
M. Lee, J. Hammer 3-1

Speeding Up Warehouse Physical Design
Using A Randomized Algorithm

Minsoo Lee and Joachim Hammer
Dept. of Computer & Information Science & Engineering

University of Florida
Gainesville, FL 32611-6120

{mslee, jhammer}@cise.ufl.edu

Abstract

A data warehouse stores information that is
collected from multiple, heterogeneous
information sources for the purpose of complex
querying and analysis. Information in the
warehouse is typically stored in the form of
materialized views. One of the most important
tasks when designing a warehouse is the selection
of materialized views to be maintained in the
warehouse. The goal is to select a set of views in
such a way as to minimize the total query
response time over all queries, given a limited
amount of time for maintaining the views
(maintenance-cost view selection problem). The
paper focuses on an efficient solution to the
maintenance-cost view selection problem using a
genetic algorithm for computing a near-optimal
set of views. Specifically, we explore the view
selection problem in the context of OR view
graphs. We show that our approach represents a
dramatic improvement in time complexity over
existing search-based approaches using
heuristics. Our analysis shows that the algorithm
consistently yields a solution that lies within 10%
of the optimal query benefit while at the same
time exhibiting only a linear increase in
execution time. We have implemented a
prototype version of our algorithm which is used
to simulate the measurements used in the analysis
of our approach.

1 Introduction
A data warehouse stores information that is collected
from multiple, heterogeneous information sources for the
purpose of complex querying and analysis [IK93, Wid95].
The information in the warehouse is typically processed
and integrated before it is loaded in order to detect and
resolve any inconsistencies and discrepancies among
related data items from different sources. Since the
amount of information in a data warehouse tends to be
large and queries may involve hundreds of complex
aggregates at a time, the organization of the data
warehouse becomes a critical factor in supporting efficient
online analytical query processing (OLAP) as well as in
allowing periodic maintenance of the warehouse contents.
Data in the warehouse is often organized in summary
tables, or materialized views [Rou97], which represent
pre-computed portions of the most frequently asked
queries. In this way, the warehouse query processor
avoids having to scan the large data sets for each query, a
task that is even more wasteful if the query occurs
frequently. However, in order to keep these materialized
views consistent with the data at the sources, the views
have to be maintained. Rather than periodically refreshing
the entire view, a process that may be time consuming and
wasteful, a view can be maintained in an incremental
fashion, whereby only the portions of the view which are
affected by the changes in the relevant sources are
updated [GM95, ZGH+95].
Besides this so-called view maintenance or update cost,
each materialized view in the warehouse also requires
additional storage space which must be taken into account
when deciding which and how many views to materialize.
For example, given a set of frequently asked OLAP
queries, materializing all possible views will certainly
increase query response time but will also raise the update
costs for the warehouse and may exceed the available
storage capacity. Thus by trading space for time and vice
versa, the warehouse administrator must carefully decide
on a particular warehouse configuration which balances
the three important factors given above: query response
time, maintenance cost, and storage space. The problem of
selecting a set of materialized views for a particular
warehouse configuration which represents a desirable

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW'99)
Heidelberg, Germany, 14. - 15. 6. 1999
(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

M. Lee, J. Hammer 3-2

balance among the three costs is known as the view
selection problem1.
In this paper we focus on a solution to the maintenance-
cost view selection problem which minimizes query
response time given varying upper bounds on the
maintenance cost, assuming unlimited amount of storage
space because storage space is regarded cheap and not a
critical resource. Specifically, we explore the view
selection problem in the context of OR view graphs, in
which any view can be computed from any of its related
views. Although the view selection problem has been
addressed previously (e.g., see [Gup97], [GM99],
[TS97]), existing algorithms do not perform well when
computing warehouse configurations involving more than
20-25 views or so. In those cases, the search space
becomes too large for any kind of exhaustive search
method and even the best heuristics can only compute
acceptable solutions for a small set of special cases of the
problem. To this end, we have designed a solution
involving randomization techniques which have proven
successful in other combinatorial problems. We show that
our solution is superior to existing solutions in terms of
both its expected run-time behavior as well as the quality
of the warehouse configurations found. The analysis
proves that our genetic algorithm yields a solution that lies
within 90% of the optimal query benefit while at the same
time exhibiting only a linear increase in execution time.
We expect our algorithm to be useful in data warehouse
design; most importantly in those scenarios where the
queries which are supported by the existing warehouse
views change frequently, making it necessary to
reconfigure the warehouse efficiently and quickly.
Supporting data warehouse evolution in this way may
increase the usefulness of the data warehousing concept
even further.
The paper is organized as follows. In the Sec. 2 we
present an overview of the related work. Sec. 3 describes
our technical approach. Specifically, we briefly introduce
the idea behind genetic algorithms (which are a special
class of randomized algorithms) and how we are using the
technique to find an efficient solution to the view selection
problem. In Sec. 4 we describe the implementation of our
prototype which was used to generate the simulation runs
which we present and analyze in Sec. 5. Sec. 6 concludes
the paper with a summary of our results and future plans.

