
The computational power of dynamic bayesian
networks

Joshua Brulé

Department of Computer Science
University of Maryland, College Park

jbrule@cs.umd.edu

Abstract. This paper considers the computational power of constant
size, dynamic Bayesian networks. Although discrete dynamic Bayesian
networks are no more powerful than hidden Markov models, dynamic
Bayesian networks with continuous random variables and discrete chil-
dren of continuous parents are capable of performing Turing-complete
computation. With modified versions of existing algorithms for belief
propagation, such a simulation can be carried out in real time. This re-
sult suggests that dynamic Bayesian networks may be more powerful
than previously considered. Relationships to causal models and neural
networks are also discussed.

1 Introduction

Bayesian networks are probabilistic graphical models that represent a set of ran-
dom variables and their conditional dependencies via a directed acyclic graph.
Explicitly modeling the conditional dependencies between random variables per-
mit efficient algorithms to perform inference and learning in the network. Causal
Bayesian networks have the additional requirement that all edges in the network
model a causal relationship.

Dynamic Bayesian networks are the time-generalization of Bayesian networks
and relate variables to each other over adjacent time steps. Dynamic Bayesian
networks unify and extend a number of state-space models including hidden
Markov models, hierarchical hidden Markov models and Kalman filters. Dynamic
Bayesian networks can also be seen as the natural extension of acyclic causal
models to models that permit cyclic causal relationships, while avoiding problems
with causal models that try to model temporal relationships with an atemporal
description [1].

A natural question is, ‘What is the expressive power of such networks?’ The
result in this paper shows that although discrete dynamic Bayesian networks
are sub-Turing in computational power, introducing continuous random vari-
ables with discrete children is sufficient to model Turing-complete computation.
In particular, there exists a mapping between binary strings (representing a bi-
nary stack) into a single continuous random variable, with operations on the
stack modeled by appropriate conditional probability densities in the dynamic



Bayesian network. The distributions used in the construction are such that the
marginal posterior probabilities of random variables in the network can be ef-
fectively computed with modified versions of existing algorithms. Ignoring the
overhead from arbitrary precision arithmetic, the simulation can be conducted
with only a constant time penalty.

2 The Model and Main Results

A Bayesian network consists of a directed-acyclic graph, G over a set V =
{V1, . . . , Vn} of vertices and a probability distribution P (v) over the set of vari-
ables that correspond to the vertices in G [2]. A Bayesian network “factorizes”
the probability distribution over its variables, by requiring that each variable, vi,
is conditionally independent of its non-descendants, given its parents (denoted
pa(vi)). This is the Markov condition [3]:

P (x1, . . . , xn) =
∏
i

P (xi|pai) (1)

Dynamic Bayesian networks (DBN) extend Bayesian networks to model a
probability distribution over a semi-infinite collection of random variables, with
each collection of random variables modeling the system at a point in time
[4]. Following the conventions in [5], the collections are denoted Z1, Z2, . . . and
variables are partitioned Zt = (Ut, Xt, Yt) to represent input, hidden and output
variables of a state space model. Such a network is “dynamic” in the sense that
it can model a dynamic system, not that the network topology changes over
time.

A DBN is defined as a pair (B1, B→), where B1 is a Bayesian network that
defines the prior P (Z1) and B→ is a two-slice temporal Bayes net (2TBN) that
defines P (Zt|Zt−1) via a directed acyclic graph:

P (Zt|Zt−1) =

N∏
i=1

P (Zit |pa(Zit)) (2)

where Zit is the ith node at time t, and pa(Zit) are the parents of Zit in the graph.
The parents of a node can either be in the same time slice or in the previous
time slice (i.e. the model is first-order Markov).

The semantics of a DBN can be defined by “unrolling” the 2TBN until there
are T time-slices; the joint distribution is then given by:

P (Z1:T ) =

T∏
t=1

N∏
i=1

P (ZiT |pa(Zit)) (3)

Analyzing the computational power of a DBN requires defining what it means
for a DBN to accept (and halt) or reject an input. Define an input sequence,
{Ut} of Bernoulli random variables to model the binary input. Similarly, define
an output sequence {Yt} (Yt ∈ {run, halt0, halt1}) to represent whether the



machine has halted and the answer that it gives. Given an input, in1, in2, . . . , int,
to a decision problem, the machine modeled by the DBN has halted and accepted
at time t, if and only if P (Yt = halt1|U1 = in1, . . . , Un = int) > 0.5 and halted
and rejected if and only if P (Yt = halt0|U1 = in1, . . . , Un = int) > 0.5.

