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Abstract

A Data Warehouse (DW) is a large collec-
tion of data integrated from multiple distributed
autonomous databases and other information
sources. A DW can be seen as a set of materi-
alized views defined over the remote source data.
Until now research work on DW design is re-
stricted to quantitatively selecting view sets for
materialization. However, quality issues in the
DW design are neglected.

In this paper we suggest a novel statement of the
DW design problem that takes into account qual-
ity factors. We design a DW system architec-
ture that supports performance and data consis-
tency quality goals. In this framework we present
a high level approach that allows to check whether
a view selection guaranteeing a data completeness
quality goal also satisfies a data currency quality
goal. This approach is based on an AND/OR dag
representation for multiple queries and views. It
also allows determining the minimal change prop-
agation frequencies that satisfy the data currency
quality goal along with the the optimal query eval-
uation and change propagation plans. Our results
can be directly used for a quality driven design of
a DW.
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1 Introduction

A Data Warehouse (DW) is a large collection of data used
by companies for On-Line Analytical Processing (OLAP)
and Decisison Support System (DSS) applications [4].
Because of the enormous quantity of information avail-
able to companies nowadays, DWs often grow to be very
large. Data warehousing is also an approach for integrat-
ing data from multiple, possibly very large, distributed,
autonomous, heterogeneous databases and other informa-
tion sources [44]: selected information from each source
is extracted in advance, cleaned, translated and filtered
as needed, merged with relevant information from other
sources and stored in a repository. OLAP in the DW
is decoupled as much as possible from On-Line Transac-
tion Processing (OLTP) supported by the remote source
databases. A DW can be abstractly seen as a set of ma-
terialized views defined over source relations. We provide
below a brief overview of issues related to the design of a
DW.

Query evaluation. OLAP and DSS applications make
heavy use of complex queries (usualy with group-
ing/aggregation). These data intensive queries often re-
quire sequential scans. Ensuring high query performance
is one of the most significant challenges when implement-
ing a DW. To this end, the queries addressed to the DW are
evaluated locally (using exclusively the materialized views)
without accessing the original information sources. There-
fore a complete rewriting [24] of the queries over the views
materialized at the DW must be possible [41, 40].

View maintenance.When the source relations change, the
materialized views need to be brought up-to-date. Typ-
ically, the DW is maintained separately from the opera-
tional source databases. Recent applications of DWs re-
quire data that are more current. In order to bring the ma-
terialized views up-to-date, different update scenarios can
be envisaged. They can be classified according to theclass
of queries and viewsconsidered, thetype of changes, the
maintenance strategy, the maintenance timing policy, the
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type of environment, and for a distributed environment the
type of information sources[13, 44, 48].

Maintenance strategies.A maintenance strategy can be
an incrementalone, or arecomputationof the views from
scratch. In an incremental strategy, the changes to the
views are computed using the changes to the source rela-
tions [2, 27, 12, 9, 28, 38, 6]. Incremental maintenance can
be significantly cheaper and more space efficient than re-
computing the view from scratch, especially if the size of
the view is much larger than the size of the changes [9, 49].

Maintenance timing policy. The maintenance timing pol-
icy can be eitherimmediateor deferred. In an immedi-
ate timing policy [2, 3], a materialized view is maintained
within or immediately after the transaction that changes the
source relations. In a deferred timing policy [5], the main-
tenance of the view is delayed. It can be doneperiodically
[34], at query time[16], or on-demandby the user. It can
also betriggered by eventsat the sources (e.g. when the
net change to a source database exceeds a certain thresh-
old). Sometimes supporting multiple maintenance timing
policies may be appropriate [6, 33].

Type of environment.Most of the research work on incre-
mental view maintenance assumes a centralized database
environment where a single system has control of the
materialized views, the source relations, and the changes
[27, 12, 9, 28]. Therefore, changes to the source relations
and to the materialized views can be combined within the
same transaction. DWs are typically distributed database
environments. Some approaches to incremental view main-
tenance in distributed environments are based on times-
tamping the changes to the source relations [34, 33]. How-
ever, the source databases can be autonomous, a global
clock cannot be assumed and therefore inconsistencies may
appear [49]. Approaches that keep materialized view data
loosely consistent with the remote sources are more appro-
priate for DW environments [49, 50, 18, 51].

Types of sources.Concerning the detection and handling
of the changes of the source data, the sources can be of
the following types [44]:cooperative sources(they pro-
vide active database features with triggering [26], and al-
low the detection, filtering, storage, processing, and prop-
agation of changes to the DW to be programmed and oc-
cur automatically),logged sources(they maintain a log and
allow changes of interest to be extracted by inspecting the
log),queryable sources(they can be queried periodically in
order to detect changes of interest), andsnapshot sources
(they only allow snapshots of data to be taken periodically
and changes are extracted by comparing successive snap-
shots [23]).

Maintenance queries. When changes are reported by a
data source, it may be necessary to issue queries to the same
or other data sources in order to maintain the affected ma-
terialized views. In the case of an incremental maintenance

strategy the queries involve also differentials (source rela-
tion changes). We call theses queriesmaintenance queries.
Maintaining materialized views incurs a cost for computing
maintenance queries, a cost for transmitting data from the
sources to the DW and inversely (in a distributed DW envi-
ronment), and a cost for applying the computed changes to
the materialized views [45].

Multiquery optimization on maintenance queries. The
changes taken into account for maintaining the material-
ized views at the DW may affect more than one view. Then
multiple maintenance queries are issued against the source
relations for evaluation. These maintenance queries may
contain subexpressions that are identical, equivalent, or
more generally subexpressions such that one can be com-
puted from the other. We describe these subexpressions
by the generic termcommon subexpressions[19]. The
techniques ofmultiple query optimization[35, 36] allow
these queries to be computed together by detecting com-
mon subexpressions between maintenance queries: non-
optimal local query evaluation plans are combined into an
optimal global plan which is more efficient to execute than
executing separately the optimal local evaluation plan of
each maintenance query.

Using auxiliary views to reduce the view maintenance
cost. A global evaluation plan for maintenance queries
can be executed more efficiently if some intermediate sub-
queries are kept materialized in the DW, or can be com-
puted from views that are kept materialized in the DW
[30, 42]. These materialized subqueries (views) are called
auxiliary views. It is worth noting that an optimal global
evaluation plan without auxiliary views can be completely
different than the optimal global evaluation plan when
materialized views are used. The existence of auxiliary
views can greatly reduce the cost of evaluating mainte-
nance queries. Indeed, the computation of the correspond-
ing subqueries is avoided or simplified. Further, since DWs
are typically distributed systems, access of the data sources
and expensive data transmissions are reduced. Obviously,
there is a cost associated with the process of maintaining
the auxiliary materialized views. But, if this cost is less
than the reduction to the maintenance cost of the initially
materialized views, it is worth keeping the auxiliary views
in the DW.

