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Abstract

A data warehouse stores information that is
collected from  multiple, heterogeneous
information sources for the purpose of complex
querying and analysis. Information in the
warehouse is typically stored in the form of
materialized views. One of the most important
tasks when designing a warehouse is the selection
of materialized views to be maintained in the
warehouse. The goal is to select a set of views in
such a way as to minimize the total query
response time over all queries, given a limited
amount of time for maintaining the views
(maintenance-costiew selection problem The
paper focuses on an efficient solution to the
maintenance-cost view selection problem using a
genetic algorithm for computing a near-optimal
set of views. Specifically, we explore the view
selection problem in the context of OR view
graphs. We show that our approach represents a
dramatic improvement in time complexity over
existing  search-based approaches using
heuristics. Our analysis shows that the algorithm
consistently yields a solution that lies within 10%
of the optimal query benefit while at the same
time exhibiting only a linear increase in
execution time. We have implemented a
prototype version of our algorithm which is used
to simulate the measurements used in the analysis
of our approach.

1 Introduction

A data warehousestores information that is collected
from multiple, heterogeneous information sources for the
purpose of complex querying and analysis [IK93, Wid95].
The information in the warehouse is typically processed
and integrated before it is loaded in order to detect and
resolve any inconsistencies and discrepancies among
related data items from different sources. Since the
amount of information in a data warehouse tends to be
large and queries may involve hundreds of complex
aggregates at a time, the organization of the data
warehouse becomes a critical factor in supporting efficient
online analytical query processing (OLAP) as well as in
allowing periodic maintenance of the warehouse contents.
Data in the warehouse is often organized in summary
tables, ormaterialized viewgRou97], which represent
pre-computed portions of the most frequently asked
queries. In this way, the warehouse query processor
avoids having to scan the large data sets for each query, a
task that is even more wasteful if the query occurs
frequently. However, in order to keep these materialized
views consistent with the data at the sources, the views
have to bemaintained Rather than periodically refreshing
the entire view, a process that may be time consuming and
wasteful, a view can be maintained in Bntremental
fashion, whereby only the portions of the view which are
affected by the changes in the relevant sources are
updated [GM95, ZGFB5].

