placed less emphasis on the computational com-
plexity, and have not dealt with the learnability of partially-ordered exceptions either.

Dealing with arbitrarily missing information (as needed to learn knowledge from
text [Michael, 2009]) manifests itself in two distinct ways. First, the NERD mechanism
learns without a predetermined set of atoms, in what is called an infinite-attribute do-
main. It is known that this lack of information makes learnability harder, but the task
still remains possible and enjoys certain natural algorithms [Blum, 1992]. Second, even
with a determined set of atoms, the partial percepts faced by the NERD mechanism are
known to hinder learnability, with even decision lists being unlearnable under typical
worst-case complexity assumptions [Michael, 2010; 2011b]. However, worst-case neg-
ative results are inapplicable in everyday scenarios where information is not hidden
adversarially. Further, the shift from equivalences, such as decision lists, to prioritized
implications further suggests that the non-learnability of the former need not carry over
to the latter class. Read-once formulas, as those in the rule bodies, are known, in partic-
ular, to remain PAC learnable even in the absence of full information [Michael, 2010].

It is also known that learning from partial percepts is tightly coupled to reasoning,
and that a learning mechanism must simultaneously learn and predict to ensure highly-
complete inferences without compromising the soundness of the learned rules [Michael,
2014]. Efficiency considerations, then, impose restrictions on the length of the inference
trace (number of reasoning steps), which, fortuitously, can be viewed in a positive light
as being in line with psychological evidence on the restricted depth of human reasoning
[Balota and Lorch, 1986]. Accordingly, the NERD mechanism incorporates inferences
from the FLASH mechanism, which itself limits the number of its reasoning steps.

Overall, our chosen fragment seems to lie at the edge of what is / what is not (known
to be) learnable. This realization can be viewed favorably in the context of developing
cognitively-compatible mechanisms, since, arguably, evolutionary pressure would have
pushed for such an optimal choice for the cognitive processing in humans as well.

Among works that seek to combine, and strike a balance between, reasoning and
learning in a unified framework, most closely related to ours is work on Robust Logics
[Valiant, 2000], which shares our emphasis on PAC learnability and tractable reasoning.
The treatment of missing information in that work differs significantly from ours, in
that missingness of information on an atom is assumed to be a distinct value that can be
perceived and reasoned with (much like in the work of Schuurmans and Greiner [1994]).
Further, learned rules are in the form of equivalences, which we have argued against as
a choice of representation due to their diminished learnability from partial information.



Inductive Logic Programming [Muggleton, 1991] also tightly integrates reasoning
and learning. In its basic form, ILP effectively seeks to identify patterns in a training
set of data, and is less concerned with predictive guarantees and efficiency in the PAC
sense. Further, as an extension of logic programming, it operates under the closed-world
assumption, effectively dismissing the consideration of missing information in percepts,
or the possibility of abstaining from drawing an inference on a certain atom. Certain ex-
tensions dealing with the learnability of priorities between rules (e.g., [Dimopoulos and
Kakas, 1995]) seem to introduce negations in the heads of rules, but these extensions
are ultimately translatable to the typical closed-world treatment of logic programming.

2 Knowledge Representation

An agent uses a pre-specified language to assign finite names to atoms, which are used
to represent concepts related to its environment. Atoms are not explicitly provided up-
front, but are encountered across the agent’s lifespan while it perceives its environment.
From a neural perspective, an atom might be thought of as a set of neurons (i.e., the rules
that support the atom to be inferred) assigned to represent a concept [Valiant, 2006].

A scene s is a mapping from atoms to the set {0, 1, ∗}, with the values correspond-
ing to false, true, unspecified. We write s[α] to mean the value associated with atom α,
and call atom α specified in scene s if s[α] ∈ {0, 1}. Scenes s1, s2 agree on atom α
if s1[α] = s2[α]. Scene s1 is an expansion of scene s2 if s1, s2 agree on every atom
specified in s2. Scene s1 is a reduction of scene s2 if s2 is an expansion of s1. A scene
s is the greatest common reduct of a set S of scenes if s is the only scene among its
expansions that is a reduction of each scene in S. A set S of scenes is compatible if
there exists a particular scene that is an expansion of each scene in S.

In simple psychological terms, a scene can be thought of as representing the con-
tents of an agent’s working memory, where the agent’s (possibly subjective) perception
of the current environment state, and any relevant thereto drawn inferences, are made
concrete for further processing. A scene corresponding to externally perceived contents
of the working memory will be henceforth called a percept. Following psychological
evidence, the maximum number, denoted by w, of specified atoms in any scene (or per-
cept) used by the agent can be assumed to be a small constant [Miller, 1956].

A propositional formula ψ is true (resp., false) and specified in s if ψ (resp., ¬ψ) is
classically entailed by the conjunction of: atoms α such that s[α] = 1, and the negation
of atoms α such that s[α] = 0; otherwise, ψ is unspecified in s. When convenient, we
represent unambiguously a scene as the set of its true literals (atoms or their negations).

A rule is an expression of the form ϕ λ, where formula ϕ is the body of the rule,
and literal λ is the head of the rule, with ϕ and λ not sharing any atoms, and with ϕ
being read-once (no atom appears more than once). The intuitive reading of a rule is
that when its body is true in a scene, an agent has evidence that its head should be true.

