
Agile Software Engineering Practices and ERP: Is a 

sprint too fast for ERP Implementation? 

 

Adnan Kraljić, Tarik Kraljić, 

 

, 

                                                    Ghent University, Ghent, Belgium 

adnan.kraljic@ugent.be, tarik.kraljic@ugent.be 

Abstract. The Enterprise Resource Planning (ERP) implementation is a 

complex and active process, one that involves a mixture of technological and 

organizational interactions. Often it is the largest IT project that an organization 

has ever launched and requires a mutual fit of system and organization. Concept 

of an ERP implementation supporting business processes across different 

departments in organization is not a generic, rigid and uniform process - it is a 

vivid one and depends on number of different factors. As a result, the issues 

addressing the ERP implementation process have been one of the major 

concerns in industry. Therefore, ERP implementation process receives profound   

attention   from   practitioners   and   scholars   in   its academic or industry 

papers. However, research on ERP systems so far has been mainly focused on 

diffusion, use and impact issues.  Less attention has been given to the 

methods/methodologies used during the configuration and the implementation 

of ERP systems; even though they are commonly used in practice, they still 

remain largely unexplored and undocumented in Information Systems research 

domain. Furthermore, research on Agile Software Engineering Practices in ERP 

Implementations context is almost nonexistent. Many IT specialists find agile 

management frameworks positive, but ask themselves whether these can also 

cope with the complex adjustments of ERP systems. The answer is quite 

simple: agile management frameworks, in particular Scrum, were developed for 

the exact purpose of enabling successful execution of large and complex 

projects. Depending on the size of the company, an ERP project including 

preparation can take over a year – or it can become a long-runner that eats up 

resources. One reason for this: if projects are handled in line with traditional 

procedural models, lengthy integration and acceptance tests are not carried out 

until the end. So, at the end of the development the detected errors and change 

requests pile up and delivery is delayed. This study is a response to the frequent 

calls for industrial case studies on agile software development (Dingsøyr et al.  

2012; Dybå and Dingsøyr 2008). This paper is useful to researchers who are 

interested in ERP implementation methodologies and frameworks. Paper also 

aims at the professional ERP community involved in the process of ERP 

implementation by promoting a better understanding of ERP implementation 

methodologies and frameworks, its variety and future development. 

Keywords: ERP, ERP implementation, Agile implementation methodology, 

sprints, phases etc. 

mailto:adnan.kraljic@ugent.be


1   Introduction  

Implementing an ERP system is a major project demanding a significant level of 

resources, commitment and adjustments throughout the organization. Often the ERP 

implementation project is the single biggest project that an organization has ever 

launched [1].  As a result, the issues surrounding the implementation process have 

been one of the major concerns in industry. And it further worsens because of 

numerous failed cases including a few fatal disasters which lead to the demise of 

some companies. In previous studies can be found that almost 70% of ERP 

implementations fail to achieve their estimated benefits [2]. Although ERP can 

provide many benefits for organization, goals are often changed to getting the system 

operational instead of realizing the goals [3]. Reflecting such a level of importance, 

the largest number of articles in literature belongs to this theme. It comprises more 

than 40% of the entire articles [4]. Many of these articles share implementation 

experiences from various companies. Also, various   models   of   implementation   

stages and different implementation methodologies are presented and will be 

discussed more in next section. 

1.1   ERP Implementation Methodologies in Literature 

Research on ERP systems has so far been mainly focused on implementation 

CRF/CSF and impact issues [5].  Less attention has been given to the methods used 

during the configuration and the implementation of ERP systems [6], even though 

they are commonly used in practice [7] , they remain unexplored in ISD research. 