Besides this so-called view maintenance or update cost,
each materialized view in the warehouse also requires
additional storage space which must be taken into account
when deciding which and how many views to materialize.
For example, given a set of frequently asked OLAP
queries, materializing all possible views will certainly
increase query response time but will also raise the update
costs for the warehouse and may exceed the available
storage capacity. Thus by trading space for time and vice
versa, the warehouse administrator must carefully decide
on a particular warehouse configuration which balances
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balance among the three costs is known asviber View indices are similar to views except that instead of
selection problem storing the tuples in the views directly, each tuple in the
In this paper we focus on a solution to the maintenancgew index consists of pointers to the tuples in the base
cost view selection problem which minimizes queryelations that derive the view tuple. The algorithm is based
response time given varying upper bounds on tla A* to find an optimal set of view indexes but uses a
maintenance cost, assuming unlimited amount of storaggry simple cost model for updating the view which does
space because storage space is regarded cheap and not take into account which subviews have been selected.
critical resource. Specifically, we explore the viewAs a result, the maintenance cost for the selected view set
selection problem in the context of OR view graphs, iis not very realistic.
which any view can be computed from any of its relatddore recently, Ross et al. [RSS96] and Labio et al.
views. Although the view selection problem has bedhQA97] have examined the same problem using
addressed previously (e.g., see [Gup97], [GM99%xhaustive search algorithms that make use of heuristics
[TS97]), existing algorithms do not perform well wherfor pruning the search space. The work by Labio et al. is
computing warehouse configurations involving more thaam extension of the work by Ross et al. considering
20-25 views or so. In those cases, the search spamexes and also improving upon the efficiency of the
becomes too large for any kind of exhaustive searetgorithm. In addition, Labio et al. are the first to provide
method and even the best heuristics can only compat@aluable set of rules and guidelines for choosing a set of
acceptable solutions for a small set of special cases of thews and indexes when their algorithm cannot compute
problem. To this end, we have designed a solutidthe optimal warehouse configuration within a reasonable
involving randomization techniques which have provetime due to the complexity of the solution. Similarly,
successful in other combinatorial problems. We show thaheodoratos et al. [TS97] present an exhaustive search
our solution is superior to existing solutions in terms aflgorithm with pruning to find a warehouse configuration
both its expected run-time behavior as well as the qualftyr answering a set of queries given unlimited space for
of the warehouse configurations found. The analysi$oring the views. Their work also focuses on minimizing
proves that our genetic algorithm yields a solution that liggiery evaluation and view maintenance.
within 90% of the optimal query benefit while at the sam@lRU96] present and analyze greedy algorithms for
time exhibiting only a linear increase in execution timeselection of views in the special case of “data cubes” that
We expect our algorithm to be useful in data warehouseme within 63% of the optimal configuration. However,
design; most importantly in those scenarios where thigeir calculations do not figure in the update costs for the
queries which are supported by the existing warehouselected views.
views change frequently, making it necessary tOur work is most closely related to that of Gupta [GM99]
reconfigure the warehouse efficiently and quicklywho has used both the greedy approach as well as the A*
Supporting data warehouse evolution in this way majlgorithm for solving the maintenance-cost view selection
increase the usefulness of the data warehousing congaqatblem in the context of both OR/AND view graphs and
even further. the general case of AND-OR view graphs. His approach
The paper is organized as follows. In the Sec. 2 vedso balances query response time and view maintenance
present an overview of the related work. Sec. 3 describ@sst while assuming an unlimited amount of storage space.
our technical approach. Specifically, we briefly introduce
the idea behind genetic algorithms (which are a special :
class of randomized algorithms) and how we are using the Technical Approach
technique to find an efficient solution to the view selectiolm [Gup97] the view selection problem is stated to be NP-
problem. In Sec. 4 we describe the implementation of obard (see, for example, [Coo71, GJ79]), as there is a
prototype which was used to generate the simulation rustsaightforward reduction to the minimum set cover
which we present and analyze in Sec. 5. Sec. 6 conclugesblem. Roughly speaking, it is very difficult to find an
the paper with a summary of our results and future plansoptimal solution to problems in this class because of the
fact that the solution space grows exponentially as the
2 Related Research problem size increases. Although soneed solutions for
NP-hard problems in general and the view selection
All of the related work on view selection uses some forroblem in specific exist, such approaches encounter
of greedy strategy or heuristics-based searching technigignificant problems with performance when the problem
to avoid having to exhaustively traverse the solution spasge grows above a certain limit. More recent approaches
in search of the optimal solution. The problem of selectinge randomized algorithms in solving NP-hard problems.
additional structures for materialization was first studiegandomized algorithms are based on statistical concepts
by Roussopoulos [Rou82] who proposed to materializghere the large search space can be explored randomly
view indices rather than the actual views themselvegsing an evaluation function to guide the search process
closer to the desired goal. Randomized algorithms can
1 ] _ _ find a reasonable solution within a relatively short period
Sometimes the problem is also referred to asvie® index of time by trading executing time for quality. Although the
selection problem (VIS) when the solution includes ayagyting solution is only near-optimal, this reduction is

recommendation on which index  structures should gy a5 drastic as the reduction in execution time. Usually,
maintained in support of the materialized views.
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the solution is within a few percentage points of theautation operations, respectively. Stép evaluates the
optimal solution which makes randomized algorithm apopulation that is created. A function called fitaess
attractive alternative to traditional approaches such as foection which evaluates the superiority of a genome, is
ones outlined in Sec. 2, for example. used in this process. The fitness of each genome can be
Our approach uses a genetic algorithm, which is one fogathered and used as a metric to evaluate the improvement
of a randomized algorithm. The motivation to use genetiwade in the new generation. This fithess value is also used
algorithms in solving the view selection problem waduring the selection process (in st&p) in the next
based on the observation that data warehouses can haiteration to select superior genomes for the next
large number of views and the queries that must pepulation. Also, the genome with the best fithess so far is
supported may change very frequently. Thus, a fasaved. We now explain how this algorithm can be
solution is needed to provide new configurations for tredapted to solve the view selection problem.