2 Related Research
All of the related work on view selection uses some form
of greedy strategy or heuristics-based searching technique
to avoid having to exhaustively traverse the solution space
in search of the optimal solution. The problem of selecting
additional structures for materialization was first studied
by Roussopoulos [Rou82] who proposed to materialize
view indices rather than the actual views themselves.

1 Sometimes the problem is also referred to as the view index
selection problem (VIS) when the solution includes a
recommendation on which index structures should be
maintained in support of the materialized views.

View indices are similar to views except that instead of
storing the tuples in the views directly, each tuple in the
view index consists of pointers to the tuples in the base
relations that derive the view tuple. The algorithm is based
on A* to find an optimal set of view indexes but uses a
very simple cost model for updating the view which does
not take into account which subviews have been selected.
As a result, the maintenance cost for the selected view set
is not very realistic.
More recently, Ross et al. [RSS96] and Labio et al.
[LQA97] have examined the same problem using
exhaustive search algorithms that make use of heuristics
for pruning the search space. The work by Labio et al. is
an extension of the work by Ross et al. considering
indexes and also improving upon the efficiency of the
algorithm. In addition, Labio et al. are the first to provide
a valuable set of rules and guidelines for choosing a set of
views and indexes when their algorithm cannot compute
the optimal warehouse configuration within a reasonable
time due to the complexity of the solution. Similarly,
Theodoratos et al. [TS97] present an exhaustive search
algorithm with pruning to find a warehouse configuration
for answering a set of queries given unlimited space for
storing the views. Their work also focuses on minimizing
query evaluation and view maintenance.
[HRU96] present and analyze greedy algorithms for
selection of views in the special case of “data cubes” that
come within 63% of the optimal configuration. However,
their calculations do not figure in the update costs for the
selected views.
Our work is most closely related to that of Gupta [GM99]
who has used both the greedy approach as well as the A*
algorithm for solving the maintenance-cost view selection
problem in the context of both OR/AND view graphs and
the general case of AND-OR view graphs. His approach
also balances query response time and view maintenance
cost while assuming an unlimited amount of storage space.

3 Technical Approach
In [Gup97] the view selection problem is stated to be NP-
hard (see, for example, [Coo71, GJ79]), as there is a
straightforward reduction to the minimum set cover
problem. Roughly speaking, it is very difficult to find an
optimal solution to problems in this class because of the
fact that the solution space grows exponentially as the
problem size increases. Although some good solutions for
NP-hard problems in general and the view selection
problem in specific exist, such approaches encounter
significant problems with performance when the problem
size grows above a certain limit. More recent approaches
use randomized algorithms in solving NP-hard problems.
Randomized algorithms are based on statistical concepts
where the large search space can be explored randomly
using an evaluation function to guide the search process
closer to the desired goal. Randomized algorithms can
find a reasonable solution within a relatively short period
of time by trading executing time for quality. Although the
resulting solution is only near-optimal, this reduction is
not as drastic as the reduction in execution time. Usually,

M. Lee, J. Hammer 3-3

the solution is within a few percentage points of the
optimal solution which makes randomized algorithm an
attractive alternative to traditional approaches such as the
ones outlined in Sec. 2, for example.
Our approach uses a genetic algorithm, which is one form
of a randomized algorithm. The motivation to use genetic
algorithms in solving the view selection problem was
based on the observation that data warehouses can have a
large number of views and the queries that must be
supported may change very frequently. Thus, a fast
solution is needed to provide new configurations for the
data warehouse: an ideal starting point for the genetic
algorithm. However, genetic algorithms do not provide a
magical solution by themselves and their success (or
failure) often depends on the proper problem
specification, the set-up of the algorithm, as well as the
outcome of the extremely difficult and tedious fine-tuning
of the algorithm that must be performed during many test
runs. After a brief overview of genetic algorithms, we
provide details on how to apply these techniques to design
an optimal solution to the view selection problem.
Specifically, we elaborate on a suitable representation of
the solution space as well as the necessary evaluation
functions needed by our genetic algorithm.