A collection of rules may happen to simultaneously offer evidence for conflicting
conclusions. To resolve such conflicts, we let rules be qualified based on their priorities.
A knowledge base κ = 〈%,�〉 over a setR of rules comprises a finite collection % ⊆ R
of rules, and an irreflexive antisymmetric priority relation � that is a subset of % × %.



Although we do not make this always explicit, rules in % are named (and copies of rules
with different names may exist), and the priority relation� is defined over their names.

For a knowledge base κ = 〈%,�〉: its length is the number l of rules r ∈ %; its
breadth is the maximum number b of atoms in the body of a rule r ∈ %; its depth is the
maximum number d such that r0 � r1, r1 � r2, . . . , rd−1 � rd, for rules ri ∈ %.

3 The Reasoning Mechanism

We start by defining how rules are qualified by percepts or other rules, and then establish
the operational semantics of reasoning by the repeated application of a step operator.

Definition 1 (Exogenous and Endogenous Qualifications). Rule r1 is applicable on
scene si if r1’s body is true in si. Rule r1 is exogenously qualified on scene si by
percept s if r1 is applicable on si and its head is false in s. Rules r1, r2 are conflicting
if their heads are the negations of each other. Rule r1 is endogenously qualified on
scene si by rule r2 if r1, r2 are applicable on si and conflicting, and r1 6� r2.

Definition 2 (Step Operator). The step operator for a knowledge base κ and a percept
s is a mapping si

κ,s99Ksi+1 from a scene si to the scene si+1 that is an expansion of the
percept s and differs from s only in making true the head of each rule r in κ that: (i) is
applicable on si, (ii) is not endogenously qualified on si by a rule in κ, and (iii) is not
exogenously qualified on si by s. A rule satisfying (i) and (ii) is called dominant in the
step, while a dominant rule satisfying (iii) as well is called effective in the step.

Intuitively: The truth-values of atoms specified in percept s remain as perceived,
since they are not under dispute (although disputing the percepts can easily be simulated
if needed). The truth-values of other atoms in si are updated to incorporate in si+1 the
inferences drawn by the effective rules, and to drop those inferences that are no longer
supported; this is possible since si+1 is an expansion of s, but not necessarily of si.

The inferences of a knowledge base on a percept are determined by the set of scenes
that are reached, and cannot be escaped from, by repeatedly applying the step operator.

Definition 3 (Inference Trace and Inference Frontier). The inference trace of a
knowledge base κ on a percept s is the infinite sequence trace(κ, s) = s0, s1, s2, . . .
of scenes, with s0 = s and si

κ,s99Ksi+1 for each integer i ≥ 0. The inference frontier of
a knowledge base κ on a percept s is the set front(κ, s) of all the scenes that appear in
trace(κ, s) infinitely often (or, equivalently, appear in trace(κ, s) more than once).

Example 1. Consider a knowledge base κ with the rules r1 : Penguin  ¬Flying,
r2 : Bird  Flying, r3 : Penguin  Bird, r4 : Feathers  Bird, r5 : Antarctica ∧
Bird ∧ Funny  Penguin, r6 : Flying  Wings, r7 : ¬Flying  ¬Feathers, and the
priority r1 � r2. If percept s = {Antarctica,Funny,Feathers}, then trace(κ, s) =

{Antarctica,Funny,Feathers},
{Antarctica,Funny,Feathers,Bird},
{Antarctica,Funny,Feathers,Bird,Flying,Penguin},
{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin,Wings},



{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin},
{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin}, . . .

and front(κ, s) is the singleton set whose unique member is the (infinitely repeated in
trace(κ, s)) scene {Antarctica,Funny,Feathers,Bird,¬Flying,Penguin}.

Observe the back and forth while computing trace(κ, s). Initially Bird is inferred,
giving rise to Flying, and then to Wings, effectively jumping to this conclusion given the
evidence available that far. When Penguin is later inferred, it leads rule r1 to oppose,
and in fact override and negate, the inference Flying from rule r2, effectively capturing
the ability to think twice, when new evidence emerges. As a result of this overriding
of Flying, inference Wings is no longer supported through rule r6, and is also dropped,
even though no other rule directly opposes it; cf. Figure 1. ¬Feathers is never inferred,
despite its support through rule r7, since it is directly opposed by percept s.

Thus, the inference trace captures the evolving contents of an agent’s working mem-
ory, while the inference frontier captures the working memory’s final (possibly fluctu-
ating) contents. Since the inference frontier generally includes multiple scenes, one can
define multiple natural notions for entailment, some of which we explore below.

Definition 4 (Entailment Notions). A knowledge base κ applied on a percept s entails
a formula ψ if ψ is: (N1) true in some scene in front(κ, s); (N2) true in some scene in
front(κ, s) and not false in any of the other scenes in front(κ, s); (N3) true in every
scene in front(κ, s); (N4) true in the greatest common reduct of front(κ, s).