data warehouse: an ideal starting point for the genetic

algorithm. However, genetic algorithms do not provide 82 An Improved Solution to the View Selection
magical solution by themselves and their success (or Problem

fail h I
ailure) often depends —on the  proper prob ew% order to apply a genetic algorithm approach to solve the

specification, the set-up of the algorithm, as well as t lecti | . -
outcome of the extremely difficult and tedious fine-tuningf/€W Selection problem, two requirements must be met:
) We need to find a string representation of a candidate

of the algorithm that must be performed during many te X X ;

runs. After a brief overview of genetic algorithms, w olution and, (2) we need to be able to define the fitness

provide details on how to apply these techniques to desiyfction, the crossover operator, and the mutation
perator as outlined above.

an optimal solution to the view selection problent: X . :

Specifically, we elaborate on a suitable representation '8f [Mic94], the authors discuss several solutions to

the solution space as well as the necessary evalua ular problems using genetic algorithms, including the

functions needed by our genetic algorithm. /1 knapsack problem (see for example [Aho83]). The
similarity of the view selection problem to the 0/1

knapsack problem gives us a hint on how to apply the

genetic algorithm strategies in our context. However, to

The idea behind the Genetic Algorithm (GA) [Gol89pbur knowledge nobody has yet to apply genetic algorithm

comes from imitating how living organisms evolve intdechniques to solving view selection and the solutions

superior populations from one generation to the next. Theesented here represent our own approach.

genetic algorithm works as follows. A pool of genomes is

initially established. Each genome represents a possiBl@.1  Problem Specification

solution for the problem to be solved. This pool OEIM
[

3.1 Genetic Algorithms

; : : e problem to be solved can be stated as follows
genomes is called a population. The population wi o . ;
undergo changes and create a new population. E 99]: Given an OR view graph G and a gquantity

population is referred to as a generation. Starting with 5%23&”% tmhiiiﬂizsm'?r:gtteoqgrcietlrmer}egmcl;[ﬁssslteirﬁeaaizt
initial generation t, the sequence of subsequen query resp

populations is referred to as generatiof, t+2 and also does not exceed the total maintenance time limit. An
S0 on. After several generations, it is expected that t95 view graph is composed of a set of views where each
Jéw in the graph can be constructed from other source

populationt+k should be composed of genomes which a%lews in one or more ways, but each derivation involve
superior to the genomes in populatibn By superior yS, S

genomes we mean genomes which represent a solui@y one other view. In other words, only one view among
I

that is closer to the optimal solution (based on a so-cal source views is needed to compute a view. An
fitness evaluation). eéxample of an OR view graph is the data cube [RCB

The Genetic Algorithm repeatedly executes the followinahere each view can be constructed in many different
four steps: ays but each derivation only involves one view. A
Ot=t+1 sample OR view graph is shown in Figure 1.

O select P(t) from P(t-1)

O recombine P(t)

O evaluate P(t)
In stepd, a new generationhis created by increasing the
generation variableby one. In stefi] superior genomes
among the previous populatidd(t-1) are selected and
used as the basis for composing the genomes in the ne
population P(t). A statistical method, for example, the
roulette wheel metho@Mic94], is used to select those
genomes which are superior.
In step, several operations are executed on paired c
individual genomes to create new genomes in th
population. These operations are calle@ssoverand

OR

Figure 1: Sample OR view graph for four views.
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For example, in this figure, the view labeladcan be information between the two, thereby creating two new
computed from any of the views labeledc, d (the same genomes. Crossover works as follows:

is true for the views, c, d).
As mentioned in the introduction, we are limiting ou] Each genome is selected with a probability of p
experiments to OR view graphs at this point since the c{ Pair genomes.

model is considerably less complex than that for the otl] For each pair, do the following :

two view graph models (i.e., AND and AND-OR view /I Assuming two genomes

graphs). However, despite their simpler cost model, ( Ngl=(0b..0e Bhosi... ) and

view graphs are useful and appear frequently 192=(€C... Gos Gpost1-:- Gn)
warehouses used for decision support in the form of di (1) Randomly decide a crossover point pos.
cubes as indicated above. (2) Exchange information among genomes,
Future versions of this paper will address the cases and replace g1, g2 with g1', g2'

AND view graphs as well as AND-OR view graphs. W i1 (ex) gl'= (@b, ... Bos  Goss1..- Gn) and
are also deferring the problem of index selection for t} 1 02'=(0C ... Gos Mhost1-.. )

next version of our algorithm. However, in Sec. 6
briefly mention how index selection can be added into tiéhe mutationoperator works as follows.
problem domain in a straightforward manner.