3.1 Genetic Algorithms

The idea behind the Genetic Algorithm (GA) [Gol89]
comes from imitating how living organisms evolve into
superior populations from one generation to the next. The
genetic algorithm works as follows. A pool of genomes is
initially established. Each genome represents a possible
solution for the problem to be solved. This pool of
genomes is called a population. The population will
undergo changes and create a new population. Each
population is referred to as a generation. Starting with an
initial generation t, the sequence of subsequent
populations is referred to as generation t+1, t+2, ..., and
so on. After several generations, it is expected that the
population t+k should be composed of genomes which are
superior to the genomes in population t. By superior
genomes we mean genomes which represent a solution
that is closer to the optimal solution (based on a so-called
fitness evaluation).
The Genetic Algorithm repeatedly executes the following
four steps:
 ① t = t +1
 ② select P(t) from P(t-1)
 ③ recombine P(t)
 ④ evaluate P(t)
In step ①, a new generation t is created by increasing the
generation variable t by one. In step ② superior genomes
among the previous population P(t-1) are selected and
used as the basis for composing the genomes in the new
population P(t). A statistical method, for example, the
roulette wheel method [Mic94], is used to select those
genomes which are superior.
In step ③, several operations are executed on paired or
individual genomes to create new genomes in the
population. These operations are called crossover and

mutation operations, respectively. Step ④ evaluates the
population that is created. A function called the fitness
function, which evaluates the superiority of a genome, is
used in this process. The fitness of each genome can be
gathered and used as a metric to evaluate the improvement
made in the new generation. This fitness value is also used
during the selection process (in step ②) in the next
iteration to select superior genomes for the next
population. Also, the genome with the best fitness so far is
saved. We now explain how this algorithm can be
adapted to solve the view selection problem.

3.2 An Improved Solution to the View Selection
Problem

In order to apply a genetic algorithm approach to solve the
view selection problem, two requirements must be met:
(1) We need to find a string representation of a candidate
solution and, (2) we need to be able to define the fitness
function, the crossover operator, and the mutation
operator as outlined above.
In [Mic94], the authors discuss several solutions to
popular problems using genetic algorithms, including the
0/1 knapsack problem (see for example [Aho83]). The
similarity of the view selection problem to the 0/1
knapsack problem gives us a hint on how to apply the
genetic algorithm strategies in our context. However, to
our knowledge nobody has yet to apply genetic algorithm
techniques to solving view selection and the solutions
presented here represent our own approach.

3.2.1 Problem Specification

The problem to be solved can be stated as follows
[GM99]: Given an OR view graph G and a quantity
representing the total maintenance time limit, select a set
of views that minimizes the total query response time and
also does not exceed the total maintenance time limit. An
OR view graph is composed of a set of views where each
view in the graph can be constructed from other source
views in one or more ways, but each derivation involves
only one other view. In other words, only one view among
the source views is needed to compute a view. An
example of an OR view graph is the data cube [GCB+97]
where each view can be constructed in many different
ways but each derivation only involves one view. A
sample OR view graph is shown in Figure 1.

Figure 1: Sample OR view graph for four views.

g h i k

b c d

a

views

base tables

OR

OROROR

M. Lee, J. Hammer 3-4

For example, in this figure, the view labeled a can be
computed from any of the views labeled b, c , d (the same
is true for the views b, c , d).
As mentioned in the introduction, we are limiting our
experiments to OR view graphs at this point since the cost
model is considerably less complex than that for the other
two view graph models (i.e., AND and AND-OR view
graphs). However, despite their simpler cost model, OR
view graphs are useful and appear frequently in
warehouses used for decision support in the form of data
cubes as indicated above.
Future versions of this paper will address the cases of
AND view graphs as well as AND-OR view graphs. We
are also deferring the problem of index selection for the
next version of our algorithm. However, in Sec. 6 we
briefly mention how index selection can be added into the
problem domain in a straightforward manner.

3.2.2 Problem Solution

Step 1 – Representation of the Solution.

