

Simplifying the DevOps Adoption Process

Ineta Bucena, Marite Kirikova

Riga Technical University, 1 Kalku Street, Riga, LV-1658

ineta.bucena@gmail.com; marite.kirikova@rtu.lv

Abstract. DevOps is a new tendency in business and information technology

alignment. The purpose of DevOps is bridging the gap between the

development and operations. Several sources claim that DevOps is a new style

of work. Many successful DevOps introduction attempts and also many

problems in adoption of this style of work have been discussed. This paper

reports on research results in facilitating the adoption of DevOps in small

enterprises. The DevOps adoption method and several related to it artefacts are

proposed. The proposed method has been tested in a national branch of an

international company with an internal IT development team.

Keywords: DevOps, agile, maturity model, DevOps practices, DevOps tools

1 Introduction

Today, the business environment is very dynamic with rapid changes in different

areas including IT. These rapid changes impact software development process,

because customers have high expectations with respect to the content of applications

and are demanding higher quality and shorter delivery times [1]. This is one of the

reasons why agile practices are widely used and are recommended to be implemented

by software development teams.

Still, usually, agile practices are used only on the development side; however, a

software development process is not finished with the last acceptance-test and passing

the whole deployment over to operations team [2]. Customers cannot use software

which is not delivered to the production environment, ‒ and thus the business side

cannot get value from the software even if it has been developed very fast. Based on

Hüttermann [2], goals of the operations and development teams are different, part of

them are even opposite to each other; for instance, the fast change delivery for the

development team and the system stability for the operations team. This contradiction

does not allow both teams working as one whole. According to reports [3, 4], the

“deliver software faster” and the necessity for wider collaboration among IT teams

are some of the drivers for adoption of DevOps. Such practices as useful and

meaningful collaboration, shared ways of working, or shared goals and trust can lead

to better collaboration and understanding between the teams and allow bringing

agility into the maintenance part of software development process, too.

The other driving force for DevOps adoption, mentioned in reports [3, 4], is the use

of less resources for software development and maintenance, which can be achieved

through automation. It is the core activity in one of the DevOps practices - the

continuous delivery [5]. DevOps adoption can help to solve the above mentioned and

other problems; however, the adoption of DevOps is not trivial and can require

complex changes in an enterprise process organization and workflows. To succeed in

the DevOps adoption, the enterprises should understand different aspects related to

the DevOps approach, have a clear strategy and a plan covering all relevant aspects.

They should start the adoption process with the clear idea – what actions should be

performed, how they should be prioritized, what tools could support these actions and

how to measure the success of the adoption process. Therefore, in this paper, a

dedicated DevOps adoption method is proposed for simplifying DevOps adoption in

small enterprises. The method could help to save time of enterprises in DevOps

adoption and be as a spring-board in the DevOps adoption process.

In order to conceptualize the DevOps adoption process and develop the DevOps

adoption method the main research question – “What is the method for simplifying

the adoption of DevOps?” was divided in several sub-questions including such

questions as “What are the drivers of the DevOps adoption”, “What are challenges

related to the DevOps adoption?”, and ‘What are the existing methods regarding to

DevOps adoption?”. All sub-questions were answered with the help of systematic

literature review thus providing the background for the DevOps adoption method’s

development.

The paper is organized as follows: Section 2 introduces the challenges in DevOps

adoption. In Section 3 the proposed method and some of its artifacts are presented.

Section 4 reports on an experimental use of the method. Brief conclusions are

provided in Section 5.

2 Challenges of DevOps Adoption

Knowledge of potential challenges, derived from available experiences of DevOps

adoption, can allow avoiding problems during the adoption process. Even if it is not

possible to avoid the problems, this knowledge can help to be more prepared for

meeting the challenges. In some cases, the identification of potential challenges can

even stop planned adoption processes, if the enterprise decides that it is not possible

to overcome the challenges with a reasonable amount of resources.