Of particular interest is the subtle difference that exists between the entailment no-
tions N3 and N4: under N4 an entailed formula needs to be not only true in every scene
in front(κ, s), but true for the same reason. This excludes reasoning by case analysis,
where an inference can follow if it does in each of a set of collectively exhaustive cases.
When front(κ, s) = {{α} , {β}}, for instance, the formula α∨β is true in every scene
in front(κ, s) by case analysis, and is entailed under N3, but not under N4.

When the inference frontier comprises only a single scene, all aforementioned (and
generally distinct) entailment notions coincide. It could be hypothesized that such “sta-
ble” inference frontiers (i.e., working memory contents) are typical in naturally repre-
sented domains. Empirical results in Section 5 give some credence to this hypothesis.

3.1 Fast and Loose Inferencing

We propose next an algorithm for reasoning with knowledge bases, as defined in the
context of this work. Algorithm 1 receives as input a knowledge base κ, and a percept
s, and proceeds to compute their inference frontier. The positive integer effort bounds
the maximum number of steps in the inference trace to be computed before giving up.

During its first stage, the algorithm expands the inference trace, analogously to what
presumably happens with neuron activations in the brain. Figure 1 illustrates this com-
putation as the spreading of activation over a network. Each oval node corresponds to
one memory cell. At each moment in time certain nodes are set to true or false, en-
coding the current contents of the working memory. The initial values of the nodes are
permanently set by the percept s. Each rule / neuron checks concurrently to see whether



Algorithm 1 Fast and Loose Argumentation for Scene enHancement
1: function FLASH (κ, s, effort)

2: Set i := 0, set si := s, and set trace(κ, s) := si.
3: repeat

# Stage 1: Compute next step in the inference trace.
4: Let si+1 := s be a set of Priority CRCW memories.
5: For each rule ϕ λ in κ, do concurrently:
6: Let v := 1/0 if λ = α/¬α, for the atom α in λ.
7: Check if ϕ is true in si, and α is unspecified in s.
8: If the check passes, attempt to write v to si+1[α].
9: Set i := i+ 1, and append si to trace(κ, s).

# Stage 2: Check if the inference frontier is identified.
10: Set f := min {j | sj ∈ trace(κ, s), sj = si}.
11: Set front(κ, s):={sj |sj ∈ trace(κ, s), f ≤ j < i}.

12: until either front(κ, s) 6= ∅ or i ≥ effort.
13: Return front(κ, s).

14: end function

it is applicable on the current scene si, and if its head is not specified in the percept s
(i.e., if its inference does not contradict the fixed values of the nodes). Each rule that
passes the check fires, and attempts to write concurrently a value (corresponding to the
polarity of its head) to the node whose atom is predicted by the rule. The memory cell
of each node allows only the rule with the highest priority (according to the knowledge
base) to set the node’s value. This guarantees that only effective rules set the contents
of the working memory, correctly computing a scene si+1 such that si

κ,s99Ksi+1.
An architecture, as the one assumed above, that supports the concurrent writing in

memory cells according to some specified priority among the writing processes is well-
studied in the relevant literature, and is known as a Priority CRCW (Concurrent Read
Concurrent Write) PRAM (Parallel Random-Access Machine) architecture [Cormen et
al., 2009]. We assume that in the case where no rule has the highest priority (and, hence,
no rule is dominant), the contents of the respective memory cell remain unaffected.

Going from here to identifying the inference frontier requires checking for repeated
scenes in the inference trace, which is done during the algorithm’s second stage. If only
“stable” inference frontiers are of interest, the check can be completed much faster, as
it reduces to checking whether si−1 = si, without traversing the entire inference trace.

In computing the inference frontier, the FLASH mechanism operates in a distinc-
tively credulous manner. It jumps to inferences as long as there is sufficient evidence to
do so, and no immediate / local reason to qualify the evidence. If reasons emerge later
that oppose an inference drawn earlier, those are considered as they become available.

This fast and loose inferencing follows Bach [1984], who argues for approaching
default reasoning as “inference to the first unchallenged alternative”. It is also remi-
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Fig. 1. Representation of the knowledge base and the single scene in the inference frontier from
Example 1. Green, red, and grey ovals correspond to atoms that are true, false, and unspecified in
the scene. Solid lines beginning with a circle connect an atom to a rule that includes that atom in
its body, and solid lines ending with an arrowhead connect a rule to the single atom in the rule’s
head. Atoms that appear negated in the body or the head of a rule are connected to the rule via red
lines, whereas the non-negated atoms are connected to the rule via green lines. Dashed blue lines
between rules point to the rule with strictly less priority. Transparent orange traces from percepts
to inferences show examples of arguments implicitly constructed by the FLASH algorithm.

niscent of the spreading-activation theory [Collins and Loftus, 1975], which can inform
further extensions to make the framework and the mechanisms that we consider even
more psychologically-valid (e.g., reducing the inference trace length by including a
decreasing gradient in rule activations). For now, the restriction on the length of the in-
ference traces is captured in Algorithm 1 through the inclusion of the parameter effort.
Computational [Michael, 2014] and psychological [Balota and Lorch, 1986] evidence
suggests, in fact, that this parameter takes necessarily only a small constant value.