A genome represents a candidate solution of the problem
to be solved. A genome can be represented appropriately
as a string as follows: Either as a binary string composed
of 0s and 1s, or as a string of alphanumeric characters.
The content of the string is flexible, but the representation
of the solution must be carefully designed so that it is
possible to properly represent all possible solutions. As
alphanumeric strings are good for representing solutions
to ordering problems and binary strings are used for
selection problems, we use a binary string to represent a
solution. The views in the OR view graph may be
enumerated as v1, v2, …, vm where m is the total number
of views. We can represent a selection of these views as a
binary string of m bits. If the bit in position i (starting
from the leftmost bit as position 1) is 1, view vi is
selected. Otherwise, view vi is not selected. For example,
the bit string 001101001 encodes the fact that only views
v3, v4, v6 and v9 are selected.

Step 2 – Initialization of the Population.

The initial population consists of a pool of randomly
generated bit strings of size m. In future implementations,
however, it is straightforward to start with an initial
population which represents a favorable configuration
based on external knowledge about the problem and its
solution. It will be interesting to see if and how this affects
the quality as well as the run-time of our algorithm. For
the experiments described in this paper, we have chosen a
population size of 30.

Step 3 – Selection, Crossover, Mutation, Termination

The selection process uses the roulette wheel method. The
crossover and mutation operators are assigned
probabilities pc and pm, respectively. The specific values
used in our simulation are 0.001 and 0.9. The crossover
operation is applied to two genomes by exchanging

information between the two, thereby creating two new
genomes. Crossover works as follows:

The mutation operator works as follows.

The selection, crossover, mutation and evaluation
(described in Step 4) processes will be repeated in a loop
until the termination condition is satisfied. The
termination condition is reached after 400 generations.
The values used for the probabilities and termination
condition are based on empirical values used in other
examples, and although reference [Mic94] mentioned that
no improvement was observed after 500 generations, we
have reduced this value to 400 in our experiments since
our algorithm converged more rapidly.

Step 4 – Evaluation Process

The fitness function measures how good a solution (i.e., a
genome) is by providing a fitness value as follows: If the
fitness is high, the solution is closer to an optimal
solution; if the fitness is low, the solution is far away from
the optimal solution. There are many possible fitness
functions and finding the best possible one (i.e., one that
can truthfully evaluate the quality of a particular
warehouse configuration) requires a lot of fine-tuning.
For our problem, the fitness function has to evaluate a
genome (i.e., a set of selected views to materialize) with
respect to the query benefit as well as with respect to the
maintenance constraint. This is similar to the goal of the
0/1 knapsack problem, for example, where the goal is to
maximize the profit of the packed load while satisfying a
specific capacity constraint of the knapsack. The
difference is that in the view selection problem, when a
view is selected, the benefit will not only depend on the
view itself but also on other views that are selected. A
good way to model such a complex problem is by
introducing a penalty value as part of the fitness function.
This penalty value will reduce the fitness if the
maintenance constraint is not satisfied. When the
maintenance constraint is satisfied, the penalty value will
have no effect and only the query benefit should be
evaluated. We have applied the penalty value in three
different ways when calculating the fitness: Subtract mode
(S), Divide mode (D), and Subtract & Divide mode (SD).

Each genome is selected with a probability of pc.
Pair genomes.
For each pair, do the following :
 // Assuming two genomes
 // g1 = (b1 b2 ... bpos bpos+1 ... bm) and
 // g2 = (c1 c2 ... cpos cpos+1 ... cm)
 (1) Randomly decide a crossover point pos.
 (2) Exchange information among genomes,
 and replace g1, g2 with g1', g2'
 // (ex) g1' = (b1 b2 ... bpos cpos+1 ... cm) and
 // g2' = (c1 c2 ... cpos bpos+1 ... bm)

For all genomes,
 For each bit in genome,

mutate (fli p) bit with probability of pm

M. Lee, J. Hammer 3-5

The subtract mode will calculate the fitness by subtracting
the penalty value from the query benefit. Because the
fitness value is not allowed to have a negative value, the
fitness is set to 0 when the result of the calculation
becomes negative (i.e., the penalty value exceeds the
query benefit). The divide mode will divide the query
benefit with the penalty value in an effort to reduce the
query benefit. When the penalty value is less than 1, the
division is not performed in order to prevent the fitness
from increasing. The subtract & divide mode combines
the two methods discussed above. If the query benefit is
larger than the penalty value, the subtract mode is used. If
the penalty value is larger than the query benefit, the
divide mode is used. The penalty value can be calculated
using a penalty function, which will be discussed
afterwards. Thus, we have defined a fitness function,
called Eval, as follows:

Subtract mode (S):
Eval(x)=B(G,M)-Pen(x) (if B(G,M)-Pen(x)≥ 0) ��①
 =0 (if B(G,M)-Pen(x)<0)

 for all x[i]=1, vi ∈ M
 for all x[i]=0, vi ∉ M

Divide mode (D):
Eval(x)=B(G,M) / Pen(x) (if Pen(x)>1) �����②
 =B(G,M) (if Pen(x)≤ 1)

Subtract&Divide mode (SD):
Eval(x)=B(G,M)-Pen(x) (if B(G,M)>Pen(x)) ���③
 =B(G,M)/Pen(x) (if Pen(x)≥ B(G,M) and
 Pen(x) >1)
 =B(G,M) (if Pen(x)≥ B(G,M) and
 Pen(x) ≤ 1)

where B is the query benefit function, Pen is the penalty
function, x is a genome, G is the OR view graph, and M is
the set of selected views given by x.
The penalty function itself can also take on various forms.
For example, we have experimented with logarithmic,
linear and exponential penalty functions as shown in ④,⑤,
and ⑥.

Logarithmic penalty (LG):
 Pen(x) = log 2 (1 + ρ (U(M) - S)) ������④

Linear penalty (LN):
 Pen(x) = (1 + ρ (U(M) - S)) ��������⑤

Exponential penalty (EX):
 Pen(x) = (1 + ρ (U(M) - S))2 �������⑥

where ρ is defined as a constant calculated from the given
OR-view graph G, U(M) is the total maintenance cost of
the set of materialized views M, and S is the maintenance
cost constraint.
We combined the three types of penalty modes (i.e., S, D,
SD) and the three types of penalty functions (i.e., LG, LN,
EX) in our prototype to evaluate and determine the best
possible strategy for solving the view selection problem.
Please note, the details as well as the formulas for the
query benefit function B(G,M), the total maintenance cost
U(M), and ρ are provided in a full version of this paper

[LH99] which is available for download via ftp and http
from our publication server.

4 Prototype Implementation
We used version 2.4.3 of the genetic algorithm toolkit
from MIT called GAlib [MIT] to develop a prototype of
the algorithm described above. The toolkit supports
various types of genetic algorithms including mutation
and crossover operators, built-in genome types such as 1-
dimensional or 2-dimensional strings, and a statistics
gathering tool that can provide summarized information
about each generation during a single run of the genetic
algorithm. The prototype was written entirely in C++
using Microsoft Visual C++ as our development platform.
Since the toolkit did not provide any libraries to encode a
fitness function based on the evaluation strategies
discussed above, we had to encode our own. The fitness
function we developed can calculate the fitness in nine
different ways by pairing each type of penalty mode with
each type of penalty function; in our implementation, we
can control the way the penalty is calculated and applied
in the fitness function by setting the value of a variable
which indicates the desired strategy. This allows us to
switch back and forth between the different penalty modes
when conducting our experiments. The fitness function
needs to evaluate each genome using the cost values given
by the OR-view graph and the maintenance cost limit
(e.g., given by the warehouse administrator). For this
purpose, additional cost functions which, when given a
genome can calculate the total query cost and the total
maintenance cost of the selected views represented by the
genome, must be encoded. The OR-view graph has the
related costs shown in Table 1. Each node (=view) in the
graph, has associated with it a read cost of the view (RC),
a query frequency (QF) and an update frequency (UF).
Each edge of the graph, which denotes the relationship
among the views, is associated with a query cost (QC) and
a maintenance cost (MC).

Table 1: Cost parameters for OR view graphs.

Para-
meter

Description

RC Read Cost of the view, also used to
represent the size of the view.

QF Query Frequency, represents the
number of queries on the view
during a given time interval.

Node
(View)

UF Update Frequency, represents the
number of updates on the view
during a given time interval.

QC Query Cost, represents the cost for
calculating a view from one of its
source views.

Edge

MC Maintenance Cost represents the
cost for updating a view using one
of its source views.