For all genomes,

3.2.2 Problem Solution For each bit ".1 genome,
mutate(fli p) bit with probability of pm

Step 1 — Representation of the Solution. The selection, crossover, mutation and evaluation

A genome represents a candidate solution of the probléggscribed in Step 4) processes will be repeated in a loop
to be solved. A genome can be represented appropriatéfjil the termination condition is satisfied. The
as a string as follows: Either as a binary string compost&imination conditionis reached after 400 generations.
of Os and 1s, or as a string of alphanumeric charactef§e values used for the probabilities and termination
The content of the string is flexible, but the representati@@ndition are based on empirical values used in other
of the solution must be carefully designed so that it &amples, and although reference [Mic94] mentioned that
possible to properly represent all possible soluticks no improvement was observed after 500 generations, we
alphanumeric strings are good for representing solutiohgve reduced this value to 400 in our experiments since
to ordering problems and binary strings are used feur algorithm converged more rapidly.

selection problems, we use a binary string to represent a

solution. The views in the OR view graph may b&tep 4 — Evaluation Process

enumerated as;vv,, ..., Vi, wherem is the total number
of views. We can represent a selection of these views
binary string ofm bits. If the bit in position (starting
from the leftmost bit as position 1) is 1, viewy s
selected. Otherwise, view is not selected. For example
the bit string 001101001 encodes the fact that only vie
V3, V4, Vg and \4 are selected.

Thefitness functiormeasures how good a solution (i.e., a
aﬁe"i’mme) is by providing a fithess value as follows: If the
fitness is high, the solution is closer to an optimal
solution; if the fitness is low, the solution is far away from
'the optimal solution. There are many possible fithess
¥hctions and finding the best possible one (i.e., one that
can truthfully evaluate the quality of a particular
warehouse configuration) requires a lot of fine-tuning.
For our problem, the fitness function has to evaluate a
The initial population consists of a pool of randomlgenome (i.e., a set of selected views to materialize) with
generated bit strings of sime In future implementations, respect to the query benefit as well as with respect to the
however, it is straightforward to start with an initiainaintenance constraint. This is similar to the goal of the
population which represents a favorable configuratidfl knapsack problem, for example, where the goal is to
based on external knowledge about the problem and fit@ximize the profit of the packed load while satisfying a
solution. It will be interesting to see if and how this affectgpecific capacity constraint of the knapsack. The
the quality as well as the run-time of our algorithm. Fafifference is that in the view selection problem, when a
the experiments described in this paper, we have choserieav is selected, the benefit will not only depend on the
population size of 30. view itself but also on other views that are selected. A
good way to model such a complex problem is by
Step 3 — Selection, Crossover, Mutation, Termination  introducing a penalty value as part of the fitness function.
: This penalty value will reduce the fitness if the
The selection process uses the roulette wheel methoq. Egmenance constraint is not satisfied. When the
crossover and mutation operators are  asSigngfhintenance constraint is satisfied, the penalty value will
probabilities p and g, respectively. The specific valuespaye no effect and only the query benefit should be
used in our simulation are 0.001 and 0.9. ThBSSOVEr eyajuated. We have applied the penalty value in three
operation is applied to two genomes by exchangingiferent ways when calculating the fitness: Subtract mode
(S), Divide mode (D), and Subtract & Divide mode (SD).

Step 2 — Initialization of the Population.
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The subtract mode will calculate the fitness by subtractifigH99] which is available for download via ftp and http
the penalty value from the query benefit. Because tf®m our publication server.