Several models of   ERP   implementation   methodologies   are   provided   in 

literature and they vary according to e.g. the number of phases. The phases in ERP 

implementation frameworks are often counted as between three and six, according to 

Somers and Nelson [8]. However, the model of [9] includes 11 phases and it gives 

practical checklist-type guidance for an ERP implementation. On the other hand, the 

models of Markus and Tanis or Parr and Shanks are very general, and are merely used 

for analyzing ERP implementation projects. The models are useful in studying, 

analyzing and planning ERP implementation. [10] 

The selection of ERP implementation method mentioned in paper is based on the 

degree of “institutionalization” in the scientific community. Livari and Hirschheim      

described      six      criteria      to      determine institutionalization:  including 1) the 

existence of scientific journals, 2) scientific conferences, 3) textbooks, 4) professional 

associations, 5) informational and formal communication networks, and 6) citations 

[11].  

There are number of different ERP implementation methodologies mentioned and 

described in literature.  However, there is an issue with methodology scope, context 

and its ambiguity. For example, some methodologies treat the phases before the 

acquisition of an ERP system (and are focused on it), while some methodologies put 

stress on phases after the ERP system has started to be used (production phase) [12].  

A board concept for an ERP implementation also covers these after and before 

phases. Different authors provide different sequence of phases and diverse naming 

practice.  The preliminary phases are, for example, initiation and requirements 



definition defined by Kuruppuarachchi project chartering by Markus [13] and 

initiative and selection by Makipaa [14]. Verviville and Halingte even present a 

Model of the ERP Acquisition Process (MERPAP). The phases after the ERP system 

is put into use are described as termination, onward and upward), exploitation and 

development enhancement, acceptance, routinization, and infusion and stabilization, 

continuous improvement and transformation. In some cases, an ERP implementation 

concept may cover only phases between the acquisitions and beginning of usage of a 

system, for example, “go live” phase. For instance, Ross proposed a five-stage model 

for ERP: implementation, stabilization, continuous improvement and transformation 

(covering only phases between the acquisition and beginning of usage of a system). 

Markus & Tanis suggested a model named enterprise system experience cycle, which 

has four phases: charter, project, shakedown and onward and upward etc. [15]. 

 

It is obvious that there is no ground based ERP implementation methodology, widely 

accepted and tested. Even though they are commonly used in practice (ERP 

implementation methodologies) they still remain largely unexplored   and   

undocumented   in   Information   Systems research domain. Next table summarize 

list of proposed implementation methodologies followed by the degree of 

institutionalization in scientific community [16]. 

 

Author(s) ERP implementation model 

Bancroft et al. (1998) 

(1) Focus, (2) Creating As – Is picture, (3) Creating of the 

To-Be design, (4) Construction and testing and (5) Actual 

Implementation 

Kuruppuarachchi et al. 

(2000) 

(1) Initiation, (2) Requirement definition, (3) 

Acquisition/development, (4) Implementation, and (5) 

Termination  

Markus and Tanis 

(2000) 

(1) Project chartering, (2) The project, (3) Shakedown, and 

(4) Onward and upward 

Makipaa (2003) 

(1) Initiative, (2) Evaluation, (3) Selection, (4) 

Modification, Business process Reengineering, and 

Conversion of Data, (5) Training, (6) Go – Live, (7) 

Termination, and (8) Exploitation and Development 

Parr and Shanks 

(2000a) 

(1) Planning, (2) Project: a. setup, b. reengineer, c. design, 

d. configuration and testing, e. installation (3) Enhancement 

Ross (1999) 
(1) Design, (2) Implementation, (3) Stabilization, (4) 

Continues improvement and (5) Transformation 

Shields (2001) 
Rapid implementation model of three phases and 12 major 

activates 

Umble et al (2003) 

(1) Review the pre-implementation process to date, (2) 

Install and test any new hardware, (3) Install the software 

and perform the computer room pilot, (4) Attend system 

training, (5) Train on the conference room pilot, (6) 

Established security and necessary permissions, (7) Ensure 

that all data bridges are sufficiently robust and the data are 



sufficiently accurate, (8) Document policies and 

procedures, (9) Bring the entire organization on – line, 

either in a total cutover or in a phased approach, (10) 

Celebrate, and (11) Improve continually 

Verviell and Halingten  
(1) Planning, (2) Information search, (3) Selection, (4) 

Evaluations, and (5) Negotiation 

 

Figure 2.1 illustrates the three generations of software engineering. The diagram on 

top of the figure schematically depicts the ability of each particular generation to 

handle software complexity in terms of cost per unit [17]. As the complexity of 

software development projects has constantly risen over time, new approaches were 

introduced which better suited the given project contexts. 