M. Lee, J. Hammer 3-6

The total query cost for the selected views represented by
a genome is calculated by summing over all calculated
minimum cost paths from each selected view to another
selected view or a base table. Each minimum cost path is
composed of all of the QC values of the edges on the path
and the RC values of the final selected view or base table.
This calculation is implemented by using a depth-first
traversal of the OR view graph.
The total maintenance cost is calculated similarly, but the
cost of each minimum cost path is composed of only the
UC values of the edges. The detailed formulae and
examples are given in [LH99]. An OR-view graph
generator, which can randomly generate OR-views based
on the density and using the parameter ranges given for
each parameter of the graph, was also developed for
experimental purpose. In addition, we implemented an
exhaustive search algorithm to find the optimal solution
(at least for small warehouse configurations) in order to be
able to compare the quality of our GA-based solution to
the optimal one for each test case.

5 Evaluation of the Algorithm
Our genetic algorithm was developed and evaluated using
a Pentium II 450 MHz PC running Windows NT 4.0. We
performed two kinds of evaluations. First, the nine
strategies for the fitness functions (see Sec. 3.2.2) were
compared in terms of the quality of the generated
solutions with respect to the optimal solutions. Second, we
compared the run-time behavior of the genetic algorithm
to the exhaustive search algorithm in order to gain insight
into the efficiency of our approach.
The OR-view graphs that were used in the experiments
were as follows. The number of base tables was fixed to
10 tables. The number of views varied from 5 to 20 views.
The edge density of the graph varied from 15% to 30% to
50% to 75%. The ranges for the values of all the
important parameters of the OR-view graphs are shown in
Table 2. The maintenance cost constraint for the problem
was set to 50, 100, 300, and 500. Please note that one
possible interpretation of these values is to view them as
time limits on how long the warehouse is expected to be
unavailable due to maintenance or as the amount of data
that must be read etc.

Table 2: Range of parameter values for the simulated
OR-view graphs

Para-
meter

Description

RC 100-10,000 for base tables (RC for
views are calculated from source
views)

QF 0.1 - 0.9

Node
(View)

UF 0.1- 0.9
QC 10 - 80 % of RC of source view

Edge MC 10 – 150% of QC

5.1 Quality of Solutions

Initially, we used all nine different fitness functions to
conduct the experiments. The quality of the solutions was
measured as a ratio of the optimal total query cost
(obtained using the exhaustive search) over the computed
total query cost (obtained using the genetic algorithm).
The ratio was computed and averaged over several runs.
It was initially expected that the ratio would always be
less than 100%. However, we observed that the solutions
produced by the genetic algorithm sometimes resulted in a
higher than specified maintenance cost but lower than
expected overall query cost: in those cases, the total query
cost obtained was lower than the query cost obtained by
strictly adhering to the maintenance constraint value (i.e.,
the ratio exceeded 100%). This was very interesting in the
sense that although a maintenance cost constraint may be
given, it may be beneficial to use it more as a guideline
(within certain limits) rather than as a strict policy.
Actually, in [GM99] the inverted-tree greedy heuristic
also does not guarantee a strict maintenance cost
constraint, but satisfies a limit within twice the constraint
value.
The nine different strategies used in our initial set of
experiments are denoted LG-S, LG-D, LG-SD, LN-S, LN-
D, LN-SD, EX-S, EX-D, EX-SD, where LG, LN, EX
denote the different penalty functions and S, D, SD denote
the different ways of applying those penalty functions (as
described in Sec. 3.2.2).
After an initial experiment, the logarithmic penalty
functions (LG-S, LG-D, LG-SD) did not perform well,
especially LG-S and LG-SD. The reason was that the
logarithmic penalty function makes the penalty value too
small to have a noticeable effect on the fitness value.
Thus, for LG-S and LG-SD, our algorithm always tried to
maximize the query benefit while ignoring the
maintenance cost constraint by yielding a solution that
materializes all of the views. LG-D and several others
such as LN-S, EX-S did not result in such extreme
solutions but tended to fluctuate wildly over the
maintenance cost limit, sometimes exceeding it by as
much as 10,000%! Therefore, we disregard these
strategies in our figures and only show the results from the
remaining strategies, namely LN-D, LN-SD, EX-D, EX-
SD as depicted in Figures 2 and 3. Figure 2 shows the
results of averaging over the ratios of optimal total query
cost (based on a strict maintenance constraint) over GA
total query costs. Figure 3 shows the results of averaging
over the ratios of GA total maintenance cost over the
maintenance constraint. The values are arranged in tuples
in lexicographical order:

(density, number of views, maintenance
constraint) .