Self-maintenability. By appropriately selecting auxiliary
views to materialize in the DW, it is possible to maintain
the initial materialized views and the auxiliary views al-
together, for any source relation change, without issuing
queries against the source relations. Such a set of views is
calledself-maintainable[11, 18, 29].

DW design. When designing a DW, a number of choices
are made first by the DW designer (e.g. the maintenance
timing policy, the maintenance strategy, or the DW system
architecture) dictated by physical parameters (e.g. the type
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and the availability of data sources, the type of changes,
the data transmission rates over the network, the hardware
computational power etc.) and the requirements of the
knowledge workers that will use the DW.

The next step in the DW design process concerns the
selection of views to materialize in the DW according to
use the DW is intended to (i.e. the queries the DW has
to answer). This is theDW view selection problem. The
view selection problem takes as input a set of queries or
views and aims at selecting a set of views to materialize in
the DW that minimizes the overall query evaluation cost,
or the overall view maintenance cost, or a combination of
both. A number of constraints may be additionally pro-
vided as input for satisfaction (e.g. the materialized views
should fit in the space allocated for materialization or the
view maintenance cost should not exceed a certain limit)
[32, 17, 41, 15]. The DW design problem is complex. One
of the reasons of its complexity relies on the fact that com-
mon subexpressions between the input queries need to be
detected and exploited.

Quality factors in DW design. Until now research work
on DW design is restricted to quantitatively selecting view
sets for materialization. Quality issues in the DW design
are neglected. However, the design of a DW at the log-
ical and physical level is subject to a number of quality
factors. These quality factors determinequality goalsthat
have to be achieved through the design process [20, 22].
The present research work is done in the framework of the
European Foundations of Data Warehouse Quality (DWQ)
project. The goal of the DWQ project is to develop se-
mantic foundations that will allow the designers of DWs
to link their choice of deeper models, rich data structures
and rigorous implementation techniques to quality factors
in a systematic manner, thus improving the design, the op-
eration and the evolution of DWs [21]. In this paper, we
deal mainly with the quality factors ofdata currency, data
consistency, data completeness, andquery and view main-
tenance performancein the design of a DW.

1.1 The problem

When designing a DW, alternative view selections for ma-
terialization are examined in order to find one that satisfies
the DW design goals. View selection algorithms for Data
Warehousing proceed in a similar manner [17, 41, 15, 47].

The framework. We consider that the approach adopted
for designing a DW aims at selecting a set of views for ma-
terialization that satisfies the following quality goals: (a)
data completeness, (b) data currency, (c) query evaluation
and view maintenance performance, and (d)data consis-
tency. We suppose also that the sources are subject to a
source availability constraint. We explain these notions be-
low.

The source availability constraint states that the change
propagation frequency from each source is restricted not to

exceed a maximal frequency. These maximal frequencies
are set by the administrators of the source databases and
express the availability of the data sources and the degree
of decoupling of OLTP at the operational data sources from
DW activities.

The data completeness quality goal guarantees that the
data necessary for answering the input queries are present
at the DW. Therefore, it requires a complete rewriting of
the input queries over the materialized views

The data currency quality goal upper bounds the time
elapsed between the time point the answer to a query is
returned to the user and the time point the most recent
changes to a source relation that are taken into account in
the computation of this answer are read (this time reflects
the currency of answer data). The data currency quality
goal is expressed bycurrency constraintsassociated with
every source relation in the definition of every input query.
The upper bound in a currency constraint (minimal cur-
rency required) is set by the knowledge workers according
to their needs.

The query evaluation and view maintenance perfor-
mance quality goal requires the minimization of a combi-
nation of these costs.

The data consistency quality goal ensures that at every
moment the state of the DW reflects a certain state of the
source relations. It is expressed by a number of properties
that the DW data must satisfy. These properties are for-
mally presented in Section 3.

This formalization of the problem of designing a DW
using quality goals is novel. Further, it allows:
(a) stating currency constraints at the query level and not

at the materialized view level as is the case in other ap-
proaches [33, 18]. Therefore, currency constraints can
be exploited by DW view selection algorithms where
the queries are the input, while the materialized views
are the output (and therefore are not available).

(b) stating different currency constraints for different re-
lations in the same query. This flexibility is necessary.
For instance, a query that combines share prices and
companies introduced in the stock market requires dif-
ferent currency constraints for the data derived from
the source relation providing information on share
prices and for the data derived from the source rela-
tion providing information on companies.

Problem addressed. In the framework set up above, we
address the problem of checking whether for a view selec-
tion that satisfies the data completeness quality goal, there
are change propagation frequencies that satisfy the given
data currency and source availability constraints. Addition-
ally, it is required:
(a) In case of a positive answer,

(a1) the change propagation frequencies that guaran-
tee the satisfaction of the currency and source
availability constraints, while minimizing the
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view maintenance cost, and
(a2) the optimal way the queries are evaluated from

the materialized views (query evaluation plans),
and the optimal way the changes to the source re-
lations are propagated and applied to the affected
materialized views (change propagation plans).

(b) In case of a negative answer, the set of source relations
that cause the violation of a currency constraint.

We call this problemcurrency constraint satisfiabilityprob-
lem.

1.2 Contribution and outline

The main contributions in this paper can be summarized as
follows.

� We provide a novel statement for the DW view selec-
tion problem based on quality goals and source avail-
ability constraints. In particular, the data currency
quality goal is expressed by a set of currency con-
straints flexibly specified, on a per relation basis, at
the query level.

� We describe a DW system architecture over remote
autonomous sources that (a) supports the query evalu-
ation and view maintenance performance quality goal
(by evaluating queries exclusively from the materi-
alized views, and by exploiting self-maintainability
and auxiliary views), and (b) achieves the data com-
pleteness quality goal (by appropriately materializing
views over the source relations at the DW), and the
data consistency quality goal (by the appropriate se-
lection of an update propagation process).

� We formally define the currency constraint satisfiabil-
ity problem using an AND/OR dag representation for
multiple queries and views. The multiquery AND/OR
dag representation allows to take into account com-
mon subexpressions between queries and views and to
formally express query evaluation and change propa-
gation plans.

� In this framework, we present a high level approach
for solving the currency constraint satisfiability prob-
lem. The approach proceeds by “pushing down” cur-
rency constraints from the queries to the materialized
views along optimal query evaluation plans and by
“pushing up” source availability constraints from the
source relations to the materialized views along opti-
mal change propagation plans.