According to Hamunen [6] DevOps adoption challenges can be grouped in four

groups:

 Lack of awareness

 Lack of support

 Problems linked to the DevOps technological implementation

 Problems with adapting organizational processes to DevOps

In this section these four groups of challenges are further used for organized

amalgamation of detected DevOps challenges.

Regarding the lack of awareness in DevOps the following challenges can be

discovered:

 Missing maturity of the concept – no clear definition of DevOps and its practices,

no any clear goals available, and a lack of understanding about development

workflow phases and responsibilities [3, 6, 7].

 Buzzword perception/ allergy – many people perceive DevOps as a new

buzzword, which is just the “last shriek of fashion” and will disappear as soon as

has arisen, which does not allow perceiving this approach seriously [6, 7].

 Lack of awareness – which includes missing communication, misinterpretation,

insufficient knowledge and a lack of proper training [6, 7, 8].

The following three types of lack of support for DevOps adoption process can be

identified:

 Lack of management support – including difficulties to “buy-in” senior level

management, which can lead to the lack of budget for DevOps adoption [3, 4, 6,

7].

 Lack of team level support (or resistance) – can include either operations team

resistance to changes or even development team resistance to changes because of

the above described lack of awareness of DevOps [4, 6, 7, 9].

 Lack of trust – including the lack of trust in DevOps idea and lack of trust in

people, who promote and work on DevOps adoption process, because of the lack

of understanding or missing/ insufficient communication. It can also be caused by

just a fear of changes, a fear of potential failures, and a fear of measurements,

which could indicate some unpleasant points [3, 6, 7].

Regarding challenges linked to DevOps technology implementation the following

points can be explored:

 Heterogeneous environment – including test environment limitations due to data

management challenges, complexity due to multiple production environments

and monolithic system architecture, which should be designed anew to support

DevOps approach [4, 6, 7, 8].

 Industry constraints and feasibility – because of legacy issues (not having access

to production, etc.), compliance concerns, or security and sensitive data issues [3,

4, 7, 8, 9].

 Application types – which is based on the situation that infrastructure does not

support modern approaches and does not allow automatic deployments and

integration of different tools [4, 6, 7].

 Automated testing – based on worries about test script writing process integration

in the code writing process and a support of it [6, 7].

 Tool challenges – includes worries on how to choose the right tools and integrate

them with existing tools and practices [6, 7].

 Right scope for monitoring – based on worries about the amount of processes,

data, applications, etc., which should be monitored to gather sufficient

information for process support and potential improvements, but without putting

big weight on the systems [6].

The following challenges with adapting organizational process to DevOps can be

identified:

 Geographical distribution of teams [6, 7].

 Very complex organizational structure – with too many employees involved in

software development process and too many interdependencies. If this is

combined with deep-seated company culture with high resistance to changes, it

can be a deal-breaker against DevOps adoption process [3, 6, 8].

 Different team capacities – for instance, quality assurance and operations team

capacity does not allow to manage development team capacity and deliveries; or

business side stakeholders, who cannot support such frequent delivery cycles [4,

8].

 Change management process integration – including existing software

development method adaptation or introduction of new software development

methods, new metrics adoption, and existing business process integration with

the DevOps approach [6].

 Right scope choosing – decisions of the scope can lead to either very good

success of DevOps adoption process or vice versa; which puts these decisions to

the challenges list [6].

Unlike other sources, Menzel [10] has looked on DevOps challenges from another

viewpoint and has identified so called dual-challenges related to DevOps. They can be

grouped as in-side and out-side challenges.

Out-side challenges are related to environment, which is around DevOps adoption

process, and include the following challenges:

 Wall of confusion based on working in silos, where for each silo (department)

there are different goals and minimal information flows between them.

 Speed of innovations based on changes, necessary to be implemented in the

systems.

 Complexity of existing environments, where non-production environments do not

reflect into production environments, which makes difficult to perform fast root-

cause analysis.