 

1.2   Agile Software Development 

In February of 2001, 17 prominent software development figures (Person A, Person 

B, Person C, Person D, Person E, etc. — just to name a few) met in The Lodge at 

Snowbird ski resort in the Wasatch mountains of Utah to share their ideas on software 

development methods known as “lightweight ‘methods at the time. [18]  The result of 

the meeting was the Agile Manifesto. These agile values were derived from previous 

light- weight methods introduced by these agilists in the 1990s and early 2000s. [19] 

The four values constitute the essence of agile software development: 

 

 



Individuals and interactions over processes and tools7 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a plan 

 

Instead of formalizing the development process with detailed specification of 

software requirements, agile software development meant a distinct move towards 

continuous, informal, and close customer collaboration . Unnecessary documentation 

was avoided as much as possible emphasizing a “lean” mentality adopted from lean 

manufacturing [20]. 

Following the publication of the Manifesto, the Agile Alliance was created to promote 

and evolve agile software development methods. The manifesto was derived from the 

ideas of many iterative development methods including Extreme Programming (XP), 

Scrum, DSDM, Crystal, Adaptive Software Development, and several others.   It is 

rather difficult to disagree with the Manifesto once it is fully understood. In fact, most 

people in the software development space nod their heads when they hear the above 

statements. These principals resonate in high-quality organizations that have great 

talent and pride themselves on collaboration, client service, and adaptability to 

change. The fact remains that without talent, no software development process will 

ever lead to success.  Incorporating agile methodologies into our playbook puts us in 

good company along industry leaders (Google, IBM, Lockheed Martin, and many 

others) and positions us to provide our clients with the right type of SDLC 

transformation based on their culture and business needs. [21] 

 

Agile 

characteristic  

Description Benefits 

Time-boxed 

iterations 
• Scope (in the form of user stories) is 

broken up in small chunks based on 

priority and/or complexity  

• Iterations are time boxed in short 

timeframes (generally one to six weeks)  

• Each iteration includes the entire SDLC 

life cycle  

• The result of each iteration is a working 

solution with minimal bugs  

• Multiple iterations may be required 

before releasing a system to end users  

• Scope is generally fixed during 

iterations, but can change in between 

iteration based on new business needs 

• Improved quality 

due code integration 

and test within each 

iteration  

• Early return on 

investment as 

working code is 

produced early on 

in the process 



Client 

collaboration 
• Client lead (product owner) is an active 

team member who is engaged in 

iteration planning and review.  

• Product owner is always aware of 

progress being made and the direction 

of system development  

• Product owner is available to answer the 

team ‘s question 

• Quick resolution of 

issues 

• Adaptive evolution 

of requirements 

from high-level user 

stories to detailed 

requirements 

through continuous 

client discussion  

• Trust-based 

relationship with the 

client 

Self-organizing 

teams 
• Agile teams are typical assembly of 

cross-functional team members capable 

of carrying out all aspects of the SDLC  

• Team members are empowered to make 

decisions, estimate effort, decide roles 

and responsibilities, and are protected 

from outside influences  

• All team members are given the 

opportunity to interact with the client  

• Collocated teams with emphasis on 

face–to-face communication. If team 

members are not collocated, then the 

use of video conferencing and 

conference calls to keep the team 

connected 

• Improved 

productivity  

• Increased 

motivation 

• Clear responsibility 

and accountability 

• Staff development 

and growth 

• Improved team 

chemistry 

Adaptable to 

change 
• Agile methods embrace change as 

inevitable. Business needs are changing 

rapidly and agile methods do not 

assume that requirements can be frozen  

• Thus, agile methods work closely with 

the client to adapt the solution to their 

changing requirements  

• Scope and requirements are reviewed 

between iterations, modified, and 

prioritized for the next iteration  

• In addition to adaptability to 

requirements, the design of the system 

is also adaptable to changing needs. 