fitness value is not allowed to have a negative value, the

fithess is set to 0 yvhen the result of the calculation Prototype Implementation

becomes negative (i.e., the penalty value exceeds the

query benefit). The divide mode will divide the queryVe used version 2.4.3 of the genetic algorithm toolkit
benefit with the penalty value in an effort to reduce th€&om MIT called GAlib [MIT] to develop a prototype of
query benefit. When the penalty value is less than 1, the algorithm described above. The toolkit supports
division is not performed in order to prevent the fitnesgrious types of genetic algorithms including mutation
from increasing. The subtract & divide mode combinedd crossover operators, built-in genome types such as 1-
the two methods discussed above. If the query benefitdignensional or 2-dimensional strings, and a statistics
larger than the penalty value, the subtract mode is useddathering tool that can provide summarized information
the penalty value is larger than the query benefit, ti@out each generation during a single run of the genetic
divide mode is used. The penalty value can be calcula@gorithm. The prototype was written entirely in C++
using a penalty function, which will be discussedsing Microsoft Visual C++ as our development platform.
afterwards. Thus, we have defined a fitness functiofince the toolkit did not provide any libraries to encode a

calledEval, as follows fitness function based on the evaluation strategies
discussed above, we had to encode our own. The fithess
Subtract mode (S): _ function we developed can calculate the fitness in nine
Eval(x)=B(G,M)-Pen(x) (if B(G,M)-Pen(x)0)------[] different ways by pairing each type of penalty mode with
=0 _ (if B(G,M)-Pen(x)<0) each type of penalty function; in our implementation, we
forall x[i]=1, vi M can control the way the penalty is calculated and applied
for all x[i]=0, viIM in the fitness function by setting the value of a variable
Divide mode (D): which indicates the desired strategy. This allows us to
Eval(x)=B(G,M) / Pen(x) (if Pen(x)>%)-----«------ 0 switch back and forth between the different penalty modes
=B(G,M) (if Pen&)L) when conducting our experiments. The fitness function
o needs to evaluate each genome using the cost values given
Subtract&Divide mode (SD): by the OR-view graph and the maintenance cost limit
Eval(x)=B(G,M)-Pen(x) (if B(G,M)>Pen(x))------- O (e.g., given by the warehouse administrator). For this
=B(G,M)/Pen(x) (if Pen)B(G,M) and purpose, additional cost functions which, when given a
Pen(x) >1) genome can calculate the total query cost and the total
=B(G,M) (if Pen&B(G,M) and maintenance cost of the selected views represented by the
Pen&l) genome, must be encoded. The OR-view graph has the

whereB is the query benefit functioenis the penalty '€lated costs shown in Table 1. Each node (=view) in the
function,x is a genomeG is the OR view graph, ard is graph, has associated with it a read cost of the view (RC),
the set of selected views giveny a query frequency (QF) and an update frequency (UF).
The penalty function itself can also take on various formsach edge of the graph, which denotes the relationship
For example, we have experimented with logarithmi@Mong the views, is associated with a query cost (QC) and
linear and exponential penalty functions as showr,in, & Maintenance cost (MC).

and(d.
L Table 1: Cost parameters for OR view graphs.
Logarithmic penalty (LG):
Pen(x) = |og2 ( 1+p ( U(M) -S ) ) ............... 0 Para- Description
Linear penalty (LN): meter
Pen(X) = (1+p (UM)-S) ) rermrremneennennn O RC | Read Cost of the view, also used to
Exponential penalty (EX): (Node) represent the size of the view.
: View QF | Query Frequency, represents the
Pen() = (1+p (UM)-S)J oo o number of queries on the view
wherep is defined as a constant calculated from the given during a given time interval.
OR-view graph GU(M) is the total maintenance cost o UF | Update Frequency, represents the
the set of materialized viewd, andS is the maintenance number of updates on the view
cost constraint. during a given time interval.
We combined the three types of penalty modes (i.e., S,|D, QC | Query Cost, represents the cost far
SD) and the three types of penalty functions (i.e., LG, LN, Edge calculating a view from one of its
EX) in our prototype to evaluate and determine the best source views.
possible strategy for solving the view selection problem. MC | Maintenance Cost represents the
Please note, the details as well as the formulas for th cost for updating a view using one
query benefit function B(G,M), the total maintenance cost of its source views.