 Difficult error prevention and diagnosis process.

In-side challenges include:

 Misunderstanding of DevOps approach and benefits that can be gained from it.

 Perceiving DevOps just as tool implementation, without taking into consideration

collaboration, communication and other DevOps culture aspects.

 Difficulties to manage current changes and DevOps adoption, because, usually,

there is no option to stop business requests for system development and changes.

 Difficulties to choose the right adoption strategy – whether to choose the Big

bang or Step-by-Step based (Phased) approach, as each approach has its pluses

and minuses.

3 Method for DevOps Adoption

In the proposed DevOps adoption method, the existing DevOps adoption approaches,

original DevOps maturity model and Nine impediment categories framework [11] are

integrated with an aim to get a prioritized list of DevOps practices and tools to be

applied in small enterprises. The constituents of the method will be discussed in more

detail hereafter in this section (see Fig. 1).

Fig. 1. The proposed method for DevOps adoption

The method consists of the following steps, included in the high-level DevOps

adoption method’s model presented in Fig. 1:

1. Detect impediments to software development flow, based on framework of Nine

impediment categories, prioritize them with the help of the questionnaire and get

the list of relevant prioritized DevOps practices.

2. Establish the existing DevOps maturity level, based on DevOps Maturity model

and select the desired DevOps Maturity level.

3. Get the list of prioritized DevOps practices, by summarizing priorities from the

step of impediment identification and relevant DevOps practices, derived from

goals, identified in DevOps Maturity model by the help of the identified gap

between the existing and desired DevOps Maturity levels.

4. Identify tools existing in organization, related to DevOps approach, and get the list

of related DevOps tools, supporting listed DevOps practices.

5. Choose DevOps adoption object for the first phase like a small start-up project, a

small self-sufficient system or a tool, which will be a pioneer for DevOps adoption

and will bring the most benefit for the team.

6. Identify related metrics for the DevOps adoption object, which will allow

measuring the success of adoption process.

7. Process the first phases of DevOps adoption, collect and share results.

8. Start the next DevOps adoption phase by choosing the next DevOps adoption

object (step 5) or by starting with step 1 and evaluating again impediments,

existing maturity level based on changes that have happened; and set new priorities

and related DevOps practices and tools.

Further in this section we will provide information about some of the artefacts

mentioned in the description of the steps of the method. Information about all artifacts

and guidelines for use of the method are available at the dedicated website at

https://devopsadoptmeth.wordpress.com/.

The first artifact is the list of impediment categories that, together with the related

questionnaire, is used to prioritize the areas where the enterprise wants to improve.

“Nine impediment categories” framework includes the following categories [8]:

1. Work in progress – it is work, which is not completed and does not provide any

value to the customer, who has ordered it. Usually such work is stuck in some of

the phases of software development life cycle and is not delivered to production.

Similar to “Partially done work” type of waste.

2. Extra processes – these are activities that generate extra work, which consumes

time and effort without adding value, like additional steps, barriers,

documentation or reviews.

3. Extra features – development parts, which are added without proven need or

validity. They take resources, which could be used for valuable features instead,

or create a delay for some value-added features.

4. Handovers – activities related to incomplete work handing between persons or

groups. Similar to “Task switching” type of waste.

5. Delays – related to situations, when one activity should be hold back because of

waiting for other activity completion and delivery. Similar to “Waiting” type of

waste.

6. Unnecessary motion – associated with avoidable movements of people, work or

knowledge that create additional inefficiencies or disturb the smooth flow of

work.

7. Failure demand – refers to the demand on system, team or organization, which is

caused by own failure action, or action which is not done. Some similarities with

“Defects” type of waste.

8. Context switching – related to situations, when people or team should divide their

attention for more than one activity at the same time.

9. Unmet human potential – related to the waste of not using or fostering people

skills and abilities to their full potential.