Team members are encouraged to 

refactor code and improve their quality 

regularly. The team is encouraged to 

adapt any aspect of the system as new 

information becomes available. 

• Increased client 

satisfaction as the 

system is adapted to 

their needs  

• Improved system 

design that is simple 

and easy to 

understand (due to 

frequent refactoring 

of code) 

 

Product • Working software is the main objective • Working code 



focused/results 

oriented 

of the agile team  

• Every activity must be beneficial to the 

main objective  

• Client needs related to software 

documentation is treated as 

requirements 

(early progress 

demonstrated)  

• Less distractions 

Nevertheless, a satisfying understanding in what circumstances agile development 

should be used and reasons for its effectiveness are still missing. This is reflected in 

the repeated calls for more theory-based investigations and more rigorous industrial 

studies on agile software development. The agile approach follows the general trend 

in new product development with teams as the core building block of the development 

organization. Collaborative development work in teams promises greater adaptability, 

productivity, and creativeness as compared to individuals. More- over, it provides 

better solutions to organizational problems. Every good concept needs a strong 

underlying logic serving as a “theoretical glue”. In ISD research, however, it seems 

that “almost every piece of research adopts a unique interpretation of agility”. This 

conclusion was confirmed by who found 17 different definitions of the term after 

reviewing agile studies in the main outlets of software engineering in information 

systems research streams. [22] 

2   Agile Software Engineering Practices and ERP: SAP Activate 

Methodology 

The SAP ASAP 8 methodology comprises of six phases as highlighted in Figure 2-3, 

which is a disciplined approach to managing complex projects, organizational change 

management, solution management, & industry specific implementations. The SAP 

ASAP 8 methodology is the enhanced Delivery model with templates, tools, 

questionnaires, and checklists, including guide books and accelerators. ASAP 8 

empowers project teams to utilize the accelerators and templates built in to SAP 

solutions. The Agile add-on is available in SAP Solution Manager. Figure 2.1 

explains various phases of SAP ASAP 8 Methodology. [23] 

 



 

 

 

Prepare - This phase encompasses the entire project preparation and planning 

activities with infrastructure, hardware/network sizing requirements completed. It 

involves setting up the infrastructure, team, project goals, charter, and agree upon 

schedule, budget, risk baseline, proof-of-concept planning if applicable with 

implementation sequence. The project manager on the ground will discuss with the 

customer project manager to identify risks early on with a mitigation plan. The PM 

will be responsible for drafting a high-level project plan with all milestones with a 

detailed task level plan chalked out with critical dependencies. Each phase deliverable 

should be agreed between both parties. Finally, a project organization, steering 

committee is organized with assigned resources. Example of SAP Agile Project Team 

is shown in Fig. 1.2. [23] 

 

Explore - This is the most crucial phase of the project for a project manager as he just 

about to steer the ship, like a captain. The objective of this phase is to be on a 

common platform on how the company plans to run SAP for their business 

operations. Thus, a PM is responsible for analyzing the project goals and objectives 

and revise the overall project schedule if required. In simple terms, it is the critical 

requirements gathering phase, A PM might use appropriate tools to collect 

requirements with required traceability. The result is the Business Blueprint, which is 

a detailed flow of business process AS-IS, how they run the business operations with 

a TO-BE mapped in SAP, on how these business operations will run in SAP. 