U(M), andp are provided in a full version of this paper

M. Lee, J. Hammer 3-5



The total query cost for the selected views represented®y  Quality of Solutions
a genome is calculated by summing over all calculat?dt. I d all nine diff t fit functi ¢
minimum cost paths from each selected view to anothgpially, we used all nine_difierent Titness functions to

selected view or a base table. Each minimum cost pathc?é]dUCt the experiments. The quality of the solutions was

composed of all of the QC values of the edges on the piifasured as a ratio of the optimal total query cost
and the RC values of the final selected view or base tal btained using the exhaustive search) over the computed

This calculation is implemented by using a depth-fir rtlal rqftjiervaOSt Er?bt?lr&ednlésm\? rthe genveurc al/gorntlhrmr)]_
traversal of the OR view graph. € ratio was computed and averaged over Several runs.

The total maintenance cost is calculated similarly, but g was initially expected that the ratio would always be

cost of each minimum cost path is composed of only tﬂ]eess than 100%. However, we observed that the solutions
UC values of the edges. The detailed formulae a duced by the genetic algorithm sometimes resulted in a

examples are given in [LH99]. An OR-view grapHngher than specified maintenance cost but lower than

generator, which can randomly generate OR-views bas%)&DeCted overall query cost: in those cases, the total query
on the density and using the parameter ranges given (fg t obtained was lower than the query cost obtained by

rjctly adhering to the maintenance constraint value (i.e.,
each parameter of the graph, was also developed ératio exceeded 100%). This was very interesting in the

experimental purpose. In addition, we implemented ense that although a maintenance cost constraint may be
exhaustive search algorithm to find the optimal solutior ; 9 - . may
ven, it may be beneficial to use it more as a guideline

(at least for small warehouse configurations) in order to %ﬁthin certain limits) rather than as a strict policy
able to compare the quality of our GA-based solution ctually, in [GM99] the inverted-tree greedy heuristic

the optimal one for each test case. : :
also does not guarantee a strict maintenance cost

. ) constraint, but satisfies a limit within twice the constraint
5 Evaluation of the Algorithm value.

Our genetic algorithm was developed and evaluated usih@e nine different strategies used in our initial set of
a Pentium Il 450 MHz PQunning Windows NT 4.0. We €Xperiments are denoted LG-S, LG-D, LG-SD, LN-S, LN-
performed two kinds of evaluations. First, the nin®. LN-SD, EX-S, EX-D, EX-SD, where LG, LN, EX
strategies for the fitness functions (see Sec. 3.2.2) wé@note the different penalty functions and S, D, SD denote
compared in terms of the quality of the generatéBe different ways of applying those penalty functions (as
solutions with respect to the optimal solutions. Second, W&scribed in Sec. 3.2.2). o

compared the run-time behavior of the genetic algorithfiftér an initial - experiment, the logarithmic penalty
to the exhaustive search algorithm in order to gain insigictions (LG-S, LG-D, LG-SD) did not perform well,
into the efficiency of our approach. especially LG-S and LG-SD. The reason was that the
The OR-view graphs that were used in the experimeff@arithmic penalty function makes the penalty value too
were as follows. The number of base tables was fixed $§1@!l to have a noticeable effect on the fitness value.
10 tables. The number of views varied from 5 to 20 view$hus, for LG-S and LG-SD, our algorithm always tried to
The edge density of the graph varied from 15% to 30% f@@ximize the query benefit while ignoring the
50% to 75%. The ranges for the values of all th@aintenance cost constraint by yielding a solution that
important parameters of the OR-view graphs are showniterializesall of the views. LG-D anq several others
Table 2. The maintenance cost constraint for the probléiCh as LN-S, EX-S did not result in such extreme
was set to 50, 100, 300, and 500. Please note that AMItions but tended to fluctuate wildly over the
possible interpretation of these values is to view them Biintenance cost limit, sometimes exceeding it by as
time limits on how long the warehouse is expected to §aich as 10,000%! Therefore, we disregard these

unavailable due to maintenance or as the amount of dat@tegies in our figures and only show the results from the
that must be read etc. remaining strategies, namely LN-D, LN-SD, EX-D, EX-

SD as depicted in Figures 2 and 3. Figure 2 shows the
results of averaging over the ratios of optimal total query
Table 2: Range of parameter values for the simulated cost (based on a strict maintenance constraint) over GA

OR-view graphs total query costs. Figure 3 shows the results of averaging
over the ratios of GA total maintenance cost over the
Para- Description maintenance constraint. The values are arranged in tuples
meter in lexicographical order:
RC | 100-10,000 for base tables (RC for (density, number of views, maintenance
Node views are calculated from source constraint)
(View) views) The density changes occur at the points 1, 65, 129 and
QF 101-0.9 193 on the x-axis, each increasing the densities. The
UF | 0.1-0.9 : numbers of views are shown in increasing order within a
QC | 10 - 80 % of RC of source view given density. The maintenance cost is also shown in
Edge | MC | 10-150% of QC increasing order within each set of views.