2.1 Discrete Dynamic Bayesian Networks Are Not Turing-complete

“Discrete” Bayesian networks are Bayesian networks where all random variables
have some finite number of outcomes, i.e. Bernoulli or categorical random vari-
ables. If dynamic Bayesian networks are permitted to increase the number of
random variables in the network over time, then simulating a Turing-machine
becomes trivial: simply add a new variable each time step to model a newly
reachable cell on the Turing machine’s tape. However, this requires some ‘first-
order’ features in the language used to specify the network and the computational
effort required at each step of the simulation will grow without bound.

With a fixed number of random variables at each time step and the property
that DBNs are first-order Markov, the computational effort per step remains
constant. However, discrete DBNs have sub-Turing computational power. Intu-
itively, a discrete DBN cannot possibly simulate a Turing machine since there is
no way to store the contents of the machine’s tape.

More formally, any discrete Bayesian network can be converted into a hidden
Markov model [5]. This is done by ‘collapsing’ the hidden variables (Xt) of the
DBN into a single random variable by taking the Cartesian product of their
sample space. The ‘collapsed’ DBN models a probability distribution over a
exponentially larger, but still finite sample space. Hidden Markov models are
equivalent to probabilistic finite automata [6] which recognize the stochastic
languages. Stochastic languages are in the RP-complexity class and thus discrete
DBNs are not Turing complete.

2.2 A Dynamic Bayesian Network with Continuous and Discrete
Variables

A 2TBN can be constructed to simulate the transitions of a two stack push-down
automaton (PDA), which is equivalent to the standard one tape Turing machine.
A two stack PDA consists of a finite control, two unbounded binary stacks and
an input tape. At each step of computation, the machine reads and advances
the input tape, reads the top element of each stack and can either push a new
element, pop the top element or leave each stack unchanged. The state of the
control can change as function of previous state and the read symbols. When
the control reaches one of two possible halt states ({halt0, halt1}), the machine
stops and its output to the decision problem it was computing is defined which
of the halt states it stops on.

A key part of the construction is using a Dirac distribution to simulate a
stack. A Dirac distribution centered at µ can be defined as the limit of normal
distributions:



δ(µ) ≡ lim
σ↓0

1

σ
√

2π
e

−x2

2σ2 (4)

A single Dirac distributed random variable is sufficient to simulate a stack.
The stack construction adapted from [7] encodes a binary string ω = ω1ω2 . . . ωn
into the number:

q =

n∑
i=1

2ωi + 1

4i
(5)

Note that if the string begins with the value 1, then q has a value of at least
3/4 and if the string begins with 0, then q is less than 1/2 - there is never a need
to distinguish among two very close numbers to read the most significant digit.
In addition, the empty string is encoded as q = 0, but any non-empty string has
value at least 1/4.

All random variables, except for the stack random variables, are categorically
distributed - thus, the conditional probabilities densities between them can be
represented using standard conditional probability tables.

Extracting the top value from a stack requires a conditional probability distri-
bution for a Bernoulli random variable (Top ∈ {0, 1}), given a Dirac (Stack ∈ R)
distributed parent. The Heavyside step function meets this requirement and can
be defined as the limit of logistic functions (or, more generally, softmax func-
tions), centered at 1/2:

H(x) ≡ lim
k→∞

1

1 + e−k(x−1/2)
(6)

The linear operation 4q − 2 transfers the range of q to at least 1 when the
top element of the stack is 1 and no more than 0 when the top element of the
stack is 0. Then, the conditional probability density function:

P (Top|Stack = q) = H(4q − 2) (7)

yields P (Top) = 1 whenever the top element of the stack is 1 and P (Top) = 0
whenever the top element of the stack is 0.

Similarly, a conditional probability distribution can be defined for Bernoulli
random variable Empty ∈ {0, 1}, as:

P (Empty|Stack = q) = 1−H(4q) (8)

to check if a stack is empty.

Finally, the linear operations q
4 + 2b+1

4 and 4q − (2b + 1) push and pop b,
respectively, from a stack. The conditional probability density for a stack at time
t + 1, given a stack at time t, the top of the stack at time t, and action to be
performed on the stack (Actiont ∈ {push0, push1, pop, noop}) is fully described
as follows:



P (Stackt+1|Topt = p, Stackt = q, Actiont = push0) = δ(q/4 + 1/4)

P (Stackt+1|Topt = p, Stackt = q, Actiont = push1) = δ(q/4 + 3/4)

P (Stackt+1|Topt = p, Stackt = q, Actiont = pop) = δ(4q − (2p+ 1))

P (Stackt+1|Topt = p, Stackt = q,Actiont = noop) = δ(q) (9)

Since there are two stacks in the full construction, they are labeled, at time t,
as Stacka,t and Stackb,t. The rest of the construction is straightforward. Statet,
Actiona andActionb are functions of Statet−1, T opa,t, Emptya,t, T opb,t, Emptyb,t
and int. Since all of these are discrete random variables, the conditional prob-
ability densities is simply the transition function of the PDA, written as a (0,
1) stochastic matrix. As expected P (Y = halti|State) = 1 if State is that halt
state, and 0 otherwise.