Depending on the implementation complexities, number of business process, 

Blueprint workshops might span for a few days or weeks or even months, in a 

complex environment. The output of this phase is the baseline configuration in SAP 

with detailed custom code requirements analysis done. [25] 

 

Realize - In simple terms, realization is the actual development phase of the project, 

where you’d configure, develop custom code and conduct required testing. It involves 



coding-unit testing-integration testing-User acceptance testing (UAT). As per the 

business blueprint and mapping the SAP system as agreed with business, all the 

business process requirements will be implemented. In reality, there are two major 

work packages: (a) Baseline (major scope); and (b) Final configuration (remaining 

scope). The success of any implementation project relies on how closely you’re able 

to develop custom code, test and release it to the UAT phase, in order to support 

adequate testing by the users. Also, the challenge is to adopt changes as indicated 

during the UAT. This phase is resource intensive and the team is at peak team size to 

ensure all deliverables are met and sign-off. Often times Integration fail due to lack of 

test data, and testing in a “PRD” like environment to be able to test all critical 

business scenarios. A good practice is to copy a “PRD”-like environment and start 

testing if the system already exists. If it is GreenField environment, ensure adequate 

test data is available to test it rigorously. [26] 

 

Deploy - Final preparations before cutover to production ensure that that the system, 

users, and data are ready for transition to productive use. The transition to operations 

includes setting up and launching support, then handing off operations to the 

organization managing the environment. [27] 

3 Pilot SAP Agile project within the company: Inventory Aging 

Solution in SAP without implementation of material batch 

management 

 

Javno preduzeće Elektroprivreda Bosne i Hercegovine d.d. Sarajevo (Public 

Enterprise Electric Utility of Bosnia and Herzegovina) is a joint stock company in 

which 90% of the capital is owned by the Federation of BiH, and 10% is owned by 

minority shareholders. Since 2009 Elektroprivreda BiH d.d. Sarajevo has had a status 

of the parent company in the EPBIH Concern, which is connected with several 

companies in the field of mining and manufacturing of equipment. [28] 

 

Electric utility activities performed by JP Elektroprivreda BiH dd Sarajevo are: 

 

• Generation and distribution of electricity 

• Supply of Electricity 

• Trading, representation and mediation on the local electricity market 

• Export and import of electricity, including the management of electricity 

system [37] 

 

Electric utility activities performed by the Company as public services are: 

 

• Generation of electricity for unqualified (tariff) customers 

• Electricity distribution 

• Electricity supply for unqualified (tariff) customers. 



• JP Elektroprivreda BiH d.d. - Sarajevo is the largest electric utility company 

in BiH. [38] 

 

Key indicators are: 

 

• Installed generating capacities 1682 MW; 

• Distribution lines 27.405 km; 

• Distribution substations 2.825 MVA; 

• Number of customers 744.029; 

• Number of employees 4.789. [39] 

 

 

Internal audit asked for a custom business intelligence report to track the aging of her 

products in quarterly buckets (1-3 months, 4-6 months, etc.). Auditors could not 

afford to assume that quantity of stock (and average price) on hand is actively moving 

due to one recent goods receipt, as suggested by SAP Standard Content. [29] 

 

While the standard content for SAP ERP is immensely useful for quickly 

implementing common solutions, and getting critical reports into the hands of 

business users, the out-of-the-box material do not address specific issues due to the 

different nature of each industry. 

 

Internal SAP Consultants did not have any experience with Agile implementation 

methodology, so the external company specialized in Scrum provided its expertise 

and organize project teams and procedures according to agile premises.  

 

Some of the fears that SAP Internal consultants expressed: 

 

• Implementation teams are not programmers 

• Minimum viable product is “monster” 

 

 

The stock age calculation is load-intensive because it happens at the lowest level and 

is a back calculation. BW is meant for this type of reporting, while R/3 could bog 

down on the calculation. With BW, you can also change the age buckets and, with 

some formula variables, leave it to the user to decide which age buckets to use.[30] 

 

This query works at the level at which material movements take place. If batch 

management is implemented, then the lowest level is plant/material/batch. Without 

batch management, the lowest level is plant/material. With this query, you can trace a 

material back based on the material documents. If a material document changes the 

identity of the material in any way — for example, a material-to- material transfer — 

then this query won't work for that material as the documents cannot be traced back. 