� Our approach allows also to determine the minimal
change propagation frequencies that satisfy the con-
straints along with the optimal query evaluation and
change propagation plans.

� When the satisfaction of the data currency and source
availability constraints is not possible, we provide

the set of source relations that cause the violation of
source availability and currency constraints. This in-
formation can guide the view selection algorithms in
providing alternative view selections that satisfy the
constraints, or can help the DW designer in finding
a solution to the view selection problem by negotiat-
ing the relaxing of some currency constraints and/or
source availability constraints.

The rest of the paper is organized as follows. Next sec-
tion reviews related work. Section 3 presents the archi-
tecture of the data warehousing system, outlines change
propagation and defines data consistency. In Section 4 we
introduce multiquery AND/OR graphs, and provide initial
definitions. We also state formally the currency constraint
satisfability problem. The different steps of our approach
are presented in Section 4. In Section 5 we discuss improv-
ing a selected view set in order to satisfy the constraints.
Finally, Section 6 contains concluding remarks and future
research directions.

2 Related work

Answering queries using views has been studied in many
papers, e.g. [24]. In particular, this issue, in connection to
grouping/aggregation queries and views, has been studied
in [10] for set semantics, and in [7] for multiset semantics.

Materialized view maintenance has been addressed in
recent years by a plethora of researchers. A number of
papers dealing with different aspects of materialized view
maintenance are cited in the introduction and in subsequent
sections. Different levels of data consistency of materi-
alized view maintenance processes in distributed environ-
ments are discussed in [49, 50, 18, 51]. Data consistency
in this paper is defined similarly to that in [18].

View selection problems for Data Warehousing usually
follow the following pattern: select a set of views to ma-
terialize in order to optimize the query evaluation cost, or
the view maintenance cost or a combination of both, pos-
sibly in the presence of some constraints. In [32] views
are seen as sets of pointer arrays and the goal is to opti-
mize the combined cost under a space constraint. [17] aims
at minimizing the query evaluation cost in the context of
aggregations and multidimensional analysis under a space
constraint. Given a materialized SQL view, [30] presents
an exhaustive approach as well as heuristics for selecting
auxiliary views that minimize the total view maintenance
cost. Given an SPJ view, [29] derives, using key and ref-
erential integrity constraints, a set of auxiliary views, other
than the base relations, that eliminate the need to access
the base relations when maintaining both the initial and the
auxiliary views (i.e. that makes the views altogether self-
maintainable). In [14] greedy algorithms are provided for
selecting views to materialize that minimize the query eval-
uation cost under a space constraint. A solution for select-
ing views that minimize the combined cost is given in [47].

D. Theodoratos, M. Bouzeghoub 15-4



None of the previous approaches requires the queries to
be answerable exclusively from the materialized views in a
non-trivial manner (that is without considering that the base
relations and the materialized views reside in the same site,
and without replicating all the base relation at the DW).
This requirement is taken into account in [41] where the
problem of configuring a DW without space restrictions is
addressed for a class of select-join queries. This work is
extended in [42] in order to take into account space re-
strictions, multiquery optimization over the maintenance
queries, and the use of auxiliary views when maintaining
other views. Another extension of [41] deals with the same
problem for a class of PSJ queries under space restrictions
[40]. The approach adopted in the last three papers is tai-
lored for the static DW design problem. An incremental
version of the DW design problem (dynamic DW design)
is addressed in [43].

A variation of the DW design problem endeavoring to
select a set of views that minimizes the query evaluation
cost under a total maintenance cost constraint is adopted in
[15]. However, restricting the total view maintenance cost
does not provide any guaranty whatsoever for the currency
of the query answer data. Quite the contrary, reducing the
view maintenance cost may result in lower update propaga-
tion frequencies, and therefore in stale query answer data.

An analytical study of optimal refresh policies based
on parametrization of the average query response time and
the average cost for materialized view maintenance is de-
scribed in [37]. Yet, this analysis concern a single view
defined over relations of the same source in a centralized
environment without communications costs. Further, no
currency constraints are introduced.

A periodical or at query time (hybrid) timing policy is
adopted in [33] where a materialized viewV is updated
either at the end of a time periodt or when a queryQ is
issued againstV and the currency ofV is unsatisfactory
with respect toQ. An algorithm is provided that aims at
minimizing the average updating cost ofV per query by se-
lecting a materialized view from whichV is to be updated,
and the time periodt. Currency constraints are associated
with the queries but they are different than those introduced
here since they refer to the currency of views from which
the query is answered, they do not characterize each rela-
tion in the query, and they are used to trigger the updating
of the viewV . Further, a centralized environment based on
timestamping is assumed, while all the views are defined
over a single source relation.

[18] characterizes the “freshness” of materialized views
in a mediator using time upper bounds required for the dif-
ferent steps of the view maintenance process (e.g. commu-
nication delay, maintenance query processing delay etc.).
That mediator system architecture is different than ours
since queries can be answered also from the source rela-
tions, an immediate maintenance timing policy is adopted,
and source relation changes are buffered at the mediator.

Further, no currency constraints are considered, nor exam-
ining alternative change propagation plans in order to guar-
antee the “freshness” of the materialized views.

3 DW system architecture and operation

We describe in this section the architecture of the DW sys-
tem on which our analysis is based. Among the goals of
this architecture is high query performance and low view
maintenance cost. Figure 1 illustrates the DW system ar-
chitecture. On the bottom of the diagram are shown the
remote source relations. The materialized views are kept at
the DW component. Some of these views may be defined
using other views. Knowledge workers and analysts, de-
picted on the top of the diagram, address their queries to
the DW.

Query evaluation. The queries of the analysts are evalu-
ated locally without accessing the source databases. Thus,
this DW architecture satisfies the data completeness qual-
ity goal which requires a complete rewriting of the input
queries over the materialized views. We consider that when
changes are applied to a materialized viewV , the previ-
ous state ofV is available for evaluating queries usingV .
Therefore, the evaluation process is not delayed by the ap-
plication of the changes to the materialized views.

Simple and auxiliary materialized views. The material-
ized views that are used in the optimal query evaluation
plans of the queries are calledsimple views. The rest of the
materialized views are used for reducing the view mainte-
nance cost of the materialized views, and are calledauxil-
iary views. Simple views too can be used in the same man-
ner, yet they have to appear in the optimal query evaluation
plan of a query.