The next artifact represented here is the DevOps maturity model that was

developed on the basis of analysis of related work and includes five levels of maturity

with respect to the four enterprise areas, namely, technology, process, people, and

culture. The maturity model is represented in Table 1. For each chunk in the maturity

model, corresponding DevOps practices reported by DevOps practitioners were

associated. Thus the enterprise can see which of these practices are or are not used in

the as-is situation of the enterprise. Also the enterprise can see which practices shall

be acquired to reach particular maturity levels, and decide on the desired level of

maturity, which is realistic for the enterprise’s to-be situation. The table that

illustrates the practices for the technology area of the maturity model is represented in

Table 2. Similar tables are also developed for other maturity model areas.

Table 1. Proposed DevOps Maturity model

A

re

a

ID
Initial

level (1)

Repeatable

level (2)

Defined

level (3)

Managed

level (4)

Optimized

level (5)

T
E

C
H

N
O

L
O

G
Y

T1

Environments

are

provisioned

manually

All

environment

configurat-

ions are

externalized

and versioned

Virtualization

used if

applicable

All environ-

ments

managed

effectively

Environment

provisioning

fully automated

T2

Manual tests

or minimal

automation

Functional

test

automation

Triggered

automated

tests

Smoked

tests and

dashboard

shared with

Op.t.

Chaos

Monkey

T3

Data

migration un-

versioned and

performed

manually

Changes to

DB done with

automated

scripts

versioned

with

application

DB changes

performed

automatically

as part of

deployment

process

DB

upgrades

and

rollbacks

tested with

every

deployment

Feedback

from DB

performance

after each

release

A

re

a

ID
Initial

level (1)

Repeatable

level (2)

Defined

level (3)

Managed

level (4)

Optimized

level (5)

T4
Manual

deployment

Build

automation

Non-

production

deployment

automation

Production

deployment

automation

Op.t. and

Dev.t.

regularly

collaborate to

manage risks

and reduce

cycle time

T5

Manual

processes for

building

software/ No

artifact

versioning

Regular

automated

build and

testing. Any

builds can be

recreated

from source

Automated

build and test

cycle every

time a change

is committed

Build

metrics

gathered,

made

visible and

taken into

account

Continuous

work on

process

improvement,

better

visibility,

faster

feedback

T6

No

collaboration

tools

Project

planning tool

Team/ toolset

integration

Knowledge

manage-

ment tool

–

T7

No software

configuration

management

(SCM)

Standardized

SCM

Configuration

is delivered

together with

code

Self-healing

tools
–

T8

No or

minimal

monitoring

Core

monitoring

Integrated

monitoring

Analytics/

Intelligence
–

T9

No tools or

minimal tool

usage for

issue tracking

All issue and

bug reports

are tracked

Issue reporting

automatization

and

monitoring

Activities

based on

received

feedback

and data

Continuous

delivery

process

P
R

O
C

E
S

S

PR

1

Inconsistent

delivery

process

Scheduled

delivery

process

Automated

delivery

process

Frequent

delivery

process

Development

process

integrated

with Six

sigma

PR

2

Ad-hoc

development

Scrum

development

Agile

development

Lean

develop-

ment

Continuous

testing

PR

3

Ad-hoc

testing

Requirement

based testing

Integrated

testing

Qualitative

testing

Organized

performance

management

PR

4

Inconsistent

project

management

Project &

requirement

management

Integrated

project

management

Quantitative

proj.

manage-

ment

–

PR

5

Deployment

and

development

documenta-

Development

documenta-

tion and

relevant

Regular

validation of

the

documentation

Documentat

ion process

and

structure

–

A

re

a

ID
Initial

level (1)

Repeatable

level (2)

Defined

level (3)

Managed

level (4)

Optimized

level (5)

tion is not

available or

is out of date

configuration

files are up-

to-date

and related

configuration

descriptions

are provided

update

based on

gathered

experience

and quality

require-

ments

PR

6

Uncontrolled

or reactive

processes

(not applied

management)