The density changes occur at the points 1, 65, 129 and
193 on the x-axis, each increasing the densities. The
numbers of views are shown in increasing order within a
given density. The maintenance cost is also shown in
increasing order within each set of views.
The results in Figure 3 show that the LN-D and LN-SD
still exhibit a considerable amount of fluctuation (about

M. Lee, J. Hammer 3-7

380%) for the maintenance cost. This was especially
noticeable for low density OR-view graphs where the
penalty values resulted in values which were too small to
enforce the maintenance constraint. If we discard these
two strategies from our consideration, Figure 2 shows that
the remaining EX-D and EX-SD strategies obtain a total
query cost ratio that is guaranteed to always be over 90%
which is very close to the optimal solution. Furthermore,
the maintenance cost is always within two times the value
of the maintenance cost. Thus, EX-D and EX-SD
represent good fitness functions for our genetic algorithm.
Note that this result is also very close to the one that was
verified in theory in the inverted-tree greedy heuristics
proposed by [GM99].

5.2 Execution Time

Figures 4 and 5 show a comparison in execution time
between our genetic algorithm and the exhaustive search
averaged over the sample OR view graphs. The exhaustive
search algorithm was developed to obtain the optimal
solutions for comparing the qualities of the solutions, and

by using this algorithm, we have actual proof that it is
extremely time consuming to obtain an optimal solution
when the number of views exceeds 20 views. As a result,
we limited our experiments to only 20 views. Although
better heuristics exist (which still have polynomial time
complexity), this particular experiment is intended to give
the reader a feel for the performance capabilities of our
genetic algorithm. From the figures we can see that the
execution time for the exhaustive algorithm increases
exponentially within each given density as it goes up to 20
views. Our genetic algorithm on the other hand exhibits
linear behavior. As the density grows, the slope of the
linear graph increases only slightly. The genetic algorithm
took approximately 1/80th of the time of an exhaustive
search of an OR-view graph with density of 75% and 20
views. As the number of views goes up to 30 and beyond,
this ratio is expected to be much more impressive.
Furthermore, the quality of the solution generated by the
genetic algorithm remains very close to the optimal.

Figure 2: Average ratios of (optimal total query cost/GA total query cost)

90
92
94
96
98

100
102
104
106
108
110

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

(density,# of views, maint. constraint)

to
ta

l q
ue

ry
 c

os
t r

at
io

(o

pt
im

al
/G

A
)

% LN-D

LN-SD

EX-D

EX-SD

Figure 3: Average ratios of (GA total maintenance cost/maintenance constraint)

0
50

100
150
200
250
300
350
400
450

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

(density,# of views, maint.constraint)

to
ta

l m
ai

nt
en

an
ce

 c
os

t r
at

io

(G
A

/o
pt

im
al

)
%

LN-D

LN-SD

EX-D

EX-SD

M. Lee, J. Hammer 3-8

6 Conclusion
In this paper we have shown that our genetic algorithm is
superior to existing solutions to the view selection
problem in the context of OR view graphs. Specifically,
our genetic algorithm consistently yields a solution that
comes within 10% of the optimal solution (which we
verified by running an exhaustive search on OR view
graphs with up to 20 views) while at the same time
exhibiting a linear run-time behavior. A penalty function
has been included in the fitness function, and experimental
results show that the EX-D and EX-SD penalty functions
produce the best results for the maintenance cost view
selection problem. We believe that this algorithm can
become an invaluable tool for warehouse evolution,
especially for those data warehouses with a large number
of views and frequent changes to the queries which are
supported by the given warehouse configuration.
In the future, we are considering the following
improvements:
• Generate an initial population based on knowledge of a

possible solution rather than using random
configurations.

• Experiment with several other crossover or mutation
operators to speed up convergence even further.

• Implement a more flexible termination condition that
can interrupt the algorithm when the solution lies with

a certain threshold instead of always computing all
generations.

• Expanding our approach to include AND-OR view
graphs as well as indexes. The first is straightforward.
The latter is more complicated as we have to modify
the problem representation. One possible approach
may be as follows: Add the indexes related to a view
immediately after the bit position of the view.
However, crossover and mutation operations need to
be carefully redesigned since only when a view is
selected for materialization can the associated indexes
be selected. See [LH99] for more details on how we
plan on incorporating index selection into our
algorithm.