Self-maintainability. For each source relationRi there
is at the DW a materialized viewVi obtained by apply-
ing selections and projections onRi as much as possible
such that all the views in the DW can be completely rewrit-
ten over theVi’s. These views are calledsource relation
images. Select-project views are self-maintainable [11].
Other views defined over these views may also be mate-
rialized at the DW. The role of the source relation images
is to guarantee the self-maintainability of all the material-
ized views. A source relation image can be either simple or
auxiliary view.

Type of sources and changes.We assume that the source
database systems are autonomous and can cooperate with
the DW in the following sense: each source database sys-
tem is able to keep in a buffer the tuples inserted to a source
relation and the tuples deleted from it (modifications are
modeled by deletions followed by insertions). A source is
aware of the view definition of the corresponding source
relation image. It can also filter the changes, compute the
net changes to be applied to the source relation image, and
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Figure 1: A DW system architecture

periodically transmit the changes to the DW.

Change filtering. Using the view definition of the corre-
sponding source relation image, a source filters out changes
that are irrelevant to the source relation images and projects
only relevant attributes. A source relation change isirrel-
evantif it has no effect on the state of the source relation
image, independently on the source relation state [1, 25].
Since the source relation images are select-project views,
selection conditions involve only attributes of the source re-
lation. Therefore, detecting irrelevant changes can be per-
formed efficiently by the sources. Alternatively, source re-
lation changes can be transmitted to and gathered in buffers
at the DW. This alternative does not significantly change
our approach, yet changes cannot be filtered by the data
sources. Therefore, the communication cost is increased
by the transmission of irrelevant changes and of useless at-
tribute values of tuples from the remote sources to the DW.

Net changes. In order to avoid wasteful insertions and
deletions (and data transmissions) when incrementally
maintaining a materialized view from other materialized
views in the DW (and a source relation image from the
source relations), we consider the changes actually inserted
to or deleted from each view (source relation). These
changes are callednet changes. For example, if a tuple
is inserted and then deleted, it is not represented at all in
the net changes. In the following ‘changes’ refer to ‘net
changes’.

Change propagation.Changes are propagated to the DW
views periodically. At the end of the change propagation
period for a source relation, the source database system
performs three tasks: (a) it reads the changes in the cor-
responding buffer and flashes the content of the buffer, (b)
it computes the changes, to be applied to the source relation

image, using the source relation image view definition and
the changes to the source relation, and (c) it transmits the
source relation image changes to the DW.

There are two advantages when the computation of the
source relation images is performed by the sources: (a)
processing at the DW is saved, and (b) the transmission
cost is reduced. Determining the change propagation fre-
quency for each source relation is an objective of this pa-
per. Each source relation frequency is upper bounded by
a given maximal frequency for that source as indicated by
the corresponding source availability constraint. The maxi-
mal frequencies are determined by the time the source data
base can devote to supporting the maintenance of the DW.

When the net changes of a source relation imageV
arrive at the DW, they are propagated to the material-
ized views that are affected by these changes (that is the
views that include the source relation in their view defini-
tion), according to a change propagation plan. Net changes
from different sources are transmitted to the DW asyn-
chronously. We assume that different changes from the
same source relation are received by the DW in the order
they are transmitted. Further, different changes are prop-
agated to the affected views in the order they are received
by the DW. The affected materialized views are maintained
incrementally. During the propagation of the changes from
a source relation to the materialized views, changes are not
applied to a materialized viewV until all the changes for
all the other materialized views that are directly defined us-
ingV have been computed. Parts of the update transactions
that propagate changes from the source relation images to
the materialized views can be executed concurrently. Note
that employing recomputation of the materialized views
from scratch instead of an incremental view maintenance
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strategy does not affect our approach.

Data consistency.The DW system we presented above is
consistent. We define a DW system to be consistent if its
data satisfy the following properties [18, 51].
(a) If a number of changes is applied to the source rela-

tions, and this activity has ceased, the state of the ma-
terialized views at the DW eventually reflects the final
state of the source relations.

(b) The state of each materialized view at the DW at time
t reflects some anterior state of the source relations
(not necessarily the state of the source relations at a
single time since the changes from multiple consecu-
tive update transactions to the same source relation are
transmitted together to the DW, and change transmis-
sions from different sources is asynchronous).

(c) The states of a materialized view, defined using some
source relationR, at timest1 andt2, t1 � t2, reflects
the state ofR at timest01 andt02, wheret01 � t02.

4 Multiquery AND/OR dags and formal
problem statement

We introduce in this section multiquery AND/OR dags. We
then use this notion to formally describe change propaga-
tion to multiple views, to introduce time cost functions, and
finally, to state the currency constraint satisfability prob-
lem.

4.1 Class of queries

We assume relational queries and views possibly with
grouping/aggregation operations that have multiset (bag)
semantics. A multiset algebra allows incrementally main-
taining views that have the SQL multiset semantics [9, 28].
Duplicate retention (or at least a replication count) is es-
sential if select-project views are to be self-maintainable
[2, 11]. We think that it is necessary to include group-
ing/aggregation queries since they are extensively used in
Data Warehousing applications.

4.2 Multiquery AND/OR dags

Alternative ways for evaluating a relational expression can
be compactly represented by anAND/OR dag[32, 14]. A
particular representation of AND/OR dags distinguishes
between AND nodes and OR nodes [30] and has been
developed initially for performing cost-based query opti-
mization [8]. We use here this representation for multiple
queries, extended with marked nodes to account for views
materialized at the DW [43].

We start by defining expression and multiexpression
AND/OR dags.

Definition 4.1 An expression AND/OR dagfor an expres-
sion e defined over a set of viewsV is a rooted bipartite
dagGe defined as follows. The nodes ofGe are partitioned

in AND nodes and OR nodes. AND nodes are calledoper-
ation nodesand are labeled by operations while OR nodes
are calledview nodesand are labeled by views. In the fol-
lowing we may identify nodes with their labels. An opera-
tion node has one or two outgoing edges to view nodes and
one incoming edge from a view node. Its meaning as an
AND node is that its parent view can be obtained by ap-
plying the labeling operation toall its child views. A view
node has one or more outgoing edges (if any) to operation
nodes and one or more incoming edges (if any) from an op-
eration node. Its meaning as an OR node is that the labeling
view can be computed by applyinganyof the child opera-
tions to their respective child views. The root node and sink
nodes ofGe are view nodes. The root node is labeled bye
and represents alternative ways of evaluatinge (alternative
equivalent rewritings ofe overV), while the sink nodes are
labeled by the views inV.