Processes are

managed, but

not

standardized

Processes are

standardized

across

organization

Visibility &

predictabili-

ty of entire

process &

performanc

e

Highly

optimized &

integrated

processes

P
E

O
P

L
E

P1

Teams

organized

around

skillsets

Team

organized

around

deliveries

Team

organized

around

projects

Team

organized

around

products/

business

lines

Interdisciplin

ary teams

organized

around KPIs

P2
Ad-hoc

learning

Team

learning

Value stream

learning

X-process

learning

External

learning

P3

Ad-hoc

approach

regarding

competences

development

Competences

are

developed

with the help

of training

and

development

Analysis of

exiting

competences

and future

development

Mentor

usage

Continuous

capability

improvement

C
U

L
T

U
R

E

C1

Restricted

communicati

on

Rapid intra-

team (inside)

communicati

on

Rapid

communicatio

n between

teams (inter-

team)

Frequent,

collaborative

communicati

on

Rapid

feedback

C2
Uncommunic

ated vision

Clear

delivery

requirements

Clear project

requirements

Clear

product/

business

line require-

ments

Clear

organization

requirements

C3

Lack of

awareness of

how culture

is impacting

day-to-day

business

Awareness

of aspects in

culture that

may help or

hinder day-

to-day

business

Cultural traits

that support

business

strategies have

been identified

Culture

viewed as

an asset to

be managed

Desired

elements of

the culture

are identified,

ingrained and

sustainable,

thus creating

"the way we

work here"

A

re

a

ID
Initial

level (1)

Repeatable

level (2)

Defined

level (3)

Managed

level (4)

Optimized

level (5)

C4

Poor, ad-hoc

communicati

on and

coordination

Managed

communicati

on

Active

collaboration

Collaborati

on based on

process

measureme

nt, which

allows to

identify

bottlenecks

and

inefficienci

es

–

C5

Sub-

innovating/

no

innovations

Innovations

by necessity

Innovation by

design

Strategic

innovation
–

Labels in Table 1: Empty model cells, in which relevant goals are not provided, are depicted

using “–“, Opt.t – operations team, Dev.t. – development team.

For the purpose of better utilization of information represented in the tables, there

are specific questionnaires made that help to identify the information according to the

developed maturity model and the tables of related practices. They are available at

https://devopsadoptmeth.wordpress.com.

Table 2. DevOps practices relevant to Maturity Model Technology area

TECHNOLOGY maturity levels

ID Repeatable (2) Defined (3) Managed (4) Optimized (5.)

T1
Hardware

maintenance

practices

Integrated configuration management

Server

virtualization

practices

Infrastructure as

code

T2 Automated testing

Continuous

testing

Continuous

experimentation and

learning

Continuous monitoring

Automated dashboards

T3

Collaborative

development

Integrated

Deployment

planning

Continuous

testing

Continuous

monitoring

DB management practices

Application

monitoring

T4 Build automation
Continuous

integration

Continuous

deployment

Integrated change

management

Constant, effortless

communication and

collaboration

Active Stakeholder

participation

TECHNOLOGY maturity levels

ID Repeatable (2) Defined (3) Managed (4) Optimized (5.)

T5 Collaborative

development

Continuous

integration

Common metrics

for Dev.t. and

Op.t.

Continuous delivery

Continuous

monitoring

Constant, effortless

communication and

collaboration

T6

Continuous

business planning

Continuous

integration

Knowledge

management

practices

– Integrated Deployment planning Constant,

effortless

communication

and collaboration

Active

Stakeholder

participation

T7

Integrated configuration management

–

Infrastructure as

code

Continuous

experimentation

and learning

T8

Application

monitoring
Continuous

customer

monitoring and

feedback

Automated

dashboards
–

Continuous

monitoring

Common metrics

for Dev.t. and

Op.t.