• Lastly, genetic algorithms are well suited for
exploiting parallelism. For further improvement in the
performance of the devised algorithm, a parallel
version may be devised.

References

[Aho83] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data
Structures and Algorithms, Addison-Wesley Publishing
Company, Reading, MA, 1983.

Figure 4: Execution time for exhaustive search algorithm

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

(density, # of views, maint. constraint)

tim
e

 (
se

c)

Exhaustive Search

Figure 5: Execution time for genetic algorithm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

(density, # of views, maint. cost)

tim
e

 (
se

c)

LN-D

LN-SD

EX-D

EX-SD

M. Lee, J. Hammer 3-9

[Coo71] S.A. Cook, “The Complexity of Theorem
Proving Procedure,” Annual ACM SIGACT Symposium on
Theory of Computing, pp. 151-158, 1971.

[GJ79] M.R. Garey and D.S. Johnson, Computers and
Intractability – A Guide to the Theory of NP-
Completeness, San Francisco, 1979.

[GCB+97] J. Gray, S. Chaudhuri, A. Bosworth, A.
Layman, D. Reichart, M. Venkatrao, F. Pellow, and H.
Pirahesh, “Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals,”
Data Mining and Knowledge Discovery, 1:1, pp. 29-53,
1997.

[GM95] A. Gupta and I.S. Mumick, “Maintenance of
Materialized Views: Problems, Techniques, and
Applications,” Data Engineering Bulletin, Special Issue
on Materialized Views and Data Warehousing, 18:2, pp.
3-18, 1995.

[Gup97] H. Gupta, “Selection of Views to Materialize in a
Data Warehouse,” in Proceedings of the International
Conference on Database Theory, pp. 98-112, Delphi,
Greece, January 1997.

[GM99] H. Gupta and I. Mumick, "Selection of Views to
Materialize Under a Maintenance Cost Constraint," in
Proceedings of the International Conference on Database
Theory, Jerusalem, Israel, pp. 453-470, January 1999.

[Gol89] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, p.412, Addison-
Wesley, Mass., 1989.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D.
Ullman, “Implementing data cubes efficiently,” SIGMOD
Record (ACM Special Interest Group on Management of
Data), 25:2, pp. 205-216, 1996.

[IK93] W.H. Inmon and C. Kelley, Rdb/VMS:
Developing the Data Warehouse, QED Publishing Group,
Boston, London, Toronto, 1993.

[LQA97] W. Labio, D. Quass, and B. Adelberg, “Physical
Database Design for Data Warehouses,” in Proceedings of
the International Conference on Data Engineering,
Birmingham, England, pp. 277-288, March 1997.

[LH99] M. Lee and J. Hammer, “Speeding Up
Warehouse Physical Design Using A Randomized
Algorithm,” University of Florida, Gainesville, FL,
Technical Report April 1999.

[Mic94] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Sringer-Verlag, New
York, New York, NY, 1994.

[MIT] MIT Technology Lab, “GAlib: A C++ Library of
Genetic Algorithm Components”, URL,
http://lancet.mit.edu/ga/ .

[RSS96] K.A. Ross, D. Srivastava, and S. Sudarshan,
“Materialized view maintenance and integrity constraint
checking: Trading space for time,” SIGMOD Record
(ACM Special Interest Group on Management of Data),
25:2, pp. 447-458, 1996.

[Rou82] N. Roussopoulos, “View Indexing inrelational
Databases,” ACM Transactions on Database Systems, 7:2,
pp. 258-290, 1982.

[Rou97] N. Roussopoulos, “Materialized Views and Data
Warehouses,” in Proceedings of the KRDB, December
1997.

[TS97] D. Theodoratos and T.K. Sellis, “Data
Warehouse Configuration,” in Proceedings of the Twenty-
third International Conference on Very Large Databases,
Athens, Greece, pp. 126-135, August 1997.

[Wid95] J. Widom, “Research Problems in Data
Warehousing,” in Proceedings of the Fourth International
Conference on Information and Knowledge Management,
Baltimore, Maryland, pp. 25-30, November 1995.

[ZGH+95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J.
Widom, “View Maintenance in a Warehousing
Environment,” SIGMOD Record (ACM Special Interest
Group on Management of Data), 24:2, pp. 316-27, 1995.