Thinking about everyday situations where we often seem to draw inferences directly
from the evidence in our percepts, one might even be tempted to argue that the value
of effort is 1, in that we apply rules only once, without chaining them to draw further
inferences. Harman [1974] objects to this view, and insists that we should not infer that
intermediate steps do not occur when reasoning simply because we do not notice them,
and that our inability to notice them might be due to the sheer speed with which we go
through them. The efficiency of the FLASH mechanism certainly supports this scenario.

Theorem 1 (FLASH Analysis). The FLASH mechanism returns front(κ, s) assuming
that the value of effort is sufficiently large, and returns ∅ otherwise. On a Priority CRCW
PRAM architecture with priorities as specified by the knowledge base κ, FLASH runs
in time at most quadratic in w, effort, and the breadth b of κ.

Proof (sketch). For memory priorities as those in κ correctness follows. For each of
effort repetitions: Read-once formulas are evaluated on scenes in time linear in their
respective sizes b and w. Remaining steps take time linear in effort and w. ut



Recalling the evidence suggesting that w, effort, b are all small constants1, the FLASH
mechanism runs effectively in constant time on a Priority CRCW PRAM architecture.

3.2 Flavor of Argumentation

Argumentation [Dung, 1995] has revealed itself as a powerful formalism, within which
several AI problems have been investigated (see, e.g., [Bench-Capon and Dunne, 2007;
Baroni et al., 2011]). We show that the FLASH mechanism has an argumentation flavor.

We start by explaining how the reasoning mechanism can be viewed as implicitly
constructing arguments and attacks among collections of rules that support inferences.

Definition 5 (Arguments). An argument A for the literal λ given a knowledge base
κ and a percept s is a subset-minimal set of explanation-conclusion pairs of the form
〈e, c〉 ordered such that: if e equals s, then c is a literal that is true in s; if e equals a
rule r in κ, then c is the head of the rule, and the rule’s body is classically entailed by
the conjunction of conclusions in preceding pairs inA; c equals λ for the last pair inA.

We consider below two natural notions for attacks.

Definition 6 (Attack Notions). An argument A1 for literal λ1 attacks an argument A2

for literal λ2 given a knowledge base κ and a percept s if there exist 〈e1, c1〉 ∈ A1 and
〈e2, c2〉 ∈ A2 such that c1 = λ1, c2 = ¬λ1, e2 is a rule in κ, and either e1 = s or:
(N1) e1 is a rule in κ and e2 6� e1; (N2) for every 〈e, c〉 ∈ A1 such that e is a rule in
κ, it holds that e2 6� e.

Definition 7 (Argumentation Framework). The argumentation framework 〈A,R〉
associated with a knowledge base κ and a percept s comprises the set A of all argu-
ments for any literal given κ and s, and the attacking relation R ⊆ A × A such that
〈A1, A2〉 ∈ R if A1 attacks A2 given κ and s.

Example 2. Consider the knowledge base κ, and the percept s from Example 1. One
can identify two arguments, depicted in Figure 1 as traces from percepts to inferences:
A1 = {〈s,Feathers〉 , 〈r4,Bird〉 , 〈r2,Flying〉 , 〈r6,Wings〉}, andA2 = {〈s,Antarctica〉 ,
〈s,Feathers〉 , 〈r4,Bird〉 , 〈s,Funny〉 , 〈r5,Penguin〉 , 〈r1,¬Flying〉}, with A2 attacking
A1 under either N1 or N2. Quite appropriately, the inference frontier front(κ, s) does
not include the literal Wings that is supported only by the defeated argument.

The back and forth during the computation of trace(κ, s), as discussed in Ex-
ample 1, captures the provisional drawing of inferences that are supported by simpler
arguments, and their retraction if and when more complex counterarguments are later
identified, without proactively trying to defend the drawing of an inference.

Indeed, reasoning ideally and explicitly from premises to conclusions is dismissed
by Bach [1984], as not being a good cognitive policy. Rather, he stipulates that: “When
our reasoning to a conclusion is sufficiently complex, we do not survey the entire argu-
ment for validity. We go more or less step by step, and as we proceed, we assume that if

1 The bound w on the size of scenes in trace(κ, s) can be ensured, for instance, through some
process that keeps only their coherent subpart as determined by κ [Murphy and Medin, 1985].



each step follows from what precedes, nothing has gone wrong[.]”. The FLASH mech-
anism makes concrete exactly this point of view. A more detailed comparison of our
reasoning semantics to existing argumentation frameworks remains to be undertaken.

3.3 Revision through Structure

To illustrate how richly-structured knowledge can compensate for the lack of deep and
elaborated reasoning, we show that the addition of new rules is always sufficient as a
way to nullify the effect of any chosen part of a given knowledge base, if this happens
to be desirable, without a “surgery” to the existing knowledge [McCarthy, 1998].

Two knowledge bases κ1, κ2 (whose rules are possibly defined over two different
sets of atoms) are equivalent if for every percept s, front(κ1, s) = front(κ2, s). If
κ1 = 〈%1,�1〉, κ2 = 〈%2,�2〉, then we write κ1 ⊆ κ2 to mean %1 ⊆ %2 and�1 ⊆ �2.