Given a set of expressionsE defined over a set of views
V, amultiexpression AND/OR dagG for E is an AND/OR
dag resulting by merging the expression AND/OR dags for
the expressions inE. G is not necessarily a rooted dag (that
is it does not necessarily have a single root). All the root
nodes ofG are view nodes labeled by expressions inE (but
not all the expressions inE label necessarily root nodes).
The sink nodes inG are labeled exactly by the views inV.
In addition, view nodes in a (multi)expression AND/OR
dagcan be marked. Marked nodes represent views materi-
alized at the DW. 2

Additonal auxiliary definitions are provided below.

Definition 4.2 A (multi)expression dagis a (multi)ex-
pression AND dag (that is is a (multi)expression AND/OR
dag such that no view node has more than one outgoing
edges).

A (multi)expression AND/OR dagG0 is a subdagof a
(multi)expression AND/OR dagG if and only if:
(a) dagG0 is a subdag of dagG,
(b) if an operation node ofG is in G0, all its child view

nodes inG are inG0, and
(c) all and only the marked nodes inG that are present in

G0 are marked nodes inG0. 2

We can now define query and multiquery AND/OR dags.

Definition 4.3 A query AND/OR dagfor a queryQ defined
over a set of source relationsR is an expression AND/OR
dag forQ. The sink nodes of the dag are labeled by source
relations. A query dag forQ is essentially a query eval-
uation plan ofQ from the source relations. Amultiquery
AND/OR dagfor a set of queriesQ defined overR is an
expression AND/OR dag forQ. View nodes representing
(and labeled by) the queries inQ are calledquery nodes. 2

In the following we consider only multiquery AND/OR
dagsG for the set of queries satisfied by a DW, where the

D. Theodoratos, M. Bouzeghoub 15-7



V2

�AG

V

V4

V5

R2

�G>1000

1

�B=0c0

�Q2

�Q1

�AB

V6

�B=0c0

V1

F

�H>10

1

V7

1

1

V3
F

R1

Figure 2: A multiquery AND/OR dag forQ = fQ1; Q2g

marked nodes are exactly the materialized views of the DW.
In these multiquery AND/OR dags, all the paths from a
query node to a source relation contain a source relation
image. Note that a source relation nodeR may coincide
with its image node (for instance if there are no selections
or projections overR in a query represented inG). In this
caseR is replicated at the DW.

Example 4.1 Consider the source relationsR1(A;B;C)
andR2(D;E;G;A). Underlined attributes denote the key
of the corresponding relation. LetQ1 be the SQL query:

SELECTR1:A; R1:B; COUNT(R1:G) ASH
FROM R1; R2
WHERE R1:A = R2:A AND R2:G > 1000
GROUP BY R1:A; R1:B
HAVING COUNT(R1:G) > 10

andQ2 be the SQL query:

SELECTR1:A; R1:B; R2:G
FROM R1; R2
WHERE R1:A = R2:A AND R2:G > 1000 AND R1:B =0 c0

Figure 2 shows a multiquery AND/OR dag forQ =
fQ1; Q2g overR = fR1; R2g. Operation nodes are de-
picted by small circles while view nodes are depicted by
bigger ones.1 denotes the natural join operation. Sym-
bol F stands as a shorthand for the expression< A >
F < count(G) as H > denoting a grouping/aggregation
operation: the prefix< A > indicates the grouping at-
tribute, while the suffix< count(G) as H > indicates
the aggregate function, the aggregated attribute, and the
attribute renaming. Query nodes are emphasized by pre-
ceding their names by a *. Two query dags for each query

are represented. Note that as shown in [46] in this case the
grouping/aggregation operator can be pushed past the join.
Marked nodes (materialized views) are depicted by filled
black circles. Source relationR1 andR2 are depicted by
rectangles. Their images are the viewsV1 andV2 respec-
tively. Remark that all the paths from query nodeQ1 orQ2

to source relation nodeR1 orR2 contain a source relation
image. 2

Construction of multiquery AND/OR dags. A multi-
query AND/OR dag for a queryQ can be constructed by
applying transformation rules to an initial query dag. The
initial query dag represents the expression definingQ. The
transformation rules add new operation and view nodes and
link these nodes with existing nodes by adding new edges.
The dag resulting by the application of the transformation
rules is a query AND/OR dag forQ [8]. A multiquery
AND/OR dag for a set of queriesQ can be constructed by
merging equivalent view nodes of the query AND/OR dags
for the queries inQ. [31] presents transformation rules for
multiquery AND/OR dags using a different representation
scheme.

Expression AND/OR dags is a general formalism that cap-
tures many of the notions mentioned previously. In par-
ticular they can represent views and materialized views
(source relation images, simple and auxiliary views), com-
plete rewritings of the queries over the materialized views
and/or the source relations, and common subexpressions
between (maintenance) queries, between views, and be-
tween (maintenance) queries and views. Different types of
expression AND/OR dags will be used below to represent
query evaluation plans and change propagation plans.
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Figure 3: Change propagation dags forV1

4.3 Query evaluation and change propagation dags

Consider a multiquery AND/OR dagG for a set of queries
Q. A query evaluation plan over materialized views is rep-
resented by a query evaluation dag defined as follows.

Definition 4.4 A query evaluation dag for a queryQ 2 Q
is an expression AND subdagE of G such that:
(a)E is rooted atQ.
(b) All and only the sink nodes ofE are marked nodes.2

Example 4.2 Consider the multiquery AND/OR of exam-
ple 4.1. Figure 4 shows two query evaluation dags for the
queriesQ1 andQ2 respectively. 2

A change propagation plan is represented by a change prop-
agation dag defined below.

Definition 4.5 A change propagation dag for a source re-
lation imageV is a multiexpression AND subdagU of G
such that:
(a) All the marked view nodes that are ancestor nodes of

V in G (that is the marked view nodes that occur in a
path from a root node toV in G) are present inU , and
the root nodes ofU are among them.

(b) The sink nodes ofU are marked nodes ofG, andV is
one of them.

(c) The non-sink marked nodes inU are ancestor nodes
of V . 2

Clearly a change propagation dag is a connected graph.

Example 4.3 Consider the multiquery AND/OR dag of
example 4.1. Figure 3 shows two different change propaga-
tion dags for the source relation imageV1. Figure 5 shows
two change propagation dags for the source relation image
V2. As this example makes clear, there can be more than
one change propagation dags for a source relation image in
a given multiquery AND/OR dag. 2

A change propagation dag for the imageV of a source rela-
tionR indicates the way the changes toV are propagated to

the views that are affected by these changes. Recall that the
type of multiquery AND/OR dags we consider here implies
that the materialized views that are affected by the changes
to R are also affected by the changes toV . We describe
this change propagation process below.