T9

Production

support

Integrated change

management
Shared goals,

values, respect,

trust and

incentives

–
Shared

responsibility,

ways of working

and collective

ownership

Integrated

Deployment

planning

Tools are an important part of the DevOps approach. They are tightly related to

different DevOps practices, such as automation, monitoring or integrated

configuration, and help to introduce these practices.

Based on seven different sources, namely, [12, 13, 14, 15, 16, 17, 18], eleven

toolchain groups were identified. They are shown in the first column of Table 3. A

specific table-like form of representation of toolchain groups and tools related to each

group was established. This form of representation makes it more comfortable to

identify necessary tools for DevOps practices chosen by enterprises. Having

knowledge on toolchain groups and tools related to the chosen DevOps practices, the

enterprises can see what investments will be needed to ensure the tool support for the

desired levels of DevOps maturity. The correspondence between the toolchain groups

and DevOps practices is not shown here due to space limits, – it is represented at

https://devopsadoptmeth.wordpress.com.

Table 3. Tools grouped in DevOps toolchain groups

Toolchain

groups
Related tools

Version and

source control

Git/ GitHub/

GitLab
Mercurial/

Bitbucket

Subversion

Containerization

Docker

Rocker

Vagrant

Configur.

managem. tools
Puppet

Ansible

Cheff SaltStack

Continuous

Deployment
Capistrano

Jenkins

Codeship
Travis

CI

circle CI Contin.

integrat. and

orchestr.

Atlassian

Bamboo
TeamCity

Build

automation

Apache

Maven Proj.

Apache

Ant
Gradle

Automat. Test.

and validat.
Cucumber Selenium TestComplete Jmeter

Monitoring Zabbix
New

Relica
Nagios Splunk

AppDy

namics

Collaboration

tools
Slack

Jira

HipChat
Pager

Duty

Issue tracking Bugzilla
Track/

tesTrack
MantisBT Assembla

Planning tools Clarizen

Confluence

Asana

Knowledge

sharing tools
Crowdbase Nuclion

DB handling

tools
DBMaestro LiquiBase RedGate

4 Experimental Application of the Method

The experimental application of the method was done in Company X that corresponds

to small and medium sized enterprise definition as a medium-sized enterprise with

~220–250 employees. Its main business is not related to IT. There are more than 500

outside collaborators, too. If we look at the proportion of number of system users vs.

number of IT department employees (19+2) it could be approximately 1:200, because

multiple collaborating partners’ employees are also using organization’s systems. The

IT department can be considered as a small enterprise. Company X runs the business

line where one of the main drivers is the possibility to react fast on clients’ needs and

environment’s changes. All core business processes are related to the organization’s

back-end system, which is developed using in-house development resources. The

main part of collaboration partners and agents are using organization’s front-end web

based system, which is linked to the back-end system using middleware services.

Company X has a web based self-services system for clients, too, which is linked to

the back-end system similarly as collaboration partner systems. All web systems and

middleware services are developed using outsourced developers. The similar situation

is with organization’s web based CRM system.

At this moment, IT department is divided in four silos, where one of them is

Maintenance (operations) team and the other three are development teams (shared

service centers (SSC)), which are divided based on high level business lines. One of

the SSCs is located abroad in a different country. There is a testing team with one

quality assurance specialist per SSC and a Web system development process

manager.

According to information, which was received during DevOps adoption method’s

application process (the company representatives applied firs 6 steps of the method);

Company X was already using some of DevOps practices, which had allowed

reaching the second DevOps maturity level in Technology area. Still there was not

enough progress in other three areas, where maturity level was only at the first level.

As all four areas were similarly important for a successful change implementation, it

was essential to work on other area’s maturity level rising.

Regarding the prioritized DevOps practices listed, one of the highest priorities for

Company X was automated testing practice, which was important to fill the gap

relevant to the chosen maturity level and was one of the practices relevant to highly

rated software development flow impediments. Other highest level priority practices

were collaboration practices (e.g. active stakeholder participation, shared

responsibilities, knowledge sharing practices, etc.).