Theorem 2 (Additive Elaboration Tolerance). Consider two knowledge bases κ0, κ1.
Then, there exists a knowledge base κ2 such that κ1 ⊆ κ2 and κ0, κ2 are equivalent.

Proof (sketch). Initially set κ2 := κ1. For each rule r : ϕ λ in κ1, add to κ2 the rule
f1(r) : ϕ  ¬λ with a fresh name f1(r). For each rule r : ϕ  λ in κ0, add to κ2
the rule f0(r) : ϕ  λ with a fresh name f0(r). Give priority to rule f0(r) over every
other rule that appears in κ2 because of κ1. For every priority ri �0 rj in κ0, add to κ2
the priority f0(ri) �2 f0(rj). ut

The simplicity of the result is important, as ordinary humans are expected to engage
in such revisions of knowledge bases. Roughly, when an unexpected inference is drawn
by a cognitive assistant, a human offers feedback by simply considering the effective
rules in the inference trace that gave rise to that inference, and overriding those that
are found to be unconvincing, by including new more preferred rules. Over time, this
interactive addition of rules and priorities increases the structure of the knowledge base.

4 The Learning Mechanism

We assume that the environment is at each moment in time in a state, which cannot
be directly accessed by agents. Rather, each agent has a stochastic perception process
perc determining for each state a probability distribution over a compatible subset of
scenes; these capture the possible ways in which the particular state can be perceived by
that particular agent. The agent senses the underlying environment state t by obtaining a
percept s drawn from perc(t). Not assigning an a priori meaning to states obviates the
need to commit to an objective representation of the environment, and accommodates
cases where an agent’s perception process determines not only what the agent does (or
can possibly) perceive, but also the subjective interpretation of the underlying state.

An agent is initialized with some (possibly empty, externally programmed, or pre-
viously learned) knowledge base κ. Whenever a state t is perceived and mapped into a
percept s, the agent reasons to decide what else holds in t that so happened not to be
perceived in s, and updates κ to incorporate newly available information. The influx of



states proceeds indefinitely, and new atoms may be encountered with the lapse of time,
without the agent having foreknowledge of all atoms that will be eventually perceived.

The performance of the agent on a certain state depends on its ability to draw sound
and complete inferences with respect to a certain set of atoms. Given a set P of atoms,
the P -projection of a scene s is the scene s|P , {λ | λ ∈ s and the atom of λ is in P};
the P -projection of a set S of scenes is the set S|P , {s|P | s ∈ S}.

Definition 8 (Resoluteness). Given a knowledge base κ, and a percept s drawn from
perc(t), κ is P -resolute on s if the P -projection of front(κ, s) is a singleton set.

Definition 9 (Completeness). Given a knowledge base κ, and a percept s drawn from
perc(t), κ is P -complete on s if every sf ∈ front(κ, s) specifies every atom in P .

Since the state t against which one wishes to make sound predictions is inaccessible,
soundness is more subtly defined against all possible ways in which t can be perceived.

Definition 10 (Soundness). Given a knowledge base κ, a percept s drawn from perc(t),
and the compatible subset S of scenes determined by perc(t), κ is P -sound on s
against t if for every sf ∈ front(κ, s), ({sf} ∪ S)|P is compatible.

Effectively, S in Definition 10 captures the agent’s subjective interpretation of the
state t that underlies percept s. The seemingly ill-defined requirement to be sound
against the unknown compatible subset S can be achieved optimally in a defined sense
by (and only by) ensuring that the drawn inferences are consistent with the percept s
itself [Michael, 2010, Theorem 2.2]; or, that the rules used by the reasoning process are
not exogenously qualified. Establishing such a relation between soundness and consis-
tency in our context can proceed analogously to the proof of the cited result. We leave
this for future work, and restrict ourselves to making precise the notion of consistency.

Definition 11 (Consistency). Given a knowledge base κ, and a percept s drawn from
perc(t), κ is P -consistent on s if for every sf ∈ front(κ, s), every dominant rule in
the step sf

κ,s99Ksf+1 whose head atom is inP is effective (i.e., not exogenously qualified).

Note that although the reasoning process can cope with exogenous qualification,
this ability should be used in response to unexpected / exceptional circumstances, and
only as a last resort. It is the role of the learning process to minimize the occurrences
of exogenous qualifications, and to turn them into endogenous qualifications, through
which the agent internally can explain why a certain rule failed to draw an inference.

Interestingly, the position above echoes evidence from the behavioral and brain sci-
ences, asserting that the human brain is ultimately a predictive machine that learns (and
even acts) in a manner that will minimize surprisal in its percepts [Clark, 2013]. Our
analysis reveals that surprisal minimization is not necessarily an end in itself and a goal
of the learning process, but rather a means to the reliability of the reasoning process.

4.1 Never-Ending Rule Discovery

We propose next an algorithm for learning knowledge bases. Algorithm 2 receives as
input a knowledge base κ, which it proceeds to update according to a received percept



Algorithm 2 Never-Ending Rule Discovery
1: function NERD (κ, s, st, F , b, d, change,max, intolerance)

2: Set rise := change1/intolerance, and set fall := 1/change.