The results in Figure 3 show that the LN-D and LN-SD
still exhibit a considerable amount of fluctuation (about
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380%) for the maintenance cost. This was especialty using this algorithm, we have actual proof that it is
noticeable for low density OR-view graphs where thextremely time consuming to obtain an optimal solution
penalty values resulted in values which were too small when the number of views exceeds 20 views. As a result,
enforce the maintenance constraint. If we discard these limited our experiments to only 20 views. Although
two strategies from our consideration, Figure 2 shows thHagtter heuristics exist (which still have polynomial time
the remaining EX-D and EX-SD strategies obtain a totabmplexity), this particular experiment is intended to give
query cost ratio that is guaranteed to always be over 908€ reader a feel for the performance capabilities of our
which is very close to the optimal solution. Furthermorgenetic algorithm. From the figures we can see that the
the maintenance cost is always within two times the valegecution time for the exhaustive algorithm increases
of the maintenance cost. Thus, EX-D and EX-SBxponentially within each given density as it goes up to 20
represent good fitness functions for our genetic algorithwiews. Our genetic algorithm on the other hand exhibits
Note that this result is also very close to the one that waear behavior. As the density grows, the slope of the
verified in theory in the inverted-tree greedy heuristidinear graph increases only slightly. The genetic algorithm

proposed by [GM99]. took approximately 1/80 of the time of an exhaustive
search of an OR-view graph with density of 75% and 20
5.2  Execution Time views. As the number of views goes up to 30 and beyond,

. ) . . . this ratio is expected to be much more impressive.
Figures 4 and 5 show a comparison in execution tu'%’:

' . ! thermore, the quality of the solution generated by the
between our genetic algorithm {:md the exhaustive seafel,tic algorithm remains very close to the optimal.
averaged over the sample OR view graphs. The exhaustive
search algorithm was developed to obtain the optimal
solutions for comparing the qualities of the solutions, and
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Figure 5: Execution time for genetic algorithm
6 Conclusion a certain threshold instead of always computing all

nerations.

In thisf paper we h.ave shown that our gengtic algorithm,is gipiniiiﬁgsour approach to include AND-OR view
superior to existing solutions to the view selection granhs as well as indexes. The first is straightforward.
problem in the context of OR view graphs. Specifically, The |atter is more complicated as we have to modify
our genetic algorithm consistently yields a solution that i, problem representation. One possible approach
comes within 10% of the optimal solution (which we 5 he as follows: Add the indexes related to a view
verified by running an exhaustive search on OR view immediately after the bit position of the view.
graphs with up to 20 views) while at the same time o vever, crossover and mutation operations need to
exhibiting a linear run-time behavior. A penalty function carefully redesigned since only when a view is
has been included in the fitness function, and experimental gg|ected for materialization can the associated indexes
results show that the EX-D and EX-SD penalty functions pa gejected. See [LH99] for more details on how we
produce the best results for the maintenance cost VieWpIan on incorporating index selection into our
selection problem. We believe that this algorithm can algorithm.
become an invaluable tool for warehouse evolution,
especially for those data warehouses with a large number
of views and frequent changes to the queries which are
supported by the given warehouse configuration.
In the future, we are considering the following
improvements:
« Generate an initial population based on knowledge of?eferences

possible solution rather than using random

configurations. Aho83] A.V. Aho, J.E. Hopcroft, and J.D. Ulimabata

 Experiment with several other crossover or mutatiogctures and AlgorithmsAddison-Wesley Publishing
operators to speed up convergence even further.  company, Reading, MA, 1983.

* Implement a more flexible termination condition that
can interrupt the algorithm when the solution lies with

Lastly, genetic algorithms are well suited for
exploiting parallelism. For further improvement in the
performance of the devised algorithm, a parallel
version may be devised.
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