Finally, the priors for the dynamic Bayesian network are simply P (Stacka,1) =
P (Stackb,1) = δ(0), P (State1 = q0) = 1, where q0 is the initial state.

As described, this construction is somewhat of an abuse of the term ‘proba-
bilistic graphical model’ - all probability mass is concentrated into a single event
for every random variable in the system, for every time step. However, it is easy
to see this construction faithfully simulates a two stack machine, as each random
variable in the construction corresponds exactly to a component of the simulated
automaton.

2.3 Exact Inference in Continuous-discrete Bayesian Networks

This construction requires continuous random variables, which raise concerns
as to whether the marginal posterior probabilities can be effectively computed.
The original junction tree algorithm [8] and cut-set conditioning [9] approaches
to belief propagation compute exact marginals for arbitrary DAGs, but require
discrete random variables. Lauritzen’s algorithm [10] conducts inference in mixed
graphical models, but is limited to conditional linear Gaussian (CLG) continuous
random variables. In a CLG model, let X be a continuous node, A be its discrete
parents, and Y1, . . . , Yk be continuous parents. Then

p(X|a,y) = N(wa,0 +

k∑
i=1

wa,iyi;σ
2
a) (10)

Lauritzen’s algorithm can only conduct approximate inference, since the true
posterior marginals may be some multimodal mix of Gaussians, while the algo-
rithm itself only supports CLG random variables. However, the algorithm is
exact in the sense that it computes exact first and second moments for the
posterior marginals which is sufficient for the Turing machine simulation.

Laurientz’s algorithm does not permit discrete random variables to be chil-
dren of continuous random variables. Lerner’s algorithm [11] extends Lauritzen’s



algorithm to support softmax conditional probability densities for discrete chil-
dren of continuous parents. Let A be a discrete node with the possible values
a1, . . . , am and let Y1, . . . , Yk be its parents. Then:

P (A = ai|y1, . . . , yk) =
exp(bi +

∑n
l=1 w

i
lyl)∑m

j=1 exp(b
j +

∑n
l=1 w

i
lyl)

(11)

Like Lauritzen’s algorithm, Lerner’s algorithm computes approximate poste-
rior marginals - relying on the observation that the product of a softmax and
a Gaussian is approximately Gaussian - but exact first and second moments,
up to errors in the numerical integration used to compute the best Gaussian
approximation of the product of a Gaussian and a softmax. This calculation is
actually simpler in the case where the softmax is replaced with a Heavyside and
the Lerner algorithm can run essentially unmodified with a mixture of Heavyside
and softmax conditional probability densities. In the case of Dirac-distributed
parents, with Heavyside conditional probability densities, numeric integration
is unnecessary and no errors are introduced in computing the first and second
moments of the posterior distribution.

Any non-zero variance for the continuous variables will ‘leak’ probability to
other values for the ‘stack’ random variables in the Turing machine simulation,
eventually leading to errors. Lauritzen’s original algorithm assumes positive-
definite covariance matrices for the continuous random variables, but can be
extend to handle degenerate Gaussians [12]. In summary: posterior marginals
for the Turing machine simulation can be computed exactly, using a modified
version of the Lerner algorithm when restricted to Dirac distributed continuous
random variables with Heavside conditional probability densities. If Gaussian
random variables and softmax conditional probability densities are also intro-
duced, then the first and second moments of the posterior marginals can be
computed ‘exactly’, up to errors in numerical integration, although this will
slowly degrade the quality of the Turing machine simulation in later time steps.

Inference in Bayesian networks is NP-hard [13]. However, assuming that
arithmetic operations can be computed in unit time over arbitrary-precision
numbers (e.g. the real RAM model), the work necessary at each time step is
constant. Thus, dynamic Bayesian networks can simulate Turing-machines with
only a constant time overhead in the real RAM model, and slowdown propor-
tional to the time complexity of arbitrary precision arithmetic otherwise.

3 Discussion

This result suggests that causal Bayesian networks may be a richer language for
modeling causality than currently appreciated. Halpern [14] suggests that for
general causal reasoning, a richer language, including some-first order features
may be needed. First-order features will likely be useful for causal modeling in
practice, but the Turing-complete power of dynamic Bayesian networks suggests
that first-order features may be unnecessary.