# Stage 1: Addition of new rules for coverage.
3: Set eff := rules in κ that are effective on st given s.
4: Set add := CoverAtoms(st, s|F \ Heads(eff), b).
5: Add to κ the rules in add that are structurally novel.

# Stage 2: Weight promotion for completeness.
6: Set app := rules in κ that are applicable on st.
7: Set pro := rules in app that concur with s|F .
8: Set act-neg := rules in pro that are not active.
9: Adjust in κ the weight of rules in pro by (rise,max).

# Stage 3: Weak priority for newly active rules.
10: Set wkr := rules in κ that are active and in act-neg.
11: Make in κ the rules in wkr d-weaker than active rules.

# Stage 4: Weight fast demotion for consistency.
12: Set eff := rules in κ that are effective on st given s.
13: Set app := rules in κ that are applicable on st.
14: Set dem := rules in app that oppose s|F \ Heads(eff).
15: Set act-pos := rules in dem that are active.
16: Adjust in κ the weight of rules in dem by (fall,max).

# Stage 5: No priority for newly inactive rules.
17: Set ntr := rules in κ that are not active and in act-pos.
18: Remove from κ the priorities of rules in ntr.

19: Return κ.

20: end function

s. Along with κ, s, the algorithm receives some scene st ∈ trace(κ, s). Inputs F, b, d
restrict the focus (atoms in rule heads), breadth, and depth of the knowledge base to be
returned, while inputs change,max, intolerance specify how rule weights are updated.

In the context of Algorithm 2, we make allowances for the following: Each rule is
associated with a weight, a value from 0 to max > 1. Rules with a weight of at least 1
are active, and for the purposes of reasoning only the active rules are considered. Set
membership is determined by a rule’s name. Two rules are structurally equivalent if
they have the same body and the same head, even if their names and / or weights differ.

Algorithm 2 proceeds through five stages: Initially, it covers new atoms by including
rules (with at most b body atoms) that are applicable on st and whose heads belong in
s|F and are not inferred by effective rules. To improve completeness, the algorithm pro-
motes (slowly, by rise) all applicable rules that concur with s|F , nudging them towards
activation. Rules that become active as a result of weight promotion are made weaker



than existing active rules with which they are conflicting; such rules are discarded, how-
ever, if their addition would cause the depth of the knowledge base to increase beyond
d. To improve consistency, the algorithm demotes (quickly, by fall) all applicable rules
that oppose s|F ; however, demotion is foregone for rules that oppose literals inferred by
effective rules, since the latter rules explain the literals and qualify the opposing rules.
Rules that become inactive as a result of weight demotion are made priority-neutral,
eliminating the event of “carry-over” priorities in a possible subsequent re-activation.

The process CoverAtoms aims to introduce new rules in the pool of rules that the
NERD mechanism maintains and seeks evidence for. The process can be defined in a
number of ways without essentially affecting our analysis. For concreteness, however,
we shall assume it returns a single rule ϕ λ (i.e., add is a singleton) for a conjunction
formula ϕ such that: λ is chosen uniformly at random from s|F \Heads(eff); an integer
number is chosen uniformly at random between 0 and min(b, |st \ {λ} |), and those
many literals are then chosen uniformly at random without replacement from st \ {λ}
to be the conjuncts of ϕ; the rule’s initial weight is set to zero. In essence, the process
CoverAtoms introduces a randomly chosen rule that is supported by the current scene
st, and whose inference (had the rule been active) would explain the value of an atom
in the percept s|F that is not currently explained / inferred by another effective rule.

The result of adjusting the current weight weight of a rule by (value,max) is defined
to be max−(max−weight)/value if the result is positive, or zero otherwise. The adjust-
ment operates on the distance of the weight from its maximum possible value of max.
Thus: if value > 1 then the distance is decreased by a multiplicative factor, moving the
weight towards max; if value < 1 then the distance is increased by a multiplicative fac-
tor, moving the weight towards zero, but never beyond that. The parameter intolerance
effectively balances the desire for high completeness (i.e., the size of a promotion step)
against the intolerance to high inconsistency (i.e., the size of a demotion step).

Rules are promoted and demoted irrespectively of whether they are active. An active
rule is still strengthened if it draws a correct inference, even though it is already strong
enough to do so. Analogously, an inactive rule is still penalized if it would have drawn
an incorrect inference had it been active, even though it does not draw that inference.

Priorities exist only between active rules. However, both active and inactive rules
are “protected” from demotion when an effective rule explains the percept. The former
are necessarily weaker from the effective rule, whereas the latter would be weaker had
they become active after the effective rule. Figure 2 illustrates a typical scenario.

Theorem 3 (NERD Analysis). The NERD mechanism runs in time polynomial in b, cd,
and the sizes of κ, s, st, F , for some constant c.

Proof (sketch). Usual mathematical operations take unit time. Step 4 avoids enumerat-
ing candidate rule bodies. Computing κ’s depth at Step 11 can be shown to be NP-hard,
but it is also fixed-parameter tractable [Chen et al., 2007] for parameter d. ut

With the availability of an underlying architecture analogous to the one discussed in
the context of the FLASH mechanism, the dependence of the running time on the size
of κ can be eliminated, since rules can be checked and updated concurrently.