However, this approach is difficult to implement at the programming level because of 

the book-keeping overhead. There isn’t a direct relationship between a goods receipt 

and a goods issue in the logistics module. You will need to keep an account of the 

movements manually. [31] 



 

Those 8 points were “acting rules” during the project: 

 

1. Get to initial prioritization faster. 

2. Improve prioritization using economics. 

3. Pull work from a dynamic prioritized list. 

4. Reduce the size of requirements. 

5. Get to the point of writing ABAP code quickly. 

6. Actively manage the work in progress. 

7. Enable a smooth sustainable flow of work. 

8. Enable faster feedback cycles. 

4 Recognized benefits by the agile team 

More flexibility during implementation - The agile approach enables you to react 

decisively and effectively to change. In contrast to other methods there is no blueprint 

that serves as the basis for the entire implementation. Agile is based on the 

assumption that requirements will change with time. Therefore, changes can still be 

proposed and effected during the implementation. [32] 

All necessary knowledge in the team. Two closely linked, cross-functional Scrum 

teams were brought together to address this initial situation in an optimum manner. 

Each team consisted of ERP developers as well as SAP consultants from both SAP 

systems, a representative from the manufacturer of the third-party software and a 

tester with knowledge of eCATT. This meant that each Scrum team was able to 

implement functional user stories end-to-end and ensure these with automated tests. 

[33] 

Early integration. Focusing on the minimum viable product/report enabled early 

integration of all systems. The interface between the two SAP systems was already 

implemented in the first sprint using a minimum data set. In the following sprints the 

interface was expanded step by step and the third-party software was integrated. [34] 

Communication. In order to integrate the many - especially operatively affected - 

persons, the managers of the departments had regular info-exchange meetings with 

the product owners of the two teams that took the form of backlog grooming. In order 

to integrate users “key user groups” were formed that covered a representative cross-

section of the users. The key users not only took part in sprint reviews, they also 

worked regularly with the Scrum team during the sprint. [35] 

 

The Results. This mini project was completed perfectly on budget and in time. But 

even more important: all those involved recognized what they really needed thanks to 

the iterative approach and many test runs. Many of the requirements originally 



specified either disappeared completely from the “wish list” or were replaced by new 

ones. The risk of an incompatible interface also went down drastically thanks to 

timely integration of the modules. The department responsible for the project was so 

surprised and impressed by the fast and “correct” results that it intends to carry out all 

its commissioned projects with Scrum in future.  

 

Improved progress monitoring & coordination - During a typical agile 

implementation, daily meetings are held with the team and the interested parties. 

These ‘Scrum Meetings’ keep you in constant contact with the project and allow you 

to follow the progress closely. Various checkpoints (demos) ensure that the SAP 

system links in with your requirements. After each clearly defined sprint, and the 

working software it delivers, it is clear what progress has been made and what still 

needs to be done. In this way risks and problems are identified at an early stage of the 

project. 

 

Conditions for success 

 

Agile is based on a short implementation cycle and high speed. This requires constant 

feedback and attention from the ‘Process Owner(s)’ who represent the business 

stakeholders. Important conditions for success are therefore the involvement from the 

business, a clear picture of the requirements and priorities for the project and good 

technological preparation. If the correct setup is not yet present then the project 

focuses on this first.  

 

Involvement of business via ‘Process Owner(s)’ 

 

Decision-making and internal coordination and communication with the various 

business stakeholders concerning the requirements and priorities; these are the most 

important tasks of a Process Owner (PO). In this way, the PO represents the customer 

and the requirements and links these to the implementation team. [48] The PO also 

administers the Delta List. This is a list of the differences between the possibilities of 

the baseline system and the processes and functionalities required from the point of 

view of the business. With this the PO gives the implementation team clear priorities 

for the various Delta requirements. Finally, it is crucial that the availability of the PO 

is frequent enough during the project. If there are several Process Owners, we ask for 

one chief PO for mutual benefit who can take a final decision if interests differ. 