This result for dynamic Bayesian networks is analogous to Siegelmann and
Sontag’s proof that a recurrent neural network can simulate a Turing machine
in real time [7]. In fact, it turns out that neural networks and Bayesian networks
have very similar expressive power:

– Single perceptron ≈ Gaussian naive Bayes (Logistic regression) [15]
– Multilayer perceptron ≈ Full Bayesian network (Universal function approx-

imation) [16] [17]
– Recurrent neural network ≈ Dynamic Bayesian network (Turing complete)

Although the conditional probability distributions used in this construction
are likely not biologically plausible, their density functions are the limit of the
very ‘natural’ Gaussian and logistic functions commonly used in neural model-
ing. This suggests there is no theoretical barrier to casting a neural system as
a dynamic probabilistic system and conducting analysis accordingly, although
there are still likely many practical difficulties in such an approach.

While simple recurrent neural networks are theoretically capable of perform-
ing arbitrary computations, practical extensions include higher-order connec-
tions [18], ‘gates’ in long short-term memory [19], and even connections to an
‘external’ Turing machine [20]. These additions enrich the capabilities of stan-
dard neural networks, making it easier to train them for complex algorithmic
tasks. An interesting question is to what degree dynamic Bayesian networks can
be similarly extended and how the ‘core’ dynamic Bayesian network being ca-
pable of Turing-complete computation affects the overall performance of such
networks.

There is a very small gap in decidability - it takes little to turn a sub-
Turing framework for modeling into a Turing-complete one. In the case of neural
networks, a single recurrent layer, with arbitrary-precision rational weights and a
saturating linear transfer function is sufficient. With dynamic Bayesian networks,
two time-slices, continuous-valued random variables with a combination of linear
and step function conditional probability densities is sufficient. While Turing-
completeness is often desirable in trying to model complex systems, it can lead
to difficulties in analyzing and predicting their behavior. For example, given
any Turing-complete DBN, it is impossible to find a general-purpose method to
determine the stationary distribution or even whether a stationary distribution
exists.

Ultimately, the Turing-completeness of DBNs is both helpful and unhelpful -
Bayesian models are powerful enough to model neural systems, but also inherit
the same fundamental difficulties in analyzing their behavior.

Acknowledgements

I would like to thank James Reggia, William Gasarch, Brendan Good and Kristo-
pher Micinski for their discussions and helpful comments on early drafts of this
paper.



References

1. Poole, D., Crowley, M.: Cyclic causal models with discrete variables: Markov chain
equilibrium semantics and sample ordering. In: Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, AAAI Press (2013) 1060–
1068

2. Pearl, J.: Bayesian networks: A model of self-activated memory for evidential
reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society,
University of California, Irvine. (August 1985) 329–334

3. Bareinboim, E., Brito, C., Pearl, J.: Local Characterizations of Causal Bayesian
Networks. In: Graph Structures for Knowledge Representation and Reasoning: Sec-
ond International Workshop, GKR 2011, Barcelona, Spain, July 16, 2011. Revised
Selected Papers. Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 1–17

4. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation.
Comput. Intell. 5(3) (December 1989) 142–150

5. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, University of California, Berkeley (2002)

6. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition 38(9) (2005) 1349 – 1371 Grammatical Inference.

7. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of computer and system sciences 50(1) (1995) 132–150

8. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological) (1988) 157–224

9. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc. (1988)

10. Lauritzen, S.L.: Propagation of probabilities, means, and variances in mixed graph-
ical association models. Journal of the American Statistical Association 87(420)
(1992) 1098–1108

11. Lerner, U., Segal, E., Koller, D.: Exact inference in networks with discrete children
of continuous parents. In: Proceedings of the seventeenth conference on uncertainty
in artificial intelligence, Morgan Kaufmann Publishers Inc. (2001) 319–328

12. Raphael, C.: Bayesian networks with degenerate gaussian distributions. Method-
ology and Computing in Applied Probability 5(2) (2003) 235–263

13. Cooper, G.F.: The computational complexity of probabilistic inference using
bayesian belief networks. Artificial intelligence 42(2) (1990) 393–405

14. Halpern, J.Y.: Axiomatizing causal reasoning. Journal of Artificial Intelligence
Research (2000) 317–337

15. Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. Advances in neural information processing
systems 14 (2002) 841

16. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems 2(4) (1989) 303–314

17. Varando, G., Bielza, C., Larrañaga, P.: Expressive power of binary relevance and
chain classifiers based on bayesian networks for multi-label classification. In: Prob-
abilistic Graphical Models. Springer (2014) 519–534

18. Pineda, F.J.: Generalization of back propagation to recurrent and higher order
neural networks. In: Neural information processing systems. (1988) 602–611



19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8) (1997) 1735–1780

20. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)