1. Initial evidence happens to activate r2. 

2. Later counterexamples deactivate r2. 

3. In the meantime, evidence activates r1. 

4. Thus, support becomes stronger for r2. 

5. Even though counterexamples remain. 

6. Rules adapt to transient phenomena. 

r2 

r1 
1 

2 3 

4 5 

6 

Fig. 2. Weight updating for rules r1, r2 from Example 1 with successive calls of the NERDmecha-
nism. Jumps show promotions and demotions. Once rule r1 becomes active, rule r2 is “protected”
from demotion whenever encountering a percept for a bird that is not flying, as long as the percept
also specifies that the bird is a penguin. The never-ending nature of the NERD mechanism ensures
the adaptation of rules to transient phenomena (e.g., a period with percepts of flying penguins).

4.2 Boundaries of Learnability

In addition to evidence from the literature, including from Computational Learning The-
ory and Cognitive Psychology, that we have provided in support of various choices we
have made, we prove below formal results that offer additional corroborating evidence.

First, we recall that PAC learning polynomial-sized DNF formulas (even with com-
plete information in scenes) is a major open problem in Computational Learning Theory
[Kearns and Vazirani, 1994]. Our next result shows that an extremely bounded-depth
knowledge base of prioritized implication rules can express any such DNF formula,
suggesting that the learnability of the former is as hard as the learnability of the latter.

Theorem 4 (Expressing DNF Formulas with Knowledge Bases). For any DNF for-
mula u over b variables, and of size polynomial in b, there exists a set A of b+1 atoms
(one atom for each variable, and an extra atom α) and a knowledge base κ over A, and
of depth 1, breadth at most b, and length polynomial in b such that: on any scene s that
specifies all atoms / variables except α, the value of u on s is true / false if and only if κ
applied on s entails α / ¬α. The result holds for all entailment notions in Definition 4.

Proof (sketch). Given a formula u, construct a knowledge base κ as follows: κ includes
the rule r0 : >  ¬α; for each disjunct ϕ in u, κ includes the rule r : ϕ  α and the
priority r � r0. Clearly, all entailment notions in Definition 4 coincide. ut

The situation is roughly analogous when considering knowledge base breadth. We
recall that monotone-term 1-Decision Lists are not PAC learnable under typical com-
plexity assumptions, if scenes are (even very lightly) partial, and one insists on proper
learning (i.e., that the learner outputs a monotone-term 1-Decision List as its learned
hypothesis) [Michael, 2010]. Our next result shows that an extremely bounded-breadth



knowledge base of prioritized implication rules can express any such Decision List,
suggesting that the learnability of the former is as hard as the learnability of the latter.

Theorem 5 (Expressing Decision Lists with Knowledge Bases). For any monotone-
term 1-Decision List u over d variables, and of size at most d, there exists a set A of
2d+1 atoms (two atoms for each variable, and an extra atom α) and a knowledge base
κ over A, and of depth at most d, breadth 1, and length polynomial in d such that: on
any scene s that specifies any atoms / variables except the last d+ 1 ones, the value of
u on s is true / false / abstention if and only if κ applied on s entails α / ¬α / neither α
nor ¬α. The result holds for all entailment notions in Definition 4.

Proof (sketch). Given a decision list u, construct a knowledge base κ as follows: for
every condition ci with a corresponding decision di in u, κ includes the rules ri,> :
> α(di) and ri : ¬ci  ¬α(di); further, for every condition cj preceding condition
ci in u, κ includes the rule rj,i : cj  ¬α(di); for each decision di in u, κ includes the
rule ri,α : α(di) α/¬α depending on whether di is true / false. ut

Computational considerations suggest, then, that knowledge bases should be simul-
taneously of small breadth and of small depth (and, therefore, of small overall length or
size), which would then ensure the efficiency of the NERD mechanism (cf. Theorem 3).

Note that Theorem 5 relies critically on the expressivity of the knowledge bases to
represent rules without specifying a priority between them, so that when two rules are in
conflict, neither takes precedence and they both end up abstaining. We have commented
earlier on how this ability gives extra expressivity beyond what can be handled by the
NERD mechanism, which necessarily returns totally-ordered rules. These observations
are consistent with our eventual goal to show that the NERDmechanism is a PAC learner.

5 Empirical Demonstration

In what follows we offer yet another piece of evidence that our developed mechanisms
work as expected. It is beyond the aims of this work to carry out a full empirical eval-
uation. We focus on demonstrating through a simple and understandable example (that
humans can work through) the operation of the mechanisms. We do not discuss running
times other than to say that about 2 seconds (on a Lenovo X201 Tablet with Intel Core
i7) sufficed for processing 2000 scenes for learning, including the time needed to reason
with these scenes, and the time to print status information after each processed scene.