4.4 Incremental view maintenance using change prop-
agation dags

The changes to the materialized views that are affected by
the changes to a source relation image can be computed us-
ing the maintenance expressions provided in [9] for a mul-
tiset algebra and in [28] for grouping/aggregationoperators
under multiset semantics. We call these expressions main-
tenance queries. Maintenance queries involve in general
the pre-update state of the source relation images (that is
the state prior to the application of the changes), the pre-
update state of the materialized view, and the changes to
the source relation image.

Example 4.4 Consider the queryQ2 = �B=0c0(V1 1 V2)
of example 4.1 rewritten over the materialized viewsV1
andV2, and suppose that it is a viewV materialized at the
DW. Let �V1 denote the tuples inserted toV1, andrV1
denote the tuples deleted fromV1. Recall that we con-
sider net changes. Therefore, any tuple inrV1 appears
in V1 at least as many times as inrV1, and�V1 and
rV1 do not have any tuple in common. The net changes
to V are computed by the following maintenance queries.
�B=0c0(�V1 1 V2) evaluates to the tuples to be inserted
into V6 and�B=0c0(rV1 1 V2) to the tuples to be deleted
from V6. V1 andV2 in the maintenance queries denote the
pre-update states of viewsV1 andV2. 2

The changes to the source relation images (which are
select-project views) are computed using maintenance
queries, exclusively from the changes to the source rela-
tions (select-project views are self-maintainable when mul-
tiset semantics are adopted).

If the maintenance queries for different materialized
views that are affected by the changes to a source relation
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image have a common subexpression, we can use the tech-
niques of multiquery optimization to compute this subex-
presion only once. Further if a subexpression (that does not
include changes) of a maintenance query is a view already
materialized in the DW (other than a source relation im-
age), we can use this view as an auxiliary view in the com-
putation of the maintenance query. Therefore, the compu-
tation of this subexpression from the source relation images
is avoided.

We maintain the views affected by the changes to the
image of a source relationR by considering a change prop-
agation dagU for the image ofR, and by proceeding in
a bottom-up fashion. This way, we can take advantage of
the views materialized in the DW that are not affected by
the changes, while common subexpressions between main-
tenance queries are computed only once.

The changes to a (marked or non-marked) view nodeV
that is affected by the changes to the source relation image
are computed from the changes to its child view node(s)
Vi. (A view node is affected by the changes to the source
relation image if it is an ancestor of the source relation im-
age sink node.) In general, the pre-update state of eachVi,
and the pre-update state ofV are also needed for this com-
putation (V ’s pre-update state can of course be computed
from the pre-update state ofVis). In particular cases, the
pre-update state ofV and/or the pre-update state ofVis are
not needed [9, 28]. For instance, ifV is a self-maintainable
view (with respect to the changes toVis) the pre-update
state ofVis is not needed. As another example, ifV is ob-
tained by a selection or a projection or an additive union
onVis, neither the pre-update state of anyVis norV ’s pre-
update state are needed:V ’s changes can be computed ex-
clusively from the changes toVis. If V is marked (materi-
alized), the computed changes are applied to it. However,
these changes are not applied until the changes and the pre-
update state (if needed) of the parent view nodes ofV are
computed. Thus the pre-update state ofV remains avail-
able where needed.

The (pre-update state) of a non-marked view nodeV
is computed from the (pre-update state of its) child view
node(s)Vi. This computation is not necessary ifV is not
needed neither for the computation of the changes toV nor
by any of its parent view nodes. A parent view node ofV
may need the pre-update state ofV for the computation of
its own changes or (in case it is a non-marked view) be-
cause its own pre-update state is needed by one of its par-
ents. By a top-down scan of the change propagation dag,
prior to the propagation of the changes, the non-marked
view nodes that need not be computed can be detected [39].

Example 4.5 Consider the change propagation dagU for
V1 of Figure 3(b). There in only one non-marked view node
V6 in U . The only parent view nodeV7 of V6 is a marked
node and does not need the pre-update state ofV6 for the
computation of its own changes [28].V6 itself is obtained

by joining its child nodes and thus its pre-update state is not
needed for the computation of its own changes [9]. There-
fore the computation of the pre-update state ofV6 is not
needed inU . 2

4.5 Time cost functions

We now introduce time cost functions that we use in deter-
mining the time needed to evaluate queries and to propagate
changes to the materialized views.

Consider a multiquery AND/OR dagG for a set of
queriesQ defined over a set of source relationsR. Let
U denote an update propagation plan inG for the image of
source relationR 2 R.

With every operation nodeO in G a costtO is asso-
ciated. CosttO denotes the time needed to compute the
parent view node ofO from the its child node(s), assuming
that the later are already computed.tO = 0 if the parent
view node is marked.

With every operation nodeO in U , a costtUO is asso-
ciated. CosttO reflects the time needed to compute the
parent view nodeV of O from its child node(s), ifV is not
marked and is needed inU (refer to the previous subsec-
tion). Therefore,tUO = tO if V is needed inU , andtUO = 0
otherwise.

With every operation nodeO in G, a costtRO is associ-
ated.tRO reflects the time needed to compute the changes to
the parent view nodeV of O assuming that the pre-update
state ofV , and the pre-update state and the changes of the
child view node(s) ofO are available.tRO = 0 if O is not
an ancestor ofR in G.

With every view nodeV in G, a costtRV is associated.tRV
denotes the time needed to apply the changes toV when the
changes to source relationR are propagated to the materi-
alized views. tRV = 0 if V is not a materialized view or
if V is not an ancestor ofR in G (in the last caseV it not
affected by the changes toR). Clearly,tRO andtRV are inde-
pendent of the change propagation dag for the image ofR
used to propagate the changes ofV .
tRR denotes the time needed by the source holdingR to

compute the changes to the image ofR from the changes
stored in the buffer. The time needed to transmit the
changes to the image ofR from the source ofR to the DW
is denoted byttrR .

We assume that the time is measured in units repre-
senting the lowest granularity of interest. The time costs
depend on hardware features, the physical storage model
and the availability of indexes which must also be updated.
They also depend on the sizes of source relations and their
changes which we assume that they are relatively stable
over a long period of time. Table 1 summarizes the symbols
for the cost functions introduced above and other symbols
introduced below.