Some attention had to be turned to DevOps practices, which were with high

priority level based on impediment identification, but regarding DevOps maturity

level were already established in the company. For instance, build automation, which

supports second Maturity level and was assigned as a practice, which was already

used. Probably there was still high level of waste because the practice was neither

fully established yet nor established in all development processes. Similarly it was

with constant effortless communication and collaboration.

The application of the method shoved that Company X has already a good tool set,

where some of them like Jenkins, Jira, and Confluence were usable for more than one

DevOps practice support, which meant that there were space for growth without high

additional investment. It was also identified that tools, relevant to DevOps practices,

which could be useful for Company X during DevOps adoption process were

Containerization tools like Docker, Mercurial/ Bitbucket, Rocker and Vagrant and DB

handling tools like DBMaestro, LiquiBase, or RedGate.

During the experiment it was necessary to clarify some issues with the company;

and some possible future elaborations helpful in method's application were detected.

In overall the method was applied successfully and Company X was able to gain the

needed information for decision making regarding DevOps adoption.

The application of the method showed that the proposed method can help to meet

(at least partly) all four groups of DevOps adoption challenges discussed in Section 2.

It can clarify the DevOps concept. With clear representation of different DevOps

maturity levels and supplementary questionnaires, it can facilitate communication

regarding management support for introducing new DevOps practices. Concerning

technical challenges, it helps to identify new technologies that can be well integrated

in enterprise infrastructures. The same applies to adapting organizational processes to

DevOps as the method helps to choose the right scope of steps to be performed in

DevOps introduction at chosen levels of maturity. While the method does not address

every single challenge mentioned in Section 2, by addressing part of them, it can

positively influence enterprise ability to meet other challenges, too.

5 Conclusions

The purpose of this research was to design and validate the DevOps adoption method

to guide small enterprises in DevOps adoption process and also to simplify the

adoption process.

According to the DevOps adoption concept and relevant information summarized

during literature review, which allowed identifying main points leading to the

beginning of the DevOps adoption process, the design of the DevOps adoption

method was started. The necessity to determine the existing situation in an enterprise

and define the desired level of maturity was identified. Therefore the DevOps

Maturity model was designed. The model was related to amalgamated DevOps

practices and tools. The “Nine impediment categories” framework was used as to

identify necessary DevOps practices, which a particular company could use during

the DevOps adoption process in order to achieve the desired level of DevOps

Maturity. To provide access to the method's description and its supplementary

artifacts the web page was created at https://devopsadoptmeth.wordpress.com/. This

page was used during method validation process described in Section 4 to provide

easy access to the developed questionnaires.

The DevOps adoption method validation, performed with the help of a particular

company’s IT team showed that the method allows to determine the list of prioritized

DevOps practices and allows to derive the list of tools supporting these practices.

After choosing the DevOps adoption object and establishing relevant metrics, an

enterprise can proceed with the DevOps adoption process with the help of the derived

DevOps practices and the identified list of supporting tools. The use of the method

can help to meet several challenges of DevOps adoption mentioned in Section 2.

The method provides an opportunity of simplification of DevOps adoption in small

enterprises. It has not been analyzed yet whether it is also useful for large enterprises.

The further research concerns application of the method in more companies, the

DevOps adoption management tool development, the method's tuning; and the

development of the approach for systemic artefact maintenance to ensure that all

constituents of the method are continuously up-to date and consistent.

Acknowledgment. This work is supported in part by the Latvian National research

program SOPHIS under grant agreement Nr.10-4/VPP-4/11.

References

1. Waters, K.: All about agile. CreateSpace Independent Publishing Platform, pp. 380 (2012).

2. Hüttermann, M.: DevOps for Developers – integrate development and operations, the agile

way. Second edition, Apress, pp. 196 (2012).