 

Development and implementation standards - Agree on development and 

implementation standards with your implementation team. At the very beginning of 

the project define your standards for code version control, configuration of reporting 

and input layout templates, proper use of modelling capabilities, proper use of 

different types of logic (VBA, Script Logic, Business Rules, ABAP, Dimension 

Formulas, Measures), authorization modelling, transport system. We spent some time 

on defining these standards and it saved lots of time during the project. We used the 

same library of script logic functions, ABAP functions and VBA library. [1] As both 

templates and functions were shared between all consultants and developers there was 



no need to build something new but rather adjust the existing functions and templates 

to fit in new requirements and requested features. [36] 

 

5. Conclusion 

This study confirms previous findings that agile software development positively 

influences the performance of ERP development process [51] Agile software 

engineering evolved from the knowledge of experienced consultants and industry best 

practices [52]. While the number of scientific publications demonstrates a clear 

interest of academic scholars, theory-based research on agile software development 

remains limited [53]. Despite its popularity, a theoretical understanding of agile 

software development is still in its infancy [54]. This study is a response to the 

frequent calls for more theory-based, industrial case studies on agile software 

development [55]. 

 

It is clear that Agile transformation requires a serious mind-set change and strong 

focus and commitment. With this change, Agile approach give your teams a sense of 

accomplishment throughout whole project and keep things transparent to the project 

stakeholders. Agile practice is the future (and the present already) of ERP 

implementation process. In the next figure 5.1 you can find some key benefits 

provided by Accenture. Accenture's current clients include 94 of the Fortune Global 

100 and more than three-quarters of the Fortune Global 500. [56] 

 



 

References 

 

 
1. Moon, Y.B. “Enterprise Resource Planning (ERP): a review of the literature,” International Journal 

Management and Enterprise Development (4:3) 2007, pp 235-264. 

2. Al-Mashari, M., Al-Mudimigh, A., and Zairi, M. "Enterprise Resource Planning: A Taxonomy of 

Critical Factors," European Journal of Operational Research (146:2) 2003, pp 352-364. 

3. Scheurwater, M., De Swaan Arons, B., “ERP & Performance,” Compact KPMG IT advisory 

(2009_0) 2009, pp 10-16. 

4. Al-Mashari, M., Zairi, M., et al. (2006) ‘Enterprise Resource Planning (ERP) implementation: a 

useful road map’, International Journal of Management and Enterprise Development, Vol. 3, Nos. 1–

2, pp.169–180. 

5. Dantes, G.R., Hasibuan, Z.A., “Measurements of Key Success Factors (KSFs) on Enterprise 

Resource Planning (ERP) Adoption”, IBIMA Business Review Journal, 2010. 

6. Davenport, T.H. "Putting the enterprise into the enterprise system," Harvard Business Review (76:4), 

1998, pp. 121- 131 

7. Ross, J. W. and Vitale, M. R. (2000). The ERP revolution: Surviving versus thriving, Infor-mation 

Systems Frontiers 2(2): 233-241. 

8. Somers, T.M., Nelson, K. (2001) “The Impact of Critical Success Factors across the Stages of 

Enterprise Resource Planning Implementations”, In Proc of the 34th Hawaii International Conference 

on Systems Sciences, Vol.8, 8016, IEEE Computer Society, Washington, DC, USA. 

9. Hevner, A. R. et al. 2004. Design Science in Information Systems Research. MIS Quarterly. 28, 1 

(2004), 75-105. 

10. Janssens G., Kusters, R., & Heemstra, F. (2008). Sizing ERP implementation projects: An activity-

based approach. International Journal of Enterprise Information Systems (IJEIS), 4(3), 25-47. 

11. Møller, C., Kræmmergaard, P., & Rikhardsson, P. (2004). A Comprehensive ERP bibliography - 

2000-2004. Department of Marketing, Informatics and Statistics, Aarhus School of Business, IFI 

Working paper series (12), 54. 