Given a query evaluation dagE for a queryQ, the time
tEQ needed to computeQ according toE is given by the
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Symbol Meaning

R source relation

O operation node

V view node

U update propagation dag for the image ofR

Q query defined usingR

tO time needed to compute the parent view node of O

tUO tO if the parent view node ofO is needed inU and 0 otherwise

tRO time needed to compute the changes to the parent view node ofO due to changes toR

tRV time needed to apply the changes toV due to changes toR

tRR time needed to compute the changes to the image ofR due to changes toR

ttrR time needed to transmit the changes to the image ofR

t
Q

R currency for the data fromR in the answer ofQ

T
Q

R minimal currency required for the data fromR in the answer ofQ

fQ frequency of issuingQ

fR frequency of propagating the changes to the image ofR

FR maximal frequency allowed for propagating the changes to the image ofR

Table 1: Summary of symbols used and their meaning

formula:
tEQ =
X

O2E

tO

Different query evaluation dags for the same query yield
different time costs. The query evaluation dag forQ yield-
ing the minimal time cost is calledoptimal query evalua-
tion dag forQ. The minimal timetQ needed to computeQ
is:

tQ = min
E
ftEQg

LetQ = fQ1; : : : ; Qmg. For a queryQi 2 Q, fQi
denotes

the frequency with which queryQi is issued against the
DW. Then the DW query evaluation costP is provided by
the formula:

P =
X

i2[1;m]

fQi
tQi

(1)

Given a change propagation dagU for the imageV of
a source relationR, the timetUR needed to propagate the
changes toV to all the materialized views inU that are
affected by these changes is given by the formula

tUR =
X

O2U

tUO +
X

O2U

tRO +
X

V 2U

tRV

Example 4.6 Consider the change propagation dagU for
V1 of Figure 3(b). As shown in example 4.5, the pre-update
state of the non-marked view nodeV6 (parent of the oper-
ation node1) need not be computed inU . All the other
view nodes, parents of operation nodes inU , are material-
ized and thus their pre-update state is available. Therefore,

tU� = tU
1

= tU
F

= 0. tR1

V6
= tR1

V2
= 0 sinceV6 is not a

marked view node, andV2 is not an ancestor ofV1 in G.
Then,tUR1

= (tR1

� + tR1

1
+ tR1

F
) + (tR1

V1
+ tR1

V4
+ tR1

V7
). 2

Different change propagation dags for the same source re-
lation image yield different time costs. The change prop-
agation dag forV yielding the minimal time cost is called
optimal change propagation dag forV . The minimal time
tR needed to propagate the changes toV to all the mate-
rialized views inG that are affected by the changes toV
is:

tR = min
U
ftURg

Let R = fR1; : : : ; Rng. For a source relationRi 2 R,
fRi

denotes the frequency with which the changes toV are
propagated from the corresponding source to the DW. Then
the DW view maintenance costM is given by the following
formula:

M =
X

i2[1;n]

fRi
tRi

(2)

We can now define source availability constraints

Definition 4.6 Let FR be a frequency value expressing
the maximal frequency allowed for the propagation of the
changes from the source holding source relationR. A
source availability constraintfor R is an inequality of the
form fR � FR. We also defineTR = 1=FR. 2

Before defining currency constraints, we provide a defini-
tion on answer data currency.
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Definition 4.7 Let t1 be the time point (commit point of
the corresponding transaction) when the answer of a query
Q is returned to the user. Suppose that the most recent
changes to a source relationR that are propagated and ap-
plied to the affected views and are taken in consideration
in the evaluation ofQ are read at the source at timet2. We
definetQR = t1 � t2. tQR expresses thecurrency of the data
fromR in the answer ofQ. 2

Note that a higher value fortQR means that the data from
R in the answer ofQ are “older” (less current). Currency
constraints are defined as follows.

Definition 4.8 LetTQR be a time value expressing the min-
imal currency required for the data fromR in the answer
of Q. A currency constraintis an inequality of the form
tQR � TQR . 2

The time costs associated with the view and operation
nodes ofG can be computed given statistics about the
source relations and information about the hardware and
the network. Our approach is independent of the cost
model used but of course the solution to the problem de-
pends on it. Query AND/OR dags used in real optimizers
[8] incorporate also complex mappings of consecutive op-
erations to a single operation node (e.g. a join followed by
a projection) as well as physical properties (e.g sort order).
These features affect the computed time costs, but we do
not go to that depth of detail for simplicity.

4.6 The currency constraint satisfiability problem

We can now state formally the currency constraint satisfia-
bility problem.

Input:
� A multiquery AND/OR dagG for a set of queriesQ

defined over a set of source relationsR.
� For everyR 2 R, a source availability constraint
fR � FR.

� For everyQ 2 Q and everyR in the definition ofQ,
a currency constrainttQR � TQR .

� Time cost functionstO, tUO, tRO, tRV , tRR, andttrR .

Output:
� A decision on whether the constraints can be satisfied.
� If the constraints can be satisfied:

- The minimal change propagation frequencies
that guarantee the satisfaction of the constraints

- The corresponding minimal view maintenance
costM , and the optimal change propagation dags
for the images of the source relations inR.

- The minimal query evaluation costP , and the op-
timal query evaluation dags for the queries inQ.

� If the constraints can not be satisfied:
- The source relations that cause the violation of

the constraints.

5 A solution to the problem

We now present a solution to the currency constraint sat-
isfiability problem. Our approach proceeds in three steps.
In the first step the optimal query evaluation dags and the
minimal query evaluation cost is determined, and the cur-
rency constraints are “pushed down” from the queries to
the simple views. In the second step, the optimal change
propagation dags are determined and the source availability
constraints are “pushed up” from the source relations to the
simple views. The third step checks constraint satisfability,
and computes the minimal change propagation frequencies
and the minimal view maintenance cost.

5.1 Pushing currency constraints down to the simple
views

In this step we first detect the alternative query evaluation
dags inG for every query inQ. Then, the optimal one for
each query is chosen among them. This procedure allows:
(a) determining the simple views inG (that is the material-
ized views that occur in the optimal dags), and (b) comput-
ing the minimal query evaluation costE using formula (1).
Recall that, by definition, the only marked nodes occurring
in a query evaluation dag are sink nodes.

Example 5.1 Consider the multiquery AND/OR dagG of
example 4.1. One can easily see that there is only one query
evaluation dag forQ1, and two query evaluation dags for
Q2 in G. Assuming, for the needs of this example, that
there are not indexes on the materialized views, performing
a natural join ofV1 andV2 and then a selection is more time
consuming than performing a single natural join ofV4 and
V2. Therefore, the optimal query evaluation dags forQ1

andQ2 are those depicted in Figure 4. The marked view
nodesV7, V3 andV4 are the simple views inG. 2

V7

�H>10

�Q1

1

�Q2

V4 V2

Figure 4: Optimal query evaluation dags forQ1 andQ2

Then, the currency constraints are “pushed” from the query
nodes down to the simple views along optimal query eval-
uation dags as follows:
Suppose that a simple viewV occurs in the optimal query
evaluation dags for the queriesQ1; : : : ; Qk. Let R be a
source relation in the view definition ofV . We define

HR
V = min

i2[1;k]
fTQi

R � tQi
g
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Figure 5: Change propagation dags forV2

HR
V represents the minimal currency required for the data

from source relationR in the simple viewV as set by the
currency constraints associated withQi andR, i = 1; : : : k.