The knowledge base κ∗ in Figure 3 captures certain commonsensical rules of infer-
ence in relation to meningitis, its two most common types, and their respective treatabil-
ity prospects. Observe that κ∗ is P -resolute on each percept s from those considered be-
low, for any choice of P . The FLASH mechanism correctly computes the unique scene
in front(κ∗, s), i.e., {¬vm,¬bm,¬m} when s = {}; {vm,¬bm,m,¬f, t,ws} when
s = {vm}; {¬vm, bm,m, f,¬t,¬ws} when s = {bm}; and {¬vm, bm,m, f,¬t, it,ws}
when s = {bm, it}, properly integrating the unexpected input it and its ramification ws.
For an empty percept s, inferences are drawn from rules with a tautology as their body.

For the perception process, we fix six states corresponding to the fatal / non-fatal
/ treated fatal cases of meningitis / non-meningitis, choose one at random, and partly



true implies -viral_meningitis. ( > ¬vm )
true implies -bacterial_meningitis. ( > ¬bm )
viral_meningitis implies meningitis. ( vm m )
bacterial_meningitis implies meningitis. ( bm m )
true implies -meningitis. ( > ¬m )
bacterial_meningitis implies fatal. ( bm f )
meningitis implies -fatal. ( m ¬f )
fatal implies -treatable. ( f ¬t )
meningitis implies treatable. ( m t )
is_treated implies will_survive. ( it ws )
fatal implies -will_survive. ( f ¬ws )
-fatal implies will_survive. ( ¬f ws )

Fig. 3. Representation of the “meningitis” domain, with rules listed earlier having higher priority
than subsequently-listed ones. The representation is a simplified version of the actual syntax (with
named rules and partially-ordered priorities) supported by the implemented FLASH mechanism.

obscure it to produce a percept s with at most three randomly chosen specified atoms.
Such percepts are sequentially given to the NERD mechanism, with an initially empty
knowledge base κ, scene st chosen on each call at random from the inference frontier
front(κ, s), and values for the other parameters as follows: F = {vm, bm,m, f, t,ws},
b ∈ {1, 2} , d = 2, change ∈ {2, 3, 4} ,max = 1.1, intolerance ∈ {1, 3, 5, 7, 9}.

Figure 4 shows how different parameters trade off soundness for completeness: in
the second and third rows the learned knowledge base κ is, respectively, more complete
and more sound than the hand-coded knowledge base κ∗; the knowledge bases are also
overwhelmingly resolute. Such outcomes are possible because learning “picks up” rules
not in κ∗ that are, nonetheless, supported by the data: the contrapositive ¬f ¬bm, the
shortcut bm ¬t, the cautionary m ∧ ¬bm ¬f, or the coincidental bm ¬vm.

Additional experiments, with varying domains and parameters, have been carried
out, which, unfortunately, cannot be presented herein. The NERD mechanism is imple-
mented in C, and exploits advanced data structures to boost computational efficiency.

6 Conclusions and Outlook

We have presented cognitive mechanisms for reasoning and learning, which could be
utilized for the development of cognitive assistants in the context of the cognitive pro-
gramming framework [Michael et al., 2015]. Extensions of the mechanisms to represent
a simple form of time may facilitate the handling of temporal narratives, in addition to
atemporal scenes. Work on reasoning about actions and change [Kakas et al., 2011], and
recent approaches that use argumentation for narrative comprehension [Michael, 2013b;
Diakidoy et al., 2014] can guide such extensions. Theory-wise, the main next step is to
establish the PAC nature of the proposed NERD mechanism and its potential extension
to the problem of learning causal, in addition to atemporal, rules [Michael, 2011a].

In terms of knowledge acquisition, and complementing existing large-scale efforts
in this direction [Mitchell et al., 2015], the proposed (and extended) mechanisms can be



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Evaluation of the NERD mechanism on the “meningitis” domain. The (up to) five colored
areas in each plot (stacked along the y-axis) show the percentage of all states / percepts seen that
far (in the order determined along the x-axis), on which the learned knowledge base κ is (denoted
+) or is not (denoted -) P -resolute (denoted r), P -sound (denoted s), or P -complete (denoted c)
for the following combinations of these metrics: +r+s+c is represented by the blue area, +r+s-c
is represented by the green area, +r-s+c is represented by the orange area, +r-s-c is represented
by the red area, and -r is represented by the grey area. The two columns of plots correspond,
left-to-right, to: P = {vm, bm,m, f, t,ws}, P = {ws}. The three rows of plots correspond, top-
to-bottom, to: evaluating κ∗ instead of κ, b = 2 and low intolerance, b = 1 and high intolerance.

applied on textual story corpora to extract phenomenological knowledge, after upgrad-
ing the propositional representation to a relational one via standard reductions [Valiant,
2000], as demonstrated in earlier work [Michael and Valiant, 2008; Michael, 2008;
2013a]. This application may also offer an experimental arena to compare our mecha-
nisms to ones for association rule mining [Agrawal et al., 1993] and ILP [Muggleton,
1991], in terms of how efficiently, reliably, and comprehensively knowledge is acquired.



On the psychological front, an interesting question is whether it can be shown that
phenomena like Hebbian learning or Pavlovian conditioning can be simulated. Ongoing
psychological work [Diakidoy et al., 2015a] already examines empirically how humans
activate knowledge in the form of rules, and the structure of the knowledge base they of-
fer in terms of its breath and depth (and hence the use of priorities). We expect additional
empirical studies to be informed from this work, and inform its future development.
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