12. Somers, T.M., Nelson, K. (2001) “The Impact of Critical Success Factors across the Stages of 

Enterprise Resource Planning Implementations”, In Proc of the 34th Hawaii International Conference 

on Systems Sciences, Vol.8, 8016, IEEE Computer Society, Washington, DC, USA. 

13. E.J. Umble et al. (2003), “Enterprise resource planning: Implementation procedures and critical 

success factors, European Journal of Operational Research 146 241–257 

14. Markus, M.L. and Tanis, C. (2000) The enterprise systems experience – from adoption to success. In 

Framing the Domains of IT Research: Glimpsing the Future Through the 264 Markus et al. Past, 

Zmud, R.W. (ed.) (Pinna• ex Educational Resources, Cincinnati, OH), 173–207. 

15. Dolmetsch, R., T. Huber & Fleisch, E.  (1998). Accelerated SAP 4 Case Studies, Institute for 

Information Management, University of St: Gallen. 

16. Bhattacherjee, A. (2000). Beginning SAP R/3 Implementation at Geneva Pharmaceuticals, 

Communications of the AIS Vol. 4,  

17. No.Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct 

indicators and measurement model misspecification in marketing and consumer research.   Journal of 

Consumer Research, 30(2), 199–218. 

18. Jugdev, K., & Müller, R. (2005).  A retrospective look at our evolving understanding of 

project success. Project Management Journal, 36(4), 19–31. 



19. Jung, D. I., & Sosik, J. J. (2003). Group potency and collective efficacy examining their 

predictive validity, level of analysis, and effects of performance feedback on future group 

performance. Group & Organization Management, 28(3), 366–391. 

20. Kan, S. H. (2003).  Metrics and models in software quality engineering.  Boston, MA: 

Addison- Wesley. 

21. Kang, H.-R., Yang, H.-D., & Rowley, C. (2006).  Factors in team effectiveness: Cognitive and 

demographic similarities of software development team members.  Human Relations, 59(12), 

1681–1710.  

22. Karekar, C., Tarrell, A., & Fruhling, A. (2011). Agile development at ABC: What went wrong? 

In Americas Conference on Information Systems. 

23. https://support.sap.com/ja/support-programs-services/methodologies/implement-sap/asap-

implementation.html 

24. https://blogs.sap.com/2013/09/17/the-all-new-asap-8-methodology/ 

25. https://archive.sap.com/documents/docs/DOC-8032 

26. http://www.scmfocus.com/sapprojectmanagement/ 

27. https://blogs.sap.com/2013/09/17/the-all-new-asap-8-methodology/ 

28. Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., & Slaughter, S. (2001).   How internet 

software companies negotiate quality. Computer, 34(5), 51–57. 

29. Baskerville, R., & Pries-Heje, J. (2004).   Short cycle time systems development.   

Information Systems Journal, 14(3), 237–264. 

30. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003).  Is internet-

speed software development different? IEEE Software, 20(6), 70–77. 

31. https://www.linkedin.com/pulse/20140826102817-5677495-sprints-agile-approach-in-sap-

implementations 

32. http://www.prosoftnearshore.com/5-types-of-scrum-meetings/ 

33. https://www.handshake.com/blog/erp-implementation/ 

34. https://blogs.sap.com/2014/10/24/agile-for-sap-implementation-yes-of-course/ 

35. http://www.r3now.com/agile-software-development-for-sap-erp-projects/. 

https://blogs.sap.com/2013/09/17/the-all-new-asap-8-methodology/
https://archive.sap.com/documents/docs/DOC-8032
http://www.scmfocus.com/sapprojectmanagement/
https://blogs.sap.com/2013/09/17/the-all-new-asap-8-methodology/
https://www.linkedin.com/pulse/20140826102817-5677495-sprints-agile-approach-in-sap-implementations
https://www.linkedin.com/pulse/20140826102817-5677495-sprints-agile-approach-in-sap-implementations
http://www.prosoftnearshore.com/5-types-of-scrum-meetings/
https://blogs.sap.com/2014/10/24/agile-for-sap-implementation-yes-of-course/