5.2 Pushing source availability constraints up to the
simple views

In this step we first detect the alternative change propaga-
tion dags for each source relation image inG. Then, the op-
timal one for each source relation image is chosen among
them.

Example 5.2 Consider the multiquery AND/OR dagGV
shown in Figure 2.GV represents two change propagation
dags for each of the source relation imagesV1 (shown in
Figure 3) andV2 (shown in Figure 5). Assuming that there
are no indexes, it is reasonable to consider that comput-
ing the changes to view nodeV7 from the changes toV1
and the pre-update state ofV3 is less time consuming than
computing the changes toV6 from the changes toV1 and
the pre-update state ofV2 and then the changes toV7 from
the changes toV6 and the pre-update state ofV7. Note that
V3 has no more tuples thanV2, and the computation ofV6 is
not needed as shown in example 4.5. Therefore the change
propagation dag of Figure 3(a) is the optimal change propa-
gation dag forV1. By a similar argument, the change propa-
gation dag of Figure 5(b) is the optimal change propagation
dag forV2. 2

The source availability constraints are pushed from the
source relations up to the simple views along optimal
change propagation dags as follows:
Consider a simple viewV defined using source relationR.
We define

LRV = TR + tRR + ttrR + tR

LRV represents the maximal currency allowed for the data
from source relationR in the simple viewV as set by the
source availability constraint associated withR. Note that
we do not fix a specific order for applying the changes to
the simple views in a change propagation dag. Therefore,

we are sure that the new state of each of these views is avail-
able for querying only when the propagation of the changes
using this propagation dag has finished.

5.3 Checking constraint satisfaction

This step starts by checking the satisfaction of the con-
straints. The constraints are satisfied if and only if for every
simple viewV in G and for every source relationR in the
view definition ofV , LRV � HR

V .
A source relationR violates the constraints if and only

if there is a viewV defined usingR such thatLRV 6� HR
V .

The information on the violating source relations can be
exploited by the DW designer in providing better view se-
lections for materialization (see next section).

Suppose now that the constraints are satisfiable. We
show how the minimal change propagation frequencies that
guarantee the satisfaction of the constraints can be deter-
mined. Consider a source relationR and letV1; : : : ; Vl be
the simple views that are ancestors ofR in G. We define

HR = min
i2[1;l]

fHVi

R g

Let TminR = HR � (tRR + ttrR + tR). Clearly, since the
constraints are satisfied,HR�(tRR+t

tr
R +tR) � TR. Then,

the minimal change propagation frequency forR isfminR =
1=TminR .

The corresponding minimal view maintenance cost
Mmin is computed using formula (2):

Mmin =
X

i2[1;n]

fminRi
tRi

6 Discussion

When the constraints cannot be satisfied, our approach de-
tects the source relations that violate the constraints. The
DW designer can use this information in order to improve
the selected view set. Suppose for instance that the view
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V = �C1
(R1) 1 V 0, whereV 0 is a complex view, is ma-

terialized at the DW. Further, suppose that there are no ma-
terialized views involving the source relations used in the
definition ofV 0 (besides source relation images). Then, by
adding the materialized viewV 0 as an auxiliary view the
time cost of the optimal change propagation plan forR1 is
reduced. This addition may be sufficient for satisfying the
constraints that were previously violated. Note, however,
that this change may cause the violation of other constraints
involving source relations in the definition ofV 0.

The selected view set can also be improved in order
to satisfy the constraints by removing redundant auxiliary
views. Consider for instance the case where in each optimal
change propagation dag, a specific auxiliary view is either
a root node, or does not appear at all in it. Such a view is re-
dundant: it is not used for answering the queries (since it is
not a simple view), and is not useful for reducing the view
maintenance cost of other materialized views (since it is a
root node in the optimal plans where it appears). Removing
such a viewV from the DW reduces the cost of propagat-
ing changes along the optimal change propagation dags that
containV . This reduction may be sufficient for satisfying a
constraints that was previously violated. In [39] we provide
an approach for detecting redundant views in a DW. Even
when the constraints are satisfied, by removing redundant
views, the change propagation frequencies (and therefore
the view maintenance cost) can be further reduced.

If the time cost of the change propagation dags cannot
be further reduced, the DW designer can opt for hardware
improvements (e.g. faster links between the sources that
violate the constraints and the DW). As a final solution, he
can negotiate with the source administrators and the ana-
lysts the relaxing of the source availability and/or the cur-
rency constraints.

Our approach can be combined with a view selection
algorithm. In [41, 42, 40] such algorithms are provided
that generate alternative view sets satisfying the data com-
pleteness quality goal and choose the one that minimizes
a combination of the query evaluation and view mainte-
nance cost. Using our results, the generated view sets can
be checked, instead, for satisfaction of the quality goals.
This suggests for a quality driven DW design. Note finally
that the detection of violated constraints and of useless aux-
iliary views can guide the devise of heuristics. The later are
necessary for pruning the search space of alternative view
selections which can be very large.

7 Conclusion and possible extensions

Up to now research work on DW design issues is restricted
to quantitatively selecting view sets for materialization in
a DW. However the design of a DW is subject to a num-
ber of quality factors. In this paper we have presented a
novel statement for the DW view selection problem based
on the satisfaction of performance, data consistency, data

completeness, and data currency quality goals. The data
currency quality goal is specified by a number of detailed
currency constraints at the query level while availability
constraints at the data source level are also taken into ac-
count. We have described a DW system architecture that
supports the performance quality goal and satisfies the data
consistency and completeness quality goals. In this frame-
work we have addressed the problem of checking whether
a view selection satisfies the given constraints. We have
presented an approach for solving this problem that uses
an AND/OR dag representation for multiple queries and
views. Our approach allows also determining the change
propagation frequencies that minimizes the view mainte-
nance time cost and computes the optimal change propaga-
tion and query evaluation plans. More importantly, it can
help the DW designer in the improvement of the selected
view set, and can cooperate with DW design algorithms to
generate a view set that satisfies the quality goals.

Future work includes the integration of our approach
with DW view selection algorithms and the experimental
validation of an automatic quality-oriented DW design pro-
cess.
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