3. CA Technologies, White paper: What smart businesses know about DevOps, (2014).

http://www3.ca.com/~/media/Files/whitepapers/techinsights-report-what-smart-

businesses-know-about-devops.pdf, last accessed 2017/08/10

4. Gleanster & Delphic, 2015 Annual State of DevOps, (2016).

https://puppet.com/resources/whitepaper/state-of-devops-

report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eViP&utm

_medium=paid-

search&utm_campaign=Q2FY18_EMEA_All_CAMPGN_SER_ADWRDS_2016-DO-

sal-rpt&utm_source=google&utm_content=devops-salary-

report&gclid=Cj0KCQjwn6DMBRC0ARIsAHZtCeO41o1MUzVXRCsTh6SPV2uEyfJT

Y3FG4mU2WKyTogAM5ffTw1akJJwaAs-JEALw_wcB, last accessed 2017/08/10

5. Sharma, S., Coyne B.: DevOps for Dummies. Second IBM limited edition, USA, John

Wiley & Sons, Inc.Hoboken, (2015).

6. Hamunen, J., Challenges in Adoption a DevOps Approach to Software Development and

Operations. Master thesis, Aalto Univerity, School of Business, Aalto, Finland (2016).

7. Amaradri. A.S., Nutalapti. S.B.: Continuous Integration, Deployment and Testing in

DevOps Environment. Master thesis, Blekinge Institute of Technology, Faculty of

computing, Karlskorna, Sweden, pp. 115 (2016).

8. Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L.E., Tiihonen, J., Männistö, T.: DevOps

Adoption Benefits and Challenges in Practice: A Case Study. In: Product-Focused

Software Process Improvement, PROFES 2016, Lecture Notes in Computer Science, vol.

10027., Abrahamsson P., Jedlitschka A., Nguyen Duc A., Felderer M., Amasaki S.,

Mikkonen T. Ed., Springer, Cham, pp. 590-597 (2016).

9. Jones, S., Noopen, J., Lettice, F.: Management challenges for DevOps Adoption within

UK SMEs. In: QUDOS 2016 Proceedings of the 2nd International Workshop on Quality-

Aware DevOps, USA, ACM, pp. 7-11 (2016).

10. Menzel, G.: DevOps – Don’t be left behind. (2015).

https://www.capgemini.com/blog/capping-it-off/2015/08/DevOps-dont-be-left-behind, last

accessed 2017/08/10

11. Power, K., Conboy, K.: Impediments to flow: rethinking the lean concept of ‘waste’ in

modern software development. In: Agile Processes in Software Engineering and Extreme

Programming. XP 2014. Lecture Notes in Business Information Processing, vol 179.,

Cantone G., Marchesi M. Ed., Springer, Cham, pp. 203–217 (2014).

12. Puppet: How to Build a High-Performing IT Team.

[https://puppet.com/resources/whitepaper/how-build-high-performing-it-team,

last accessed 2017/08/10

13. Yehuda, Y.: 11 tools you must have in your DevOps toolchain. (2015).

http://www.dbmaestro.com/2015/10/infographic-11-tools-you-must-have-in-your-

DevOps-toolchain/, last accessed 2017/08/10

14. Akshaya, H.L., Nisarga, J.S., Vidya, J., Veena, K.: A Basic Introduction to DevOps Tools.

In: International Journal of computer Science and Information Technologies 6(3), (2015).

15. Upguard, DevOps Toolchain, (2015). https://www.upguard.com/hs-fs/hub/228391/file-

2341634679-pdf/DevOps_ScriptRock.pdf, last accessed 2017/08/10

16. XebiaLabs Periodic table of DevOps tools, (2015). https://xebialabs.com/periodic-table-

of-DevOps-tools/, last accessed 2017/08/10

17. David Linthicum (2016). http://www.techtarget.com/contributor/David-Linthicum/2016,

last accessed 2017/08/10

18. Wilinski E., DevOps Best Practices: Finding the right tools, (2014).

https://blog.newrelic.com/2014/06/02/DevOps-tools/, last accessed 2017/08